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Abstract—Recent trends of CMOS scaling and increasing number of on-chip cores have led to a large increase in the size of on-
chip caches. Since SRAM has low density and consumes large amount of leakage power, its use in designing on-chip caches has
become more challenging. To address this issue, researchers are exploring the use of several emerging memory technologies,
such as embedded DRAM, spin transfer torque RAM, resistive RAM, phase change RAM and domain wall memory. In this
paper, we survey the architectural approaches proposed for designing memory systems and, specifically, caches with these
emerging memory technologies. To highlight their similarities and differences, we present a classification of these technologies
and architectural approaches based on their key characteristics. We also briefly summarize the challenges in using these
technologies for architecting caches. We believe that this survey will help the readers gain insights into the emerging memory
device technologies, and their potential use in designing future computing systems.

Index Terms—Review, classification, embedded DRAM (eDRAM), non-volatile memory (NVM), spin-transfer torque RAM (STT-
RAM), resistive RAM (RRAM), phase change RAM (PCM), domain wall memory (DWM), emerging memory technologies.
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1 INTRODUCTION

THE design of memory systems is under increased
scrutiny as computer architects explore solutions

to managing power consumption on two fronts. First,
the increasing costs of procuring and operating large
scale supercomputers and data centers, have focused
new attention on the large and increasing power
costs of the memory subsystems [1, 2]. Also, these
systems, driven by data-intensive workloads, need
larger capacity memory systems, and need alterna-
tive memory technologies that can balance the costs
against capacities.

Second, recent trends in CMOS scaling and proces-
sor design have led to a large increase in the number
of on-chip cores. Further, to feed data to these cores
and offset the limitations posed by off-chip memory
bandwidth, the sizes of on-chip caches are growing.
For example, Intel’s Enterprise Xeon processor uses
30 MB last level cache (LLC) [3], up from just a few
megabytes several years ago. Conventionally, SRAM
has been used for architecting on-chip caches, due
to its desirable properties such as very high write
endurance, low access latency, efficient dynamic en-
ergy, and manufacturability. However, SRAM also has
large leakage power consumption and low density
and hence, caches designed with SRAM consume a
significant fraction of chip area and power budget.
For example, in the Niagara processor, L2 cache con-
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sumes nearly 25% of the total chip power budget
[4]. Moreover, it has been shown [5] that to offset
the memory bandwidth limitations, large size caches
need to be used and if such caches are designed
with SRAM, they may occupy 90% of the chip-area
in future CMOS generations. Although architectural
and system-level efforts may partially address some
of these challenges [4], the performance-targets of
modern processor design present much higher levels
of demand than what state-of-the-art SRAM-based
designs may fulfill.

Due to their several desired features, emerging
memory technologies such as eDRAM, STT-RAM,
RRAM, PCM and DWM1 present as promising tech-
nologies for solving some of these challenges. When
used for designing on-chip caches, these technologies
have much higher density and lower leakage than
SRAM, which reduces the area and power consump-
tion of the cache for same capacity or increases the
cache capacity for the same area. With ongoing re-
search work, these technologies are maturing from
prototype stage to product stage. Currently, several
commercial vendors have released these chips in the
market [20–22]. Also, these technologies are already
appearing in high-performance processors, for exam-
ple, the last level caches in IBM’s Power 7 processor
[23] and Blue Gene/L supercomputer chip [24] are de-

1. Other commonly used acronyms for these memory technolo-
gies are: PCRAM (phase change RAM) or PRAM, ReRAM (resistive
RAM or memristor), STT-MRAM (spin-transfer torque magnetic
RAM). Also, spin torque transfer RAM is also sometimes presented
as the expansion of the acronym STT-RAM (e.g. [19]). DWM is also
referred to as racetrack memory.
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TABLE 1: Characteristics of Different Memory Technologies [6–18] (R/W = read/write)
SRAM EDRAM STT-RAM RRAM PCM DWM

Cell size (F 2) 120− 200 60− 100 6− 50 4− 10 4− 12 ≥ 2
Write Endurance 1016 1016 4× 1012 1011 108 − 109 1016

Speed (R/W) Very fast Fast Fast/slow Fast/slow Slow/very slow Fast/slow
Leakage Power High Medium Low Low Low Low

Dynamic Energy (R/W) Low Medium Low/high Low/high Medium/high Low/high
Retention Period N/A 30− 100 µs N/A (unless relaxed) N/A N/A N/A

signed using eDRAM. Similarly, Intel’s Haswell pro-
cessor uses 128MB eDRAM L4 cache [25]. However,
these technologies are not strictly superior to SRAM
on all parameters. For instance, eDRAM has a reten-
tion period (the duration for which data are preserved
in the device in the absence of an external power
source) in range of tens of microseconds and hence,
requires refresh and the other non-volatile memories
have high write latency and energy. Thus, utilizing
these emerging technologies at the architecture level
such that they may augment or, perhaps, even replace
SRAM is a major research challenge.

In this paper, we survey several architectural tech-
niques which have been proposed to address this
challenge. We cover embedded DRAM along with
four non-volatile memory technologies ( STT-RAM,
RRAM, PCM, DWM) and collectively refer to them
as emerging memory technologies. We first provide a
brief background on the physical properties of each
memory technology and then present a comparative
evaluation of their features and limitations. To help
the readers gain insights into the similarities and dif-
ferences of the techniques, we present a classification
of the techniques on various parameters and also
discuss the common architectural ideas used in dif-
ferent techniques. We classify the works based on the
memory technologies used, application domain, levels
of cache hierarchy, optimization goal and essential
approach. The aim of this paper is to equip computer
architects with the knowledge of state-of-the-art in
cache design using emerging memory technologies
and motivate them to develop even better techniques
for the computing systems of tomorrow.

Since it is infeasible to fully discuss the research
area of emerging memory technologies in a work of
this length, we restrict the scope of this paper in the
following way. We only discuss the use of these tech-
nologies for designing on-chip caches, although they
are also used for designing main memory and register
files. We only discuss architecture and system level
techniques and not circuit-design level approaches,
although they may also help in addressing the is-
sues related with these technologies. Also, given the
amount of research done in topics such as multi-bit
storage in NVM (non-volatile memory), 3D stacking
and reliability, doing full justice to these topics would
require a separate research article and hence, we only
mention these topics briefly. Since different techniques
have been evaluated using different experimentation

platforms and workloads, we do not show their qual-
itative results, instead, we focus on the key idea of
each technique.

The rest of the paper is organized as follows. Section
2 presents a comparative evaluation of these technolo-
gies and also highlights their features and research
challenges. Section 3 presents a classification and
overview of the techniques. Sections 4 and 5 discuss
some of the techniques in detail. Finally, section 6
presents the conclusion.

2 A COMPARATIVE EVALUATION OF
EMERGING MEMORY TECHNOLOGIES:

In this section, we provide a brief background of the
memory technologies and also discuss their features
and the challenges in their use. Table 1 presents a
comparative evaluation of the properties of different
technologies. Here F denotes the smallest lithographic
dimension in a given technology node. Also note that
these values may not be the best-in-class, since con-
tinuous research may lead to significant improvement
in their properties.

