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Outline 

• Motivation 
–  FPGA-based high-performance reconfigurable computing 

• OpenACC-to-FPGA translation framework 
–  Baseline translation  
–  FPGA-specific optimizations and pragma extensions 

• Evaluation 
• Conclusion 

http://ft.ornl.gov/research/openarc 
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Motivation 

• Requirements for future exascale supercomputers 
–  High performance on mission applications 
– Wide flexibility to serve a diverse application workload 
–  Efficient power usage 
–  Effective reliability, etc. 

• Heterogeneous computing as potential solutions to 
this challenge 
–  Current and upcoming petascale systems with GPUs or 

Xeon Phis: Tianhe-2, Titan, Summit, Aurora, etc.  
–  Next-generation supercomputers with FPGAs? 

http://ft.ornl.gov/research/openarc 



4 IPDPS16 

Field Programmable Gate Array (FPGA) 

• FPGAs 
–  An integrated circuit designed to be re-configured by a 

customer 
•  “Field-programmable” means that different circuit designs can be 

loaded. 

–  Consist of a set of programmable logic blocks, 
reconfigurable interconnects, dedicated memory blocks, 
ALUs, and/or hard IP processors (e.g., ARM, PPC).  

– Offer good performance and energy efficiency for specific 
workloads. 
•  Digital signal processing, medical imaging, computer vision, 

speech recognition, cryptography, bioinformatics, radio astronomy, 
etc. 

http://ft.ornl.gov/research/openarc 
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Challenges in FPGA Computing 

• Programmability and Portability Issues 
–  Best performance for FPGAs requires writing Hardware 

Description Languages (HDLs) such as VHDL and 
Verilog; too complex and low-level 
•  HDL requires substantial knowledge on hardware (digital circuits). 
•  Programmers must think in terms of a state machine. 
•  HDL programming is a kind of digital circuit design. 

–  High-Level Synthesis (HLS) to provide better FPGA 
programmability 
•  SRC platforms, Handel-C, Impulse C-to-FPGA compiler, Xilinx 

Vivado (AutoPilot), FCUDA, etc. 
•  None of these use a portable, open standard. 

http://ft.ornl.gov/research/openarc 
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Standard, Portable Programming Models 
for Heterogeneous Computing 

• OpenCL 
– Open standard portable across diverse heterogeneous 

platforms (e.g., CPUs, GPUs, DSPs, Xeon Phis, FPGAs, 
etc.) 

– Much higher than HDL, but still complex for typical 
programmers. 

• Directive-based accelerator programming models 
– OpenACC, OpenMP4, etc. 
–  Provide higher abstraction than OpenCL. 
– Most of existing OpenACC/OpenMP4 compilers target 

only specific architectures; none supports FPGAs. 

http://ft.ornl.gov/research/openarc 
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Contribution of This Work 

• Design and implement an OpenACC-to-FPGA 
translation framework, which is the first work to use 
a standard and portable directive-based, high-level 
programming system for FPGAs. 

• Propose FPGA-specific optimizations and novel 
pragma extensions to improve performance. 

• Evaluate the functional and performance portability 
of the framework across diverse architectures 
(Altera FPGA, NVIDIA GPU, AMD GPU, and Intel 
Xeon Phi). 

http://ft.ornl.gov/research/openarc 
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OpenARC: Baseline OpenACC 
Translation Framework 

• OpenARC: Open Accelerator Research Compiler 
– Open-sourced, high-level Intermediate Representation 

(HLIR)-based, extensible compiler framework. 
–  Perform source-to-source translation from OpenACC C to 

the output CUDA or OpenCL program, targeting diverse 
devices such as NVIDIA/AMD GPUs and Intel Xeon Phis. 

– OpenARC’s high-level representation (HLIR) allow to 
generate human-readable output code, easy to 
understand, debug, and optimize. 

–  Equipped with various advanced analysis/transformation 
passes and built-in tuning tools. 

http://ft.ornl.gov/research/openarc 
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HeteroIR-based, functionally portable 
OpenACC translation in OpenARC 

• HeteroIR: high-level, architecture-independent 
intermediate representation  
–  Encapsulate the common accelerator operations into 

high-level function calls, which are orchestrated on the 
target architecture by the runtime system. 

