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Abstract—With each CMOS technology generation, leakage
energy has been increasing at an exponential rate and hence,
managing the energy consumption of large, last-level caches
is becoming a critical research issue in modern chip design.
Saving cache energy in QoS systems is especially challenging,
since, to avoid missing deadlines, a suitable balance needs to be
made between energy saving and performance loss. We present
CASHIER, a Cache Energy Saving Technique for Quality of
Service Systems. Cashier uses dynamic profiling to estimate the
memory subsystem energy and execution time of the program
under multiple last level cache (LLC) configurations. It then
reconfigures LLC to an energy efficient configuration with a
view to meet the deadline. In QoS systems, allowed slack may
be specified either as percentage of baseline execution time or
as absolute slack and Cashier can work for both these cases.
The experiments show the effectiveness of Cashier in saving
cache energy. For example, for an L2 cache size of 2MB and
5% allowed-slack over baseline, the average saving in memory
subsystem energy by using Cashier is 23.6%.

Keywords-QoS systems, cache leakage energy saving, low
power, online profiling, last level cache

I. INTRODUCTION

As we are entering into an era of green computing, the
primary objective in chip design is shifting from achieving
highest peak performance to achieving highest performance-
energy efficiency. In battery-powered mobile systems, such
as cell phones and laptops, achieving energy efficiency is
especially important, since these systems work on batteries
which store limited energy. Moreover, since these systems
also need to fulfill application quality-of-service (QoS) re-
quirements [1, 2], a fine balance is required to meet the dual
goals of energy saving and minimum performance loss.

For several reasons reducing energy consumption of LLCs
in QoS systems remains a significant challenge. Firstly, as
the applications are becoming computation-intensive [3, 4],
the pressure on memory system is increasing and to mitigate
this pressure, modern processors are using large size LLCs.
Secondly, with shrinking CMOS feature size, leakage power
has been increasing at an exponential rate [5]. Since leakage
accounts for over 90% of the energy spent in LLCs [6], the
energy consumption of LLCs is becoming a major fraction
of chip energy consumption. Many existing techniques are
designed to save the dynamic energy of cache, however, a
large fraction of energy spent in LLCs is in the form of
leakage energy, and thus, these techniques having limited
utility in saving energy in LLCs. Further, the cache energy

saving techniques which require offline profiling are difficult
to scale and hence cannot be easily used in real-world QoS
applications. Thus, saving cache energy in QoS systems is a
challenging, yet important research issue and new techniques
are required to effectively address it.

In this paper, we present Cashier, a Cache energy saving
technique for quality-of-service (QoS) systems. Cashier uses
a small microarchitecture component called “reconfigurable
cache emulator” (RCE), which uses set sampling idea to
estimate program miss rate for various cache configurations
in an on-line manner. Additionally, Cashier uses CPI stacks
to estimate program execution time under different LLC
configurations. Using these estimates, the energy saving
algorithm (ESA) estimates memory subsystem energy un-
der different cache configurations. Then, a suitable cache
configuration is chosen to strike a right balance between
opportunity of energy saving and performance loss, thus
making best possible efforts to not miss the deadline. For
hardware implementation of cache line switching, Cashier
employs the gated-Vdd scheme [7].

Cashier has several features which address the limitations
of existing techniques. It uses low cost, non-intrusive, dy-
namic profiling technique which does not affect the oper-
ation of LLC. Also, Cashier optimizes memory subsystem
(which includes LLC and main memory) energy, instead of
merely LLC energy. Simulations have been performed using
Sniper [8, 9] and workloads from SPEC2006 suite. The
results show that Cashier is very effective in saving energy
while still meeting most of the deadlines. For example, for
2MB L2 cache with 5% allowed performance slack, the
average saving in memory subsystem energy is 23.6%.

II. RELATED WORK

Recently, several researchers have proposed techniques
for saving cache energy [10–12]. Mittal and Zhang [12]
use selective sets and selective ways to reconfigure the
cache for saving energy. However, their technique cannot
be used for applications with deadlines. Further, the cache
coloring technique used in our work provides much finer
granularity of cache reconfiguration than the previous cache
reconfiguration techniques (e.g. [11, 12]). Some researchers
have presented techniques for saving cache energy while
meeting deadlines [13, 14]. Wang and Mishra [14] use
offline analysis to profile a large number of configurations of
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two-level cache hierarchy and explore these configurations
during run-time for finding the best configuration. However,
since product systems execute trillions of instructions of
arbitrary applications, offline profiling becomes infeasible
for use in such systems.

Apart from cache reconfiguration, dynamic
voltage/frequency scaling (DVFS) has also been used
for saving energy while still meeting the deadlines (e.g.
[15–18]). DVFS aims to save the dynamic energy of the
processor, while Cashier aims to save the leakage energy
of the processor. Thus, Cashier can be synergistically used
with DVFS to save additional amount of energy.