2.1 Embedded DRAM
Embedded DRAM is a capacitor-based dynamic RAM
that can be integrated on the same die as the proces-
sor. It can be either conventional 1T1C DRAM cell or a
logic compatible gain cell [11, 26], both of which use
some form of capacitor to store the data. Since the
stored charge gradually leaks away, periodic refresh
is required to preserve its value and prevent decay. A
typical multi-megabyte (e.g. 4MB) eDRAM cache has
read/write latency in the range of 3-5 nanoseconds
[11, 27].

Requirement of periodic refresh is a major obstacle
in the use of eDRAM. Embedded DRAM uses fast
logic transistors which have higher leakage than the
conventional DRAM and hence, its refresh require-
ment is also higher than that of the DRAM. Barth,
et al. [28] report the retention period of eDRAM to be
40µs, in comparison to the 64ms retention period of
a commodity DRAM [29]. Also, the retention period
reduces further due to factors such as temperature
increase, process variation and technology scaling
[11, 30]. Refresh operations consume a significant
fraction of cache energy, interfere with cache access
and reduce cache availability. Also, for small retention
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periods and large sized caches, a very large number
of blocks need to be refreshed in a small amount of
time. Finally, eDRAM is considered to have scalability
challenges due to the difficulty of precise charge
placement and data sensing.

2.2 STT-RAM

STT-RAM [13] utilizes a Magnetic Tunnel Junction
(MTJ) as the memory storage. An MTJ contains two
ferromagnetic layers separated by an oxide barrier
layer. The magnetization direction of one ferromag-
netic layer is fixed while that of the other ferromag-
netic layer can be altered by passing a current. The
resistance of the MTJ is determined by the relative
magnetization direction of these two layers. If the two
layers have different directions, the resistance of the
MTJ is high and vice versa. Using this property, a
binary value is stored in an STT-RAM cell.

Although STT-RAM has lower density than PCM
and RRAM and higher write latency and energy
than SRAM, it has been widely used for designing
caches due to its high write endurance. However, note
that for STT-RAM, although a write endurance value
of 1015 has been estimated, the best endurance test
result so far is less than 4× 1012 writes [31]. Another
advantage of STT-RAM is that its non-volatility can
be traded to improve its write energy and latency.
Smullen et al. [13] relax the retention time by shrink-
ing the MTJ planar area, while Jog et al. [32] achieve
this by decreasing the thickness of the free layer and
lowering the saturation magnetization which reduces
the thermal barrier of MTJ. As an example, Jog et al.
[32] show that for 2GHz frequency, the write latency
values of a 4MB STT-RAM for retention periods of
10 years, 1 second and 10 milli-second are 22, 12 and
6 cycles, respectively. Thus, based on the application
characteristic and the level of cache hierarchy, a de-
signer can choose a suitable value of retention period.

2.3 RRAM

An RRAM with unipolar switching uses an insulating
dielectric [33]. When a sufficiently high voltage is
applied, a filament or conducting path is formed
in the insulating dielectric. After this, by applying
suitable voltages, the filament may be set (which leads
to a low resistance) or reset (which leads to a high
resistance).

Compared to SRAM, an RRAM cache has high
density, comparable read latency, and much smaller
leakage energy. However, the limitation of RRAM is
its low write endurance of 1011 [34] and high write
latency and write energy. For example, a typical 4MB
RRAM cache has a read latency of 6-8 nanoseconds
and a write latency of 20-30 nanoseconds [35].

2.4 PCM

PCM uses a phase change material called GST, which
is an alloy of germanium, antimony, and tellurium.
When the alloy is heated a very high temperature and
quickly cooled down, it transitions into an amorphous
substance with high electrical resistance. On the other
hand, when the alloy is heated to a temperature
between the crystallization and melting point and
cooled down slowly, it crystallizes to a physical state
with lower resistance. This physical property is used
to store a binary value in a PCM cell.

The two most severe challenges in using PCM
for designing on-chip caches are its limited write
endurance and high write latency. Since the write
traffic to a cache is much heavier than that to a main
memory, and the write endurance of PCM is only near
108 writes [36, 37], for several applications, a PCM
cache can fail in less than an hour. A typical 4MB
PCM cache has a read latency of 15-20 nanoseconds
and a write latency of 150-170 nanoseconds [35, 37].
Thus, PCM is suitable for main memory or lower-level
cache hierarchies (e.g. L3 cache or even L4 cache [10])
where its high latency can be tolerated and the high-
density can be leveraged to avoid off-chip accesses.

2.5 DWM

DWM works by controlling domain wall (DW) motion
in ferromagnetic nanowires [18]. The ferromagnetic
wire can have multiple domains which are separated
by domain walls. These domains can be individually
programmed to store a single bit (in the form of a
magnetization direction) and thus, DWM can store
multiple bits per memory cell.

Logically, a DWM macro-cell appears as a tape,
which stores multiple bits and can be shifted in either
direction. The challenge in using DWM is that the
time consumed in accessing a bit depends on its
location relative to the access port, which leads to non-
uniform access latency and makes the performance
dependent on the number of shift operations required
per access. Compared to other NVMs, DWM is less
mature, and is still in research and prototype phase.

2.6 Characteristics common to NVMs

Unlike charge-based memories such as DRAM, NVMs
store data in the form of change in physical state.
Since a write to NVM involves changing its physical
state, a write operation to NVM consumes larger time
and energy than a read operation, leading to read-
write asymmetry [38]. Similarly, the write-latency and
energy of logical 1 → 0 transition is higher than
that of 0 → 1, leading to 0/1 write asymmetry [39].
NVMs also allow storing multiple data-bits in single
memory cell. This is referred to as MLC (multi-level
cell) storage and it leads to a significant increase in
the storage density of NVMs (see Table 2).
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3 CLASSIFICATION AND OVERVIEW

Table 2 presents a classification and overview of dif-
ferent approaches. It presents the classification of the
existing works on several dimensions, such as the
memory technologies (e.g. STT-RAM, eDRAM etc.)
and hybrid approaches (at both same and different
levels of cache). Further, it classifies them based on
the application domain (CPU/GPU or L1/L2) since
the the design-requirement of each domain is dif-
ferent. Table 2 further classifies the works based on
the goal of the cache management technique and
the essential approach, to allow the reader to see
both similarities and differences between different
works. This classification is expected to be useful for
researchers, CAD-designers and technical marketing-
professionals. While a technique proposed for improv-
ing performance may also lead to saving in energy,
and a technique designed for one NVM may also
work equally well for other NVMs, in this classifi-
cation, we include a technique in a place for which
the technique has been actually evaluated.

We now discuss the basics and essential ideas of
architecture-level cache management which are used
in different techniques discussed in the paper.