–  Allow to generate device-independent host code. 
–  Allow to reuse many of existing compiler passes to port to 

a new architecture. 

http://ft.ornl.gov/research/openarc 
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OpenARC System Architecture 

http://ft.ornl.gov/research/openarc 
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Baseline Translation of OpenACC-to-
FPGA 

• Use OpenCL as the output model and the Altera 
Offline Compiler (AOC) as its backend compiler. 

• Translates the input OpenACC program into a host 
code containing HeteroIR constructs and device-
specific kernel codes. 
–  Use the same HeteroIR runtime system of the existing 

OpenCL backends, except for the device initialization. 
–  Reuse most of compiler passes for kernel generation. 

http://ft.ornl.gov/research/openarc 
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OpenARC Extensions and Optimizations 
for Efficient FPGA Programming 

• Key benefit of using FPGAs is that they support 
wide, heterogeneous, and deeply pipelined 
parallelism customized for the input program. 

•  In FPGA programming with OpenCL, the OpenCL 
compiler synthesizes all the hardware logic for the 
input program.  
–  The efficiency of the compiler is critical. 

• We extend OpenARC to generate output OpenCL 
codes in a manner friendly to the underlying AOC 
OpenCL backend compiler.  

http://ft.ornl.gov/research/openarc 
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FPGA OpenCL Architecture 
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Directive Extensions to Control Efficient 
Hardware Logic Generation 

•  Directives for Loop Unrolling 
–  Decide pipeline depth and affect memory access coalescing. 

•  Directives for Kernel Vectorization 
–  Replicate the kernel datapath to allow SIMD operations share control 

logics across each SIMD vector lane and might coalesce memory 
accesses. 
•  The whole kernel is executed in an SIMD mode; different from OpenACC 

vector execution model. 

•  Directives for Compute Unit Replication  
–  Can achieve higher throughput. 
–  Increase the bandwidth requests to the global memory. 

http://ft.ornl.gov/research/openarc 
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Directive Extensions to Enable Efficient 
Hardware Logic Generation 

• Directives for Kernel Configuration Boundary Check 
Elimination 
– Guarding statements (if statement) in OpenACC kernels 

to prevent possible array-index-out-of-bounds errors 
–  Performance effect caused by diverging control path 
–  New directive to selectively apply the guarding statement 

http://ft.ornl.gov/research/openarc 
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Kernel-Pipelining Transformation 
Optimization 

•  Kernel execution model in 
OpenACC 
–  Device kernels can communicate 

with each other only through the 
device global memory. 

–  Synchronizations between kernels 
are at the granularity of a kernel 
execution. 

•  Altera OpenCL channels 
–  Allows passing data between 

kernels and synchronizing kernels 
with high efficiency and low 
latency 

http://ft.ornl.gov/research/openarc 
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Kernel-Pipelining Transformation 
Optimization (2) 

http://ft.ornl.gov/research/openarc 

#pragma acc data copyin (a) create (b) copyout (c) 
{ 
    #pragma acc kernels loop gang worker present (a, b) 
    for(i=0; i<N; i++) { b[i] = a[i]*a[i]; } 
    #pragma acc kernels loop gang worker present (b, c) 
    for(i=0; i<N; i++) {c[i] = b[i]; } 
} 

channel float pipe_b; 
__kernel void kernel1(__global float* a) { 
    int i = get_global_id(0); 
    write_channel_altera(pipe_b, a[i]*a[i]); 
} 
__kernel void kernel2(__global float* c) { 
    int i = get_global_id(0); 
    c[i] = read_channel_altera(pipe_b); 
} 

(a) Input OpenACC code 

(b) Altera OpenCL code with channels 

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel
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Kernel-Pipelining Transformation 
Optimization (3) 

http://ft.ornl.gov/research/openarc 

#pragma acc data copyin (a) create (b) copyout (c) 
{ 
    #pragma acc kernels loop gang worker present (a, b) 
    for(i=0; i<N; i++) { b[i] = a[i]*a[i]; } 
    #pragma acc kernels loop gang worker present (b, c) 
    for(i=0; i<N; i++) {c[i] = b[i]; } 
} 