III. SYSTEM DESIGN

Several real-world applications present soft real-time re-
source demands. In such applications, the task deadlines
are usually more relaxed than the task completion time and
as long as a task is completed by its deadline, the actual
completion time does not matter from user’s perspective.
In such systems, Cashier can save leakage energy by using
cache reconfiguration, while making best possible effort to
meet the task deadline. For enabling cache reconfiguration,
Cashier uses cache coloring technique (Section III-A). For
estimating miss rates under different L2 configurations, it
uses RCE and using CPI stack method, it estimates program
execution time with those configurations (Section III-B and
III-C). The energy saving algorithm (ESA) uses these values
to estimate memory subsystem energy and finds the configu-
ration with minimum energy and bounded performance loss
(Section IV). We assume that LLC is L2 cache and based
on this description, Cashier can be easily extended to case
when LLC is L3 cache.

A. Cache coloring

To selectively and dynamically allocate cache to an appli-
cation, Cashier uses cache coloring technique [19, 20] which
works as follows. Firstly, the cache is logically divided
into multiple non-overlapping bins, called cache colors. The
maximum number of colors, N , is given by

N =
CacheSize

PageSize×Associativity
(1)

Further, the physical pages are divided into N memory
regions based on the least significant bits (LSBs) of their
physical page number. In Fig. 1, these bits are referred
to as Region ID. Cache coloring maps a memory region
to a unique color in the cache. For this purpose, Cashier
uses a small mapping table (MT) which stores the cache
color assigned to each memory region. By manipulating the
mapping between physical pages and cache colors, Cashier
allocates a particular cache color to a memory region and
thus, all physical pages in that memory region are mapped
to the same cache color.

Cashier works on the key idea that for restricting the
amount of active cache, all memory regions can be allocated

to merely few cache colors. Thus, the rest of the colors are
effectively not utilized and can be turned off to save cache
energy. This is implemented using the mapping table (MT).
At any point of execution, if M (≤N ) colors are allocated to
the application, the mapping table stores the mapping of N
regions to M colors. Thus, Cashier reconfigures the cache
at the granularity of a single cache color. A salient feature
of this cache coloring technique is that, unlike previous
approaches (e.g. [20]), it does not require a change in
underlying virtual address to physical address mapping, and
thus can be implemented with little overhead. We refer to
“active” or “turned on” color, as one that stores data and
consumes power normally. Also, an “inactive” color is one
that has been “turned off” to save leakage energy and hence
does not store data.

Figure 1 shows the flow diagram of Cashier with values
from the following example. We assume a 2MB, 8-way L2
cache of 64B block size and a PageSize value of 4KB.
Then from Equation 1, we get N= 64 colors. Hence, in this
case, MT has 64 entries, each 6-bits wide (Figure 1). Also
note that the size of mapping table is small and hence, its
access latency and energy consumption are negligible.

Figure 1. Cashier Flow Diagram (Using example of N= 64)

B. Reconfigurable Cache Emulator (RCE)

RCE builds on the idea of set sampling, which states that
the miss rate characteristics of the cache can be estimated
by sampling only a few sets [12, 21]. RCE uses profiling
units, which are data-less (tag only) components, having
the same replacement policy and associativity as that of
the L2 cache it emulates. To estimate cache miss rate for
each possible cache size1, a separate profiling unit may be
required. However, even with set sampling technique, this
may lead to large overhead. To reduce this overhead, while
still obtaining rich profiling information, Cashier profiles
only selected cache sizes (called ‘levels’) and uses piecewise
linear fit to estimate miss rates for other cache sizes. In this
paper, we use a six-level RCE, each level (unit) profiling
1X/16, 2X/16, 4X/16, 8X/16, 12X/16 and 16X/16 sizes
respectively, where X shows the size of L2 cache. The

1Note that since both associativity and block size are fixed, change in
cache size simply means change in cache set-count.
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reasoning behind the use of these profiling levels is that
most of these levels profile a cache of power-of-two set-
count and the level profiling 12X/16 size is chosen to get
more uniformly spaced profiling levels between 8X/16 and
16X/16. This helps in obtaining more accurate miss rate
estimates. Unlike previous schemes (e.g. [11, 12]), which
only profile caches of power-of-two set-counts, the RCE
design of Cashier has the ability to emulate caches of non-
power-of-two set-counts also, using cache coloring scheme.

Figure 2. Reconfigurable Cache Emulator (RCE) Design

Figure 2 shows the design of RCE. First, the L2 accesses
are sampled using a sampling filter, which uses a sampling
ratio (RS) of 64. Then, these addresses are fed to a queue
(to avoid congestion) and then, using the mapping table
corresponding to each profiling level, the set (index) value
for each level is computed. Then, using a small multiplexer
(MUX), the addresses are sequentially fed to the respective
storage regions of the RCE for emulating cache access. RCE
operates in parallel to L2 cache and does not lie in critical
access path. We now calculate the size of RCE. Let the
number of sets in L2 be Z , then the number of sets in the
16X/16 profiling unit is Z/RS . Further, let T and B denote
the tag-size and block-size in bits, respectively and S show
the total number of sets in RCE. Let D denote the ratio of
RCE size and L2 cache size. We have

S =
(1 + 2 + 4 + 8 + 12 + 16)Z

16RS

(2)

D =
RCESize

L2CacheSize
=

43T

16RS(B + T )
(3)

For T =40, B=64×8 and RS=64, we get D=0.003 or
0.3%. Thus, the overhead of RCE is extremely small. We
take this overhead into account in our energy model.