Leveraging temporal locality: Caches work on the
temporal locality principle, which states that a data
item which is referenced at one point of time will
be referenced again in near future. Such data item
is stored in caches to avoid accessing main mem-
ory. However, when the program phase changes, the
existing data items in the cache will no longer be
reused. Such blocks are referred to as dead-blocks and
they constitute a large fraction of total cache blocks
[4, 16, 26, 110]. Before getting evicted, they waste
leakage energy and refresh energy (in eDRAM caches)
[11]. By detecting them early and evicting them, the
energy effiiency can be improved. Also, in hybrid
caches, early eviction of dead blocks from SRAM
improves its utilization [55]. The dynamic cache re-
configuration based techniques [12, 14] work on the
principle that there exists large variation in intra-
application and inter-application cache requirement of
different programs. Thus, by only allocating suitable
amount of cache to an application in each phase,
significant amount of energy can be saved.

Utilizing specific properties of each level of cache:
Modern processors use a hierarchy of caches, where
the cache closest to the processor is called first-level or
upper-level cache, while that closest to main memory
is called last-level or lowest-level cache. The opti-
mization target for designing each level of cache is
different [4]. The first-level cache is accessed very
frequently and hence, it should have high speed and
write endurance, even if it has a small size or high
leakage power. The last level cache is designed to
reduce off-chip accesses and hence, it must have large
capacity. A high latency of last level cache can be usu-

TABLE 2: Classification of Approaches

Classification References
Memory Technology

EDRAM [10, 11, 14, 26, 29, 30, 40–48]
STTRAM [7, 8, 10–15, 19, 32, 38, 49–95]
RRAM [36, 94, 96–98]
PCM [37, 64, 99, 100]
DWM [18, 91, 101, 102]

Hybrid (Different technologies at the same cache level)
SRAM + eDRAM [10, 40, 41, 43, 46]
SRAM + STTRAM [7, 8, 10, 12, 54, 55, 57–59, 61,

65, 67–69, 82, 84, 89, 92, 103]
STTRAM + DRAM [104]
STTRAM + PCM [64]
SRAM + PCM [10, 100]
SRAM + DWM [18]

Hybrid (Different technologies at different cache levels)
SRAM (L2) + eDRAM or STT-

RAM (L3) + PCM (L4)
[10]

SRAM (L2) + STT-RAM (L3) +
eDRAM (L4)

[14]

Application Domain
GPU caches [92, 105, 106]
CPU caches almost all others

Level in cache hierarchy
First-level cache [13, 41, 54, 60, 68, 83, 87, 91,

93, 99, 107]
Middle or last level cache almost all others

Goal of the cache management technique
Energy saving [7, 8, 10–12, 14, 15, 18, 19, 26,

30, 32, 37, 40–43, 45, 47, 48,
50, 51, 53–55, 57, 58, 61, 65,
72, 80, 81, 83, 85, 87, 89–91,
95, 97, 99, 101–103, 107]

Performance improvement [7, 15, 32, 47, 48, 51, 53, 54,
57, 58, 61, 66, 72, 80, 85, 88,
91, 102]

Improving lifetime [8, 36, 37, 56, 82, 86, 96, 98,
100]

Mitigating cache obstruction [51]
Optimizing bandwidth pro-

vided by the cache hierarchy
[14]

Providing quality-of-service [84]
Essential Approach/Feature

Minimizing or avoiding writes [19, 37, 38, 50, 51, 53, 55, 56,
58, 61, 69, 80, 81, 89, 100]

Data migration b/w SRAM and
NVM/eDRAM in hybrid caches

[7, 8, 10, 40, 41, 43, 46, 55, 58,
59, 61, 67, 69, 82, 103]

Cache reconfiguration [12, 14, 45, 47, 87]
Reducing refresh operations [11, 30, 42, 44, 44, 45, 47, 48,

72]
Using volatile STT-RAM [11, 13, 32, 54, 60, 72, 78]
Addressing asymmetric 1/0

writes in NVMs
[39, 88]

Additional cache levels/buffers [19, 50, 61, 68, 87, 107]
Cache color-level wear-leveling [86]
Set-level wear-leveling [36, 79, 82]
Way-level wear-leveling [36, 57, 82, 96, 98]

Memory cell-level wear-
leveling

[37, 56]

Cache partitioning [8, 84]
Using compiler [7, 58, 59, 67, 69, 92, 93]
Using MLC NVM [18, 49, 79, 91, 108]
3D-stacking of NVM [7, 10, 61, 63, 70, 84, 105, 109]

ally tolerated using techniques such as out-of-order
execution. For this reason, most of the research works
assume or recommend that L1 cache be designed
using SRAM for performance reasons [97]. If an NVM,
such as STT-RAM is used for designing L1 cache,
it is designed for low write latency which requires
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relaxing its retention time [13, 60, 107]. In general,
based on their latency and write endurance values,
along with capacity advantage, emerging memory
technologies discussed here are more suitable for the
last level cache than the first level cache.

Using wear-leveling for lifetime enhancement:
Depending on the program memory access behav-
ior and cache replacement policy, a large intra-set
and inter-set variation may exist in the number of
writes to the cache blocks [111]. Since SRAM has
very high write endurance, this phenomenon does
not cause problems in the SRAM caches and hence,
conventional cache management policies are write-
variation unaware. NVM caches, however, have sev-
eral orders of magnitude smaller write endurance.
Hence, high write-variation may cause some memory
cells to fail much early than the remaining cells, which
may shorten the cache lifetime. To address this, wear-
leveling techniques have been proposed [36, 37, 82, 96]
which aim to evenly distribute the writes to different
cache blocks. Note that, the maximum improvement
in lifetime which can be achieved through wear-
leveling is limited by the write-variation originally
present in the application.

Reducing number of writes to NVMs: Another
approach to mitigate the problem of limited write
endurance is to reduce the number of writes at the bit-
level or cache-access level. At bit-level, the redundant
writes can be removed, i.e. those requests which write
the same bit to the block which is originally written
[37, 80]. This can be achieved through a read-before-
write operation, which is advantageous since for
NVMs, a read operation incurs much less overhead
than a write operation. Also, writing of some frequent
patterns such as all-zero bits can be avoided by using
flags [53]. Further, by using special data-encoding
scheme, bit-switching probability can be reduced [56].
At cache-access level, the number of writes can be
reduced by using buffers or another level of cache
[19, 50, 61], which coalesce write accesses. Also, by
minimizing the eviction of dirty data in upper level
of cache [19] or avoiding writing the unchanged sub-
blocks [81], or using cache bypassing [51], the number
of writes can be reduced. Note that reduction in num-
ber of writes also improves performance and energy
efficiency; and some of the above techniques can be
synergistically combined as they are orthogonal to
each other.

Using hybrid caches: A cache has a set-associative
structure, where a newly-arrived cache block2 may
reside in any of the cache ways, as decided by the
cache replacement policy. Physically, these cache ways
may be designed using either the same technology
(e.g. all STT-RAM ways) or different technologies (e.g.
some ways are designed using SRAM, while others

2. In this paper, we use the terms ‘cache line’ and ‘cache block’
synonymously.

are designed using STT-RAM) or same technology
but different properties (e.g. retention and response
time [60, 78]). Several hybrid cache designs use this
approach to architect different cache ways using dis-
parate memory technologies (e.g. [41, 43, 103]). In this
way, the best feature of each technology is leveraged,
while overcoming its limitations through the use of
other technology. For example, the low-density of
SRAM can be overcome by using high-density NVMs
while leveraging its fast speed. At the same time, the
limited write endurance of NVMs can be overcome
by using SRAM.