(a) Input OpenACC code 

(c) Modified OpenACC code for kernel-pipelining 

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c) 
{ 
    #pragma acc kernels loop gang worker pipeout (b) present (a) 
    For(i=0; i<N; i++) { b[i] = a[i]*a[i]; } 
    #pragma acc kernels loop gang worker pipein (b) present (c) 
    For(i=0; i<N; i++) {c[i] = b[i];} 
} 

Kernel-pipelining 
transformation 

Valid under 
specific conditions 
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Kernel-Pipelining Transformation 
Optimization (4) 

• Conditions for kernel-pipelining transformation to 
preserve the original execution semantics: 
–  Kernels have sequential dependencies only in one 

direction; no dependency cycles among kernels. 
–  Temporary device buffers used for kernel communications 

are accessed only by the involved kernels. 
–  A kernel can either read or write the same temporary 

buffer only once per loop iteration, but not both. 
–  A consumer kernel should read a temporary buffer in the 

same order that the producer kernel writes the buffer.  

http://ft.ornl.gov/research/openarc 
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Dynamic Memory-Transfer Alignment 
Optimization 

• Direct Memory Access (DMA) for data transfers 
between the host and Altera FPGA 
–  Allow higher throughput and lower latency. 
–  Applicable only if both the start addresses of host-side 

buffer and device-side buffer are 64-byte aligned. 
–  Partial data transfer with not-aligned offsets cannot exploit 

DMA, even if host-side buffer is aligned using a special 
malloc function (e.g., posix_memalign() in Linux).  

–  Not using DMA results in serious performance 
degradation in Altera FPGA computing. 

http://ft.ornl.gov/research/openarc 
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Dynamic Memory-Transfer Alignment 
Optimization (2) 
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Device 

Host Copy 

Host 

64-byte 

p 

64-byte Aligned Address 

http://ft.ornl.gov/research/openarc 

(c) Unaligned-host & Unaligned-device 
with the Same Offset p (0 < p < 64) 
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Dynamic Memory-Transfer Alignment 
Optimization (3) 

HtoD 

HtoD 

Host Device 

Host Copy 

p q 

q 

64-byte 64-byte 

(d) Aligned- or Unaligned-host with Offset p (0 ≤ p < 64) 
& Unaligned-device with Offset q (0 < q < 64) 

http://ft.ornl.gov/research/openarc 
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Evaluation 

•  Target platforms 
–  Altera Stratix V GS D5 FPGA  

•  457K logic elements, 172600 ALMs, 690K register, 2014 M20K memory, and 8GB 
DDR3 memory 

•  Variable precision DSP blocks up to 600 MHz, memory bandwidth: up to 100 GB/s  

–  Intel Xeon Phi coprocessor 5110P 
•  60 cores (240 logical cores) with 8 GB DDR5 memory 
•  Processor clock: 1.053 GHz, memory bandwidth: 320 GB/s 

–  NVIDIA Tesla K40c GPU 
•  2880 thread processors with 12GB DDR5 device memory. 
•  GPU clock: 745 MHz, memory bandwidth: 288.4 GB/s 

–  AMD Radeon R9 290X GPU 
•  2816 stream processors with 4 GB DDR5 memory 
•  Processor clock: 1 GHz, memory bandwidth: 320 GB/s 

http://ft.ornl.gov/research/openarc 
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Application Used 

Applica
tion Description Input A B C D E 

Jacobi Jacobi iterative method 8192x8192, 
10 iters X X 

MatMul Dense matrix multiplication 2048x2048 X X 

SpMul Sparse matrix multiplication 2063494 x 
2063494 X X 

HotSpot Compact thermal modeling 1024x1024, 
1000 iters X 

NW Needleman-Wunsch algorithm 8192x8192 

SRAD Speckle reducing anisotropic diffusion 8192x8192 X 

FFT-1D 1D radix-4 complex fast Fourier transform 4096,       
100 iters X X 

FFT-2D 2D radix-4 complex fast Fourier transform 256x256 X X X 

http://ft.ornl.gov/research/openarc 

A: Boundary check elimination, B: Work-item ID-dependent backward 
branching, C: Loop unrolling, D: Single work-item kernel, E: Kernel pipelining 