Using 3D stacking: 3D die stacking increases tran-
sistor density by vertically integrating multiple dies
with a high-bandwidth, high-speed and low-power
interface. Using 3D die stacking, dies of even different
types can be stacked. Several researchers discuss 3D
stacking of NVM caches (e.g. [7, 10, 61, 70, 84]). As an
example, Sun et al. [61] propose fabricating STT-RAM
caches and CMP logic as two separate dies and then
stack them together in a vertical manner. One benefit
of this is that the magnetic-related fabrication process
of STT-RAM may not affect the normal CMOS logic
fabrication. 3D stacking also enables shorter global
interconnect, lower interconnect power consumption
and smaller footprint.

4 CACHE MANAGEMENT APPROACHES

We now discuss some of the techniques in detail.

4.1 Approaches Using eDRAM
4.1.1 Using error-correcting codes
Wilkerson et al. [29] propose using strong (multi-bit)
error-correcting codes which allow tolerating higher
number of errors. This allows increasing the refresh
period and thus, the requirement for refresh can be
reduced. The limitation of this approach is that use
of strong codes incurs overheads in terms of storage,
encoding/decoding power, and area.

4.1.2 Minimizing refresh operations
Reohr [44] discusses several approaches for refreshing
eDRAM caches, for example, simple periodic refresh
and no-refresh etc. In periodic refresh, all lines at
refreshed periodically before their retention period.
The ‘no refresh’ policy maintains a counter with each
cache line, which starts counting after any cache
access to that line. If the next access to that line does
not occur within a refresh period, the line is marked
as invalid and the data, if dirty, are written back
to memory. This policy does not incur any refresh
overhead, but it significantly increases the number of
cache misses.

Agrawal et al. [26] propose schemes to reduce the
refresh operations in an eDRAM cache by utilizing
the fact that on a read or a write, a cache line is
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automatically refreshed and hence, it need not be
refreshed for the duration of one retention period. One
of their schemes, named ‘polyphase’, divides the re-
tention period into multiple (e.g. 2, 4 etc.) phases. Each
cache line maintains the information about the phase
in which it was last accessed. Afterwards, instead
of refreshing the cache line at the beginning of next
refresh period, their technique refreshes the line at the
beginning of this phase in the next refresh period. An-
other scheme avoids refreshing invalid blocks, while
a third scheme refreshes only dirty blocks, since de-
cay of clean blocks in absence of refresh does not
cause data inconsistency and these blocks can be later
restored from the main memory. A fourth scheme,
named WB(n,m) refreshes idle dirty lines n times
before writeback and idle valid clean lines m times
before invalidation. The motivation behind this is to
avoid refreshing the dead lines, while also keeping
the number of extra misses small.

Chang et al. [11] propose a technique for reducing
eDRAM refresh power by avoiding the refresh oper-
ations for the dead blocks. To determine such blocks,
they use a deadline prediction scheme, where a line
is predicted to be dead if it has not been accessed for
a certain time duration.

Mittal [45] proposes a technique to save both leak-
age and refresh energy in eDRAM caches. His tech-
nique uses dynamic cache reconfiguration approach
to turn-off part of the cache to save leakage energy
and refreshes only valid data of the active (i.e. not
turned-off) cache to save refresh energy. Thus, due
to reduction in the active region of the cache, the
refresh requirement is also reduced. His technique
uses cache coloring scheme [16, 112] to achieve cache
reconfiguration, along with set-sampling based pro-
filing to obtain dynamic profiling data. While the
above mentioned techniques [11, 26, 44] avoid refresh
operations at cache-line granularity, the technique by
Mittal [45] avoids refresh operations first at cache-
color granularity (using cache reconfiguration) and
then at cache-line granularity. The limitation of this
technique is that due to the use of cache coloring,
a change in cache reconfiguration requires flushing
the cache, which may increase the accesses to main
memory.

Alizadeh et al. [30] propose a technique for effec-
tively scheduling refresh operations in multi-banked
eDRAM caches. They decouple the refresh scheduler
into two modules, one of which determines which
cell to refresh next and the other module determines
when to force an idle cycle in all banks. Utilizing this
support, their technique performs concurrent refresh,
i.e. an idle bank is refreshed when a read/write
operation is being performed in other banks.

4.1.3 Accounting for variation in retention time
Agrawal et al. [48] build a mathematical model of
eDRAM retention time variation and note that re-

tention times of cells in large eDRAM caches exhibit
spatial correlation. Based on this, they logically divide
an eDRAM cache into logical regions (called tiles),
profile the retention characteristics of each tile, and
then program their refresh requirements in the cache
controller. Using this, each tile can be refreshed at
a different rate, which significantly minimizes the
number of refresh operations.

4.2 Approaches Using STT-RAM
4.2.1 Relaxing non-volatility of STT-RAM
The ability to trade-off STT-RAM retention period
with performance provides the designers significant
flexibility. STT-RAM caches with different retention
periods have been used both at the same level [60]
and at different levels [13, 60, 107] of cache hierarchy.
We now discuss some of these techniques.

Smullen et al. [13] propose relaxing STT-RAM re-
tention time to improve its performance. For a three
level cache hierarchy, they experiment with two cases;
first, in which all the three levels of cache are designed
using STT-RAM and second, in which the L1 cache
is designed using SRAM while the last two levels of
cache are designed using STT-RAM. They observe that
the although the first case provides the highest energy
efficiency, its performance is lower since the access fre-
quency of L1 is high and even with a write-optimized
design, the write latency of STT-RAM is higher than
that of SRAM. The second case provides performance
level close to the pure-SRAM baseline design, while
significantly improving the energy efficiency over the
baseline.

Jog et al. [32] propose an STT-RAM L2 cache de-
sign where a suitable value of retention period is
chosen based on the applications’ inter-write times,
such that the refresh overhead is minimized and
the performance is improved. They observe that a
retention period of 10ms is suitable for L2 cache. For
those applications which have inter-write times higher
than this value, refresh operation is performed for
diminishing blocks (i.e. those blocks which are about
to lose their data) by temporarily storing them in a
buffer.

Guo et al. [107] propose the use of STT-RAM to
design combinational logic, register files and on-chip
storage (I/D L1 caches, TLBs and L2 cache). They
evaluate multiple cache designs where the STT-RAM
cache (both L1 and L2) can have either the same
capacity as the SRAM cache (to reduce area and inter-
connect delays) or the same area as the SRAM cache
(to increase capacity and reduce misses). The STT-
RAM cells used for L1 are optimized for write speed
while those used for L2 are optimized for density
and access energy. Also, to hide the write latency
of STT-RAM, they propose subbank buffering which
allows the writes to complete locally within each sub-
bank, while the reads from other locations within the
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array can complete unobstructed. They show that by
carefully designing the pipeline, the STT-RAM based
design can significantly reduce the leakage power,
while also maintaining the performance level close to
the CMOS design.

Sun et al. [60] propose an STT-RAM cache design
for lower level caches where different cache ways
are designed with different retention periods. For
example, in a 16-way cache, way 0 is designed with a
fast STT-RAM design with low retention period and
the remaining 15 ways are designed with a slow STT-
RAM design which has higher retention period. Their
technique uses hardware to detect whether a block
is read or write intensive. The write intensive blocks
are primarily allocated from way 0, while the read
intensive blocks are allocated from the other ways.
Also, to avoid refreshing dying blocks in way 0, their
technique uses data migration to move such blocks to
banks with higher retention period.

For designing L1 cache, Sun et al. [60] propose
using an STT-RAM cell which is optimized for write
performance and energy. Since this cell has a retention
period in range of tens of microseconds, a refresh
mechanism is required. For this, they propose using
counters with each cache block. Using this, refresh
is performed only on those cache blocks that have
reached their full lifespan.

4.2.2 Minimizing or avoiding writes

Early write termination techniques may leverage ei-
ther read-write asymmetry [37, 38, 80, 92], or 0/1
write asymmetry [39, 88]. Also, redundant writes
can be avoided by either comparison of actual data
[37, 80] or by using additional flags [53, 81] which
indicate certain data patterns. The discussion of a few
techniques follows.

Zhou et al. [80] propose a technique to minimize the
number of writes to an STT-RAM cache by avoiding
bit-writes which are redundant, i.e. which write the
same value in a bit, that is already stored in the cache.
For this, instead of reading the original value before
writing the new, they utilize the fact that when a
write operation is performed on an STT-RAM cell,
the resistance of MTJ does not gradually. Instead, it
changes abruptly at the end of a write operation.
Thus, at the early stage of a write operation, an STT-
RAM cell still holds its valid value. By sampling this
value at the early stage of write operation, the write
current can be throttled if the old value is same as the
new value.

Yazdanshenas et al. [56] propose a technique for
reducing switching probability in cache by reducing
the probability of memory cells being in logical “1”
(high) state and then applying early write termination
[80] at circuit level to eliminate redundant writes.
They use limited weight codes for encoding frequent
data patterns, which greatly increases the opportunity

of avoiding redundant writes, since the Hamming dis-
tance between these codes is small (e.g. 2). Their data
encoding scheme also has the advantage that it results
in a uniform wear-out which leads to improvement in
lifetime of the cache.

Ahn et al. [50] propose a technique which can
be used with read-before-write schemes to further
reduce the write activity to an STT-RAM cache. Their
technique works on the observation that in many
applications, computed values are varied within small
ranges and hence, the upper bits of data are not
changed as frequently as the lower bits. Based on
this, they use a small SRAM cache (called lower-bit
cache or LBC) between the L1 cache and the STT-
RAM L2 cache. LBC holds lower half of every word
in cache blocks written by the L1 data cache. For an
L2 read operation, the LBC is accessed in parallel to
the L2 cache. When there is a hit in LBC, the data
to be provided for the L1 cache is a combination of
upper bits from the L2 cache and lower bits from the
LBC, since the lower bits in L2 may not be up-to-date.
Similarly, when an L2 block is evicted, an up-to-date
value of lower-bits in retrieved from the LBC and after
that, the data in LBC is also invalidated. LBC helps
in coalescing several write-requests and also hides
frequent value changes from the L2 cache so that the
read-before-write strategy can more effectively cancel
the write requests.

Sun et al. [61] propose a write-buffer design to
address the long write latency of last level (L2) STT-
RAM cache. The L2 may receive a request from
both L1 and write buffer. Since read latency of STT-
RAM is smaller than the write latency and also
reads are performance-critical, the buffer uses a read-
preemptive management policy, which ensures that
a read request receives higher priority than a write
request. They also propose a hybrid SRAM and STT-
RAM cache design which aims to move the most
write-intensive blocks to SRAM. In the cache, one
cache way is implemented using SRAM and the re-
maining ways are implemented using STT-RAM. On
a write miss, the cache controller tries to first place
the data in the SRAM way. To increase hits to the
SRAM ways, the cache controller migrates data from
STT-RAM to SRAM if there are two successive write
operations to the data. They also show that combining
the hybrid cache with read-preemptive write-buffer
leads to additional energy saving and performance
improvement. The limitation of this approach is that
transfer of data between write-buffer and L2 cache
causes performance overhead.

Rasquinha et al. [19] propose two techniques viz.
use of a write cache and write-biasing to reduce the
number of writes to a last level (L2) STT-RAM cache
and also save energy. The first technique adds a small
cache, called write-cache (WC) between L1 and L2.
WC is a fully-associative cache which stores only dirty
lines evicted from L1 and is mutually exclusive with
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L2. On a cache access, both L2 and WC are accessed
in parallel. The store misses are allocated in WC and
the load misses are allocated in L2. WC reduces the
number of L2 writes by absorbing most of the L1
writebacks. The write-biasing technique reduces the
number of writebacks from L1 to lower level caches
by biasing dirty cache lines to reside in L1 for a
longer time. For this, the cache replacement policy
uses different insertion and promotion policies for
loads and stores.

Jung et al. [53] propose a technique for minimiz-
ing the writes to STT-RAM caches. Their technique
works on the observation that on average, a large
fraction (e.g. more 50%) of bytes and words (1 word
= 4 bytes) written to the L2 cache comprise of only
zero-valued data. Based on this, their technique adds
additional “all-zero-data” flags in the tag arrays at the
granularity of a single byte and a single word. Before
any cache write, the data value is checked. If the all-
zero bytes or words are detected, the corresponding
flags are set and only the non-zero bytes or words are
written. During a cache read operation, only the non-
zero bytes or words are read and then the actual data
are constructed by combining the information from
the all-zero flags.

Park et al. [81] propose a technique to reduce the
write activity on a last level STT-RAM cache. They
logically divide the cache line into multiple partial
lines, e.g. a 64B cache line is divided into 4 partial
lines. In L1 cache, a history bit is kept for each partial
line to track which partial lines have changed. Using
this information, when a dirty L1 block is written to
last level cache, only those partial lines are written
which have been changed. Also, to reduce the read
energy, they provision sequential tag-data access to
an STT-RAM cache. On a cache read access, initially
only the tag values are read and if there is a hit, only
the selected cache line is accessed which reduces the
dynamic energy.

4.2.3 Addressing high write latency of STT-RAM
Since high write latency of STT-RAM can lead to
harmful consequences, several techniques have been
proposed to address this. We now discuss some of
these techniques.

Since STT-RAM has high write latency, aggressive
prefetching may lead to bank-conflicts and cause
performance degradation. Mao et al. [66] propose
techniques for mitigating the write pressure caused
due to prefetching in STT-RAM based LLC. One of
their techniques prioritizes different types of LLC
requests such as load, store, prefetch, and write back
etc. based on their criticality. The critical requests are
assigned a high priority and hence, they are served
earlier. In multicore systems, the excessive requests
generated from a cache-intensive program may block
those generated from a cache-unintensive program
which may lead to its starvation. To address this,

they propose another technique which prioritizes the
requests from a cache-unintensive program, so that
they are served promptly. Since these two techniques
are orthogonal, they can be combined to provide even
better performance.