OpenARC Compiler Suite Rodinia Benchmark Suite Altera SDK for OpenCL 



25 IPDPS16 

Hardware Resource Utilization (%) 

App 
Number of the replicated CUs, SIMD width in the kernel vectorization 

1,1 1,2 1,4 1,8 1,16 2,1 2,2 2,4 2,8 2,16 4.1 4,2 4,4 4,8 4,16 8,1 8,2 

Jacobi 29 33 37 41 49 36 43 51 59 74 48 62 78 95 124 73 101 

MatMul 28 34 45 67 109 35 46 68 110 195 48 69 112 197 367 72 115 

SpMul 35 - - - - 46 - - - - 69 - - - - 114 - 

HotSpot 56 79 124 214 443 89 134 224 445 863 154 245 467 866 1704 285 518 

NW 35 46 68 112 200 46 68 112 200 377 69 113 201 377 730 115 202 

SRAD 54 65 80 110 170 84 106 136 197 317 145 189 249 370 621 266 354 

FFT-1D 80 - - - - - - - - - - - - - - - - 

FFT-2D 56 - - - - - - - - - - - - - - - - 

http://ft.ornl.gov/research/openarc 

Hardware resource utilization (%) depending on the number of the replicated 
compute units (CUs) and SIMD width in the kernel vectorization 

# of CU affects the resource utilization more than the SIMD width. 

If a resource utilization is larger than 100%, the compiler cannot generate kernel 
execution file. 
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Performance Variation Depending on 
Worker Size 
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http://ft.ornl.gov/research/openarc 

NVIDIA GPU shows the biggest 
performance variation depending 
on the worker size. 

FPGA is the least sensitive to the 
worker size; FPGA transforms a 
kernel to deeply pipelined 
hardware circuit, and thus 
multiple work-groups can co-exist 
in the pipeline. 
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Speedup over CU, SIMD (1,1) 
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http://ft.ornl.gov/research/openarc 

Jacobi and MatMul show better 
performance with increase in CU 
and SIMD, thanks to regular 
memory accesses. 

SpMul and SRAD perform worse 
with multiple CUs, mainly due to 
memory contentions. 

Performance of HotSpot and NW 
increases with multiple CUs, but 
decreases with vectorization. 
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Loop Unrolling and Pipelining 
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http://ft.ornl.gov/research/openarc 

Loop unrolling is important 
optimization since it expands the 
pipeline depth and may enable 
coalescing memory operations. 

Kernel pipelining 
increases data transfer 
efficiency between kernels 
and enables fine-grained 
synchronization between 
kernels. 
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Memory Transfer Bandwidth 
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Case a: Aligned host & Aligned device  Case b: Unaligned host & Aligned device 
Case c: Unaligned host and device with the same offset 
Case d: Unaligned host and device with different offset 
Naïve: Unaligned host and device + no dynamic alignment optimization  

Dynamic memory-transfer alignment technique achieves up to 532 times higher 
bandwidth for host-to-device and 193 times higher for device-to-host than that of 
naïve memory transfers. 
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Overall Performance 

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

Jacobi MatMul SpMul HotSpot NW SRAD FFT-1D FFT-2D

S
p

e
e

d
u

p

CPU Sequential
CPU OpenMP

Altera FPGA
Xeon Phi

NVIDIA GPU
AMD GPU

http://ft.ornl.gov/research/openarc 

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and 
FFT-2D), performing much higher than other accelerators. 
For traditional HPC applications with abundant parallel floating-point operations, 
it seems to be difficult for FPGAs to beat the performance of other accelerators, 
even though FPGAs can be much more power-efficient. 

•  Tested FPGA does not contain dedicated, embedded floating-point 
cores, while others have fully-optimized floating-point computation units. 

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators, 
while remaining power-efficient. 
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Conclusion 

• We present a directive-based, high-level 
programming system for high-performance 
reconfigurable computing. 

• Porting eight OpenACC benchmarks onto four 
representative accelerator architectures (Altera 
FPGA, NVIDIA GPU, AMD GPU, and Intel Xeon 
Phi) demonstrates the functional and performance 
portability of directive-based programming models 
like OpenACC. 

• Reconfigurability of existing hardware resources in 
FPGA exposes a new type of trade-offs between the 
hardware resources versus throughput. 
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