Wang et al. [51] propose a technique to address
the issue of cache obstruction in STT-RAM LLCs.
In a single-port STT-RAM cache, an ongoing write
can cause port obstruction and delay the subsequent
performance-critical read operations. Also, in a multi-
core system, write requests from one core can block all
the read requests to the same cache bank from other
cores, resulting in performance degradation. This phe-
nomenon is termed as cache obstruction. To identify
the applications which may cause this, their technique
monitors whether an application generates intensive
write requests. For such applications, LLC is bypassed
and main memory is directly accessed. This avoids
contention and leads to improved performance.

Dong et al. [15] evaluate the effectiveness of STT-
RAM for designing L2 caches as a replacement for
SRAM or DRAM. For a similar area, STT-RAM and
DRAM have higher capacity, while SRAM has shorter
access latency. Due to the interaction of these factors,
STT-RAM provides matching performance to SRAM,
while DRAM provides lower performance due to its
high access latency. They also evaluate use of STT-
RAM for designing L3 cache, which is advantageous
since it provides much lower latency than access-
ing main memory. They observe that especially for
memory-intensive benchmarks, use of an STT-RAM
L3 provides large performance improvement.

4.2.4 Addressing 0/1 write-asymmetry
Kwon et al. [88] propose a technique to reduce the
write latency of STT-RAM cache. In an STT-RAM cell,
the time taken in 1 → 0 transition is more than that
taken in 0 → 1 transition, due to the asymmetry in the
switching times of the MTJ. Thus, the time taken in
a write operation is limited by the slower transition.
Hence, if all the cells in a block are preset to 0, then
the 1 → 0 transition is not required and the effective
write latency can be reduced. Based on this idea, their
technique introduces multiple redundant blocks (RBL)
in each row of the cache data array. At the time of a
write operation, the RBL is checked and if it is preset
to zero, instead of writing the data to the actual data
block (DBL), the data are written to RBL and the RBL
is marked as the data block and the original data block
is now marked as the RBL, thus changing the position
of DBL and RBL. If the RBL were not preset to zero,
the data are written to the original data block and
conurrently, the RBL is preset to zero, so that it can
be used the next time. To track the position of DBL
and RBL, additional tag bits are used.

Bishnoi et al. [39] present a technique to reduce
write power in STT-RAM by leveraging 1/0 write
asymmetry. As mentioned above, the time taken in a
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write is limited by the slower operation and hence, the
word line cannot be closed immediately, even when
0 → 1 transition is completed. This leads to significant
wastage of power. To address this, they utilize the fact
that if the memory cell configuration is going to be 1,
then write circuitry can be closed asynchronously as
soon as the memory cell is in a stable 1 configuration.
Based on this, early write termination is triggered by
generating a suitable delayed signal at the time of
0 → 1 write termination.

4.2.5 Improving cache lifetime by wear-leveling
In caches, wear-leveling can be applied at different
granularities, viz. color, set, way, memory-cell etc. (see
Table 2). On using a runtime wear-leveling technique
(WLT), the reconfiguration overhead of a color-level or
a set-level WLT is higher than that of a way-level WLT,
since the former techniques require change in set-
decoding. A memory-cell level WLT does not require
change in block-location of a data-item and hence, it
incurs negligible overhead, although it cannot address
write-variation among different blocks. For any appli-
cation, on using a fixed capacity and block-size of the
cache, increasing the associativity increases the intra-
set write-variation and reduces the inter-set/inter-
color write-variation. This can be easily understood
by considering the two extreme cases, viz. a fully-
associative cache and a direct-mapped cache. Hence,
for caches with high associativity, intra-set WLTs are
more important than inter-set or inter-color WLTs.
WLTs may use either in-cache data movement [82, 98]
or data invalidation [36, 79, 86, 96]. In-cache data
movement may require specialized hardware, while
data invalidation increases off-chip accesses, leading
to contention and endurance issues in main memory.
We now discuss some WLTs and a few other WLTs
are discussed in Sections 4.3 and 4.4.

Chen et al. [79] propose a technique for reducing
inter-set write-variation to improve the cache lifetime
of STT-RAM caches. Their technique aims to remap
all set indices after a certain length of time. For this,
a register, called remap register is used which is
XORed with the set-index bit of the cache address. By
periodically changing this register, the set-decoding
can be changed. Use of remap register introduces
randomization in writes to different cache sets, which
helps in uniformly distributing writes to different
sets. In a normal cache design, set index bits are not
stored as part of the tag. In their scheme, two distinct
addresses mapping to different sets can have the same
tags and hence, due to remapping, the set index bits
need to be included as part of the tag to avoid aliasing.

Mittal [86] proposes a technique to reduce inter-set
write variation. His technique uses cache coloring and
collects information on the number of writes to each
cache color. Periodically, the mapping between phys-
ical regions and cache colors is changed so that the
regions which see largest number of write operations

are mapped to the cache colors which have seen the
least number of writes. To avoid aliasing, the affected
cache colors are flushed (i.e. dirty blocks are written
back and clean blocks are discarded).

4.2.6 Use in GPUs
Maashari et al. [105] investigate use of STT-RAM for
designing caches e.g. texture caches and Z caches.
They observe that due to high write latency of STT-
RAM compared to SRAM, STT-RAM does not al-
ways provide performance advantage over SRAM,
although due to its low leakage energy consumption,
STT-RAM provides better energy efficiency. They also
study the impact of 3D stacking of caches on the GPU
performance and observe that compared to an iso-cost
2D GPU design, a 3D GPU design offers significant
performance advantage due to reduction in cache
access latency.

Goswami et al. [92] implement an SRAM-STTRAM
hybrid share memory in GPU. In GPUs, shared mem-
ory acts as a software-managed cache by allowing
the user to manage repetitive data access. Use of
STT-RAM enables reduction in leakage power and
area. They also use an additional shared memory area
which is designed using SRAM that can be configured
to work as a cache or RAM. Use of SRAM as a cache to
STT-RAM for applications with high amount of write
accesses helps in reducing STT-RAM accesses and
energy. For other applications, the shared STT-MRAM
and SRAM memory reduces write latency. Also,
to avoid redundant write operations to STT-RAM,
read-before-write based differential memory update
(DMU) scheme is used where only the changed cells
are written. Thus, their architecture reduces STT-RAM
shared memory write access latency using SRAM
cache, and also lowers energy consumption by using
differential memory update.

4.3 Approaches Using RRAM
Wang et al. [36] present both inter-set and intra-
set wear-leveling techniques for RRAM LLCs. The
technique for addressing inter-set write-variation aims
to distribute the write-traffic evenly to different cache
sets by shifting the mapping of cache physical sets
to rotate the stored data between sets. Since shifting
all cache sets at once would incur a large overhead,
their technique swaps only two sets at a time and after
multiple swaps, all the cache sets are automatically
shifted. The intra-set wear-leveling technique, termed
PoLF (probabilistic line-flush) uses data-invalidation
approach. After a fixed number of write-hits in the
entire cache, PoLF flushes a cache block which sees
write-hit, without updating the LRU-age information.
Probabilistically, the block being selected for flushing
is expected to be hot and thus, the next time, this
data-item will be loaded into a cold-block, which
leads to wear-leveling. However, due to probabilistic
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nature of flushing, PoLF may not always choose an
actual hot-block and may lead to large flushes for
applications with low write-variation and high write-
intensity. Mittal et al. [96] propose using per-block
counters for recording the number of writes and
flushing a block whose write counter has reached a
fixed threshold. By virtue of flushing hot data-items, it
leads to better wear-leveling and smaller performance
overhead, although it also requires larger number of
counters.

Mittal et al. [98] present an in-cache data-movement
based technique for mitigating intra-set write vari-
ation. Their technique logically divides the cache-
sets into multiple modules, for example, in a cache
with 4096 sets and 32 modules, each module contains
128 sets. For each module, the number of writes in
each way for any of the sets is collectively recorded.
Afterwards, their technique makes most frequently
written ways in a module unavailable to shift the
write-pressure to other ways in the sets of the module.
This helps in achieving wear-leveling. Its limitation,
however, is that the most frequently written ways in
different sets of a module may not have the same
index, which limits the effectiveness of wear-leveling.

4.4 Approaches Using PCM
Joo et al. [37] propose several schemes to enable use
of PCM for designing on-chip caches. To mitigate
the limited write endurance problem of PCM, they
propose schemes to minimize the number of writes
and distribute them evenly to different memory cells
in a cache block. Since read operation in a PCM is
much cheaper than the write operation, their write
minimization scheme first reads a value before writ-
ing, and the new value is written only if it is different
from the existing value. The data inverting scheme
writes a value in inverted form if it requires less
number of bits to be written. They present a data-
inverting scheme where the cache block is logically
divided into sub-blocks and the decision to write
either actual or inverted value to a subblock is taken
based on which value leads to smaller number of bit
changes. Since this and similar schemes may lead to
write-variation in different memory-cells of a block,
Joo et al. [37] also propose a memory cell-level WLT.
This technique uses a bit-line shifter to spread out the
writes over all the memory cells in a cache block to
achieve wear-leveling. A bit-line shifter decides the
number of bits by which input data is shifted before
being written.

4.5 Approaches Using DWM
Venkatesan et al. [91] propose circuit and architec-
ture level techniques for optimizing the DWM-based
cache hierarchy. They propose design of two bit
cells, namely TAPESTRI-1bit and TAPESTRI-multi.
The TAPESTRI-1bit is optimized for performance and

unlike conventional DWM cells, does not require any
shift operations and hence, can be used in L1 cache.
The TAPESTRI-multi bit-cell is optimized for density
and requires shift operations before read/write ac-
cesses. Using these, they propose a cache hiearchy
design where both the tag and data arrays in the L1
cache are designed using TAPESTRI-1bit, while the L2
cache utilizes TAPESTRI-multi for the data array and
TAPESTRI-1bit for the tag array. Further, to mitigate
the performance overhead caused due to the shift
operations in TAPESTRI-multi, they leverage cache
pre-shifting approach, where the bits in each cell are
predictively shifted such that the bit that is expected
to be accessed next is aligned with the read/write
port. Using this, the extra latency incurred due to shift
operations can be hidden.

Sun et al. [102] propose techniques for architect-
ing DWM caches which aim to minimize the shift
cost of DWM. Sun et al. propose two track shifting
policies. In the first policy, after the completion of
an access, the track stays at its current position and
in the second policy, the track returns to its orig-
inal position. The first policy is more suitable for
applications with strong spatial locality, while the
second policy facilitates easy data management and
is suitable for applications with randomly distributed
cache accesses. They also propose a data management
policy, where by tracing the data access pattern, the
cache blocks with intensive accesses are identified
and then placed into the physical locations at the
read/write port. This reduces the shifting overhead
since in most applications, only a small portion of
cache blocks are frequently accessed.

5 HYBRID APPROACHES
Several researchers propose cache designs which use
multiple memory technologies to get the best of them.
Although the physical material and read/write prop-
erties of different memory technologies are different,
the similarity in the peripheral circuits allows simi-
lar operation from a logic designer’s point of view.
Still, the limitations of hybrid designs is that from
the perspective of manufacturing, they may incur
higher cost of integration, verification, and testing
than homogeneous caches. Comparing different hy-
brid caches, we find that SRAM+PCM caches of-
fer higher area efficiency than SRAM+eDRAM and
SRAM+STTRAM caches, however, an important lim-
itation of SRAM+PCM hybrid caches is that the dif-
ference in write latency of SRAM and PCM is very
large, and hence, a hit in different portions of a hybrid
cache may lead to vastly different latencies. Variable
hit latency adds complications and unpredictability
to scheduling of dependent instructions [4]. Also, the
challenges discussed in Section 2 for eDRAM/NVM
also apply to the hybrid caches designed using those
technologies. We now discuss the key ideas of some
of the techniques.
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5.1 SRAM+eDRAM Hybrid Caches
Lira et al. [40] propose a NUCA (non-uniform cache
architecture) design where different cache banks are
designed using SRAM and eDRAM. Their design is
based on the observation that a large percentage of
cache blocks entering the LLC are not accessed again
before they are evicted [11]. Based on this, they pro-
pose a placement scheme, where the re-accessed data
blocks are stored in fast SRAM banks and the blocks
which just arrive to the cache or were demoted from
a SRAM bank are stored in large but slow eDRAM
banks.

Valero et al. [41] propose a macro-cell design that
combines eDRAM and SRAM at cell level. They im-
plement an N-way set-associative cache with these
macro-cells consisting of one SRAM cell and N-1
eDRAM cells. At architecture level, they devise a
cache access mechanism which attempts to mitigate
the destructive-read problem of eDRAM. On a cache
access, the tags of all ways and the data of the static
cell is read. If there is a hit in the static cell, a delay of
accessing only a direct-mapped cache is incurred. If
there is a hit in a dynamic cell (as determined by tag
matching), the data are accessed with additional delay.
To increase the probability of hits in static cell, their
technique attempts to always keep the MRU block in
static cell using a swap operation.

For a hybrid SRAM-eDRAM last level cache, Valero
et al. [43] propose an approach for finding the optimal
number of ways to implement using each of the
memory technology. Compared to the L1 cache, an L2
cache exhibits much poorer data locality and hence, a
hybrid cache design approach where only one of ways
is designed using SRAM may not provide optimal
performance and energy efficiency. To address this,
they suggest using SRAM for designing a larger (e.g.
8 out of 16) number of ways so that a large fraction
of cache hits can be served from the SRAM cells.

5.2 SRAM+STTRAM Hybrid Caches
Sharifi et al. [84] propose a cache partitioning ap-
proach for providing QoS to different programs in
a chip multiprocessor, where the last level shared
cache is designed as a hybrid SRAM - STTRAM
cache. The SRAM region provides smaller capacity
with fast access speed, while opposite is true for the
STT-RAM region. They use a control theory centric
approach to periodically determine the number of
cache ways from both SRAM and STT-RAM portions,
which should be allocated to each processor such that
its QoS target can be met. To improve performance,
they also use a scheme which migrates the frequently
accessed blocks from STT-RAM to SRAM.

Li et al. [7] propose an SRAM - STTRAM hybrid
cache design to increase cache capacity and mitigate
the limited write endurance problem of STT-RAM.
They use compiler and operating system support to

migrate or swap the write intensive data from STT-
RAM to SRAM. The compiler identifies the write
reuse patterns of heap data objects such as linked
structures and arrays and inserts instructions to guide
the hardware to perform the swap/migration dynam-
ically.

Chen et al. [12] propose a dynamic cache reconfigu-
ration technique for saving energy in a hybrid SRAM
- STTRAM cache. A few cache ways are designed
using SRAM while most other ways are designed
using STTRAM. Their technique tracks the frequency
of accesses to different cache ways and turns-off those
ways for which the access frequency in an interval
falls below a certain threshold.

Li et al. [103] propose a way-based hybrid SRAM
- STTRAM cache design. The SRAM is used to ac-
commodate write-intensive cache blocks. Since appli-
cations exhibit significant inter-set variation in their
write intensity, using the SRAM ways exclusively for
its own cache set leads to inefficient use of SRAM
capacity. To address this, they propose organizing
the SRAM blocks in the hybrid cache as a semi-
independent set-associative cache. Using this, several
hybrid cache sets can efficiently share and coopera-
tively utilize their SRAM blocks.

Quan et al. [55] propose an SRAM - STTRAM
hybrid cache design that aims to mitigate the long
write latency and power problem of STT-RAM. Their
technique uses a prediction table that records the
access information about each cache line, which is
used to predict which lines in SRAM have become
dead and which lines are less or more frequently
written. Using this information, their technique re-
places the dead cache lines in SRAM to improve its
utilization ratio. Also, the frequently written lines are
written into SRAM and less-frequently written lines
are replaced from SRAM as soon as possible. The
replaced dead lines are inserted in the STT-RAM.
Thus, their technique saves energy by minimizing the
number of writes to the STT-RAM.

Chen et al. [69] propose an SRAM - STTRAM hybrid
cache design which aims to minimize the number
of writes to the STT-RAM. Their cache management
technique uses the compiler to provide static hints
to guide initial data placement such that the write-
intensive data are placed into SRAM and non-write-
intensive data are placed into STTRAM. Since com-
piler hints may be misleading due to lack of run-
time information and input variation, they also use
hardware-support to correct the hints provided by the
compiler at runtime. Specifically, if a write-intensive
block is placed in the STT-RAM, it is swapped with
an SRAM block which shows smaller amount of write
intensity.

Ahn et al. [89] propose a write-intensity predictor
for reducing the number of writes to STT-RAM in
an SRAM - STTRAM hybrid cache. They note that
the data accessed by the same load/store instruction
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shares similar characteristics, thus, the number of
writes per cache block is correlated with the trigger
instruction that loaded the block into the cache. Based
on this, their technique keeps track of the instructions
that tend to load write-intensive blocks and utilizes
this information to predict the write-intensity of the
blocks that will be accessed in the future. Using this,
the write-intensive blocks are loaded into SRAM re-
gion, while other blocks are loaded into SRAM region,
which leads to saving the write energy.

Li et al. [58] propose a compiler based approach for
reducing the migrations in a hybrid SRAM - STTRAM
cache. The cache management policies for hybrid
caches aim to migrate the write-intensive blocks from
STT-RAM to SRAM, however, this requires additional
read and write operations and leads to significant
overheads. Li et al. observe that migrations are sen-
sitive to data access patterns, and correlate closely
with the transition events where a read operation is
followed by a write operation, or vice versa. They
also observe that in embedded systems, most of such
transition events come from stack area and global
area, rather than heap area. To reduce the migration
overhead, they propose a migration-aware compila-
tion approach which places the data with consecu-
tively same access operations into the same memory
block. This reduces the transition events which also
reduces the number of migrations and improves the
energy efficiency.

Zhao et al. [14] propose a hybrid cache hierar-
chy where each level is designed with a memory
technology such that the bandwidth provided by the
overall hierarchy is optimized. They study the write
endurance, latency, energy and bandwidth of different
technologies. Since the access power of a cache is
approximately proportional to bandwidth×

√
capacity

[113], under the energy constraint, increasing the ca-
pacity leads to reduction in the bandwidth. Thus, each
memory technology provides the suitable bandwidth
only in a range of capacity. Based on this, they select
SRAM, STT-RAM and eDRAM for designing L2, L3
and L4 caches, respectively.

5.3 SRAM+PCM Hybrid Caches

Guo et al. [100] propose a way-level hybrid SRAM-
PCM cache design which aims to leverage the high
capacity of PCM while keeping its write-traffic low to
extend its lifetime. Their technique detects both dead
and write-intensive cache lines. The dead cache lines
are evicted as soon as possible and write-intensive
cache lines are mapped to SRAM or written back to
memory. This reduces the number of writes to PCM
which also leads to saving of energy.

Wu et al. [10] propose a hybrid cache design where
L2 cache consists of a small fast region designed with
SRAM and another large slow region designed with
eDRAM or STT-RAM or PCM. To manage this cache,

they propose suitable cache line replacement and
data migration policies. Their technique records the
access frequency of lines in slow region and when it
exceeds a threshold, the line is swapped with another
line in the fast region. To save energy, they also
propose keeping the slow region in state-preserving
low-leakage (drowsy) mode.

Wu et al. [10] also propose inter-level hybrid cache
hierarchies, where the choice of memory technology
for designing each cache level is done based on their
properties. L1 and L2 are designed using SRAM due
to its performance advantage. In one hybrid cache
design, L3 is designed using eDRAM, STT-RAM or
PCM. In another hybrid cache design, L3 is designed
using eDRAM or STT-RAM and L4 is designed using
PCM due to its slow speed and high density. They
have shown that their hybrid cache design signifi-
cantly improves over a pure-SRAM cache hierarchy.

5.4 SRAM+DWM Hybrid Caches
To leverage the best of both SRAM and DWM,
Venkatesan et al. [18] propose a cache design with
DWM based data array and an SRAM based tag array.
They note that mapping all the bits in a cache block
to the same DWM tape requires N serial read/write
operations for accessing N bits in the DWM tape,
which leads to very high latency. To reduce the impact
of shift latencies, they propose a bit-interleaved cache
organization in which each cache block is spread
across several DWM macro-cells. As an example, N
64-bit blocks are stored in 64 DWM tapes each con-
taining N bits of data.

6 CONCLUSION

Emerging memory technologies such as eDRAM, STT-
RAM, RRAM, PCM and DWM have several desir-
able properties such as low-leakage power and high
density and hence, they provide new opportunities
in system design. However, they also have various
shortcomings such as limited write endurance, high
write latency etc. which need to be overcome. In
this paper, we presented a survey of architectural
techniques for addressing the issues in caches de-
signed with emerging memory technologies. We also
presented a classification of the techniques based on
important parameters. We believe that these emerging
technologies and techniques will become increasingly
effective and integrated in the mainstream processors.
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