C. CPI Stack for Execution Time Estimation

For estimating program execution time under different
L2 configurations, Cashier uses the CPI stack technique
[8, 22]. A ‘CPI stack’ is a stacked bar that shows the
different components contributing to overall performance.
It presents base CPI and ‘lost’ cycle opportunities due to
instruction interdependencies, cache misses etc., taking into

account the possible overlaps between execution and miss
events. Out of various components of CPI-stack, Cashier
uses the memory stall cycle component, since the change in
L2 configurations shows its effect on execution time in terms
of change in memory stall cycles. We assume that, in an
interval, memory stall cycles vary linearly with the number
of load misses, and thus, their ratio, called SPM (Stall cycles
Per load Miss), remains independent of the number of load
misses themselves. Then, the stall cycles under any cache
configuration can be computed by multiplying SPM with the
number of estimated load misses with that configuration.
Using stall cycle estimates and base CPI value from the
CPI stack, the total number of cycles (and hence total
execution time) under that configuration can be computed.
These estimates are used for computing memory subsystem
energy values (Section VI-B). Also, the execution time and
energy estimates are used by ESA (Section IV).

If the number of load misses vary significantly between
different cache configurations, the above mentioned linear-
ity assumption does not hold well. However, as shown
in Section IV, in an interval, Cashier only searches for
configurations which differ from current configuration in a
small number of active colors. Thus, the above assumption
holds reasonably well and energy estimation accuracy is
minimally affected.

IV. CASHIER ENERGY SAVING ALGORITHMS

We now explain the energy saving algorithms (ESAs)
of Cashier, which can run as kernel modules. We refer
to ‘baseline cache’ as the full size cache which does not
use cache reconfiguration or energy saving technique. We
assume that the available slack can be specified in one of
the two ways. First, the slack can be specified as extra time
itself (Tslack), e.g. a Tslack value of 100μs denotes that an
application can be slowed down by 100μs, without missing
the deadline. This is calledMagnitude Slack Method (MSM).
Second, the slack can be specified as a percentage of extra
time over baseline, denoted as Υ, e.g. Υ=3% denotes that an
application can be slowed down by 3% and still it meets its
deadline. This is called Percentage Slack Method (PSM).
Both these methods have been used in previous studies
[15, 20, 23, 24]. We now discuss the algorithms for each of
these methods. A salient feature of Cashier is that neither
of these two algorithms require a priori knowledge of the
baseline execution time for their operation.

We first discuss the steps which are common to both the
algorithms. In any interval i with C� active colors; both the
algorithms select those configurations as candidates which
satisfy following two conditions. Firstly, to avoid thrashing,
a configuration should have at least N/16 active colors.
Secondly, to keep the reconfiguration overheads small, in
any interval, only up to L (L = 8 in this paper) colors can
be turned ON or OFF. If E denotes the set of configurations,
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fulfilling these conditions, we have E = {C | (C� − L) ≤
C ≤ (C� + L) and C ≥ N/16}.

For explaining the algorithms, we define a quantify ti, as
follows. Using program execution time estimates, in every
interval, the algorithms estimate the extra time, which the
current configuration is taking over and above the baseline
configuration2. Over all the intervals, the Algorithm accu-
mulates these values. At the end of any interval i, this gives
the estimate of increased execution time (ti) due to ESAs
(viz. PSM or MSM), till that interval i. Thus, ti shows the
amount of slack already exploited.

We now explain the algorithm-specific steps.
MSM Algorithm:
1) To be conservative, MSM Algorithm keeps a reserved

slack of Treserve (Tslack/10 in this paper) and as-
sumes an effective slack of Teff =Tslack − Treserve.

2) At the end of interval i, (Teff − ti) shows the amount
of slack remaining. Based on this, MSM Algorithm
decides allowed maximum absolute slack (MASi+1)
for interval i + 1, e.g. if the remaining slack is 60μs,
the Algorithm may choose to use MASi+1 as 2μs.

3) The configurations having a slack greater than
MASi+1 are rejected from E. In effect, the config-
urations with number of active colors below a certain
threshold color are rejected. We call this step as
thresholding.

4) If E �= φ, then the configuration from E with mini-
mum estimated energy is selected for interval i + 1.

5) If E = φ then the configuration closest to the thresh-
old, viz. (C� + L) is chosen for next interval. This is
to avoid possible oscillations due to sudden change in
working set size of the application. Since the algorithm
aims to meet a global deadline, and not per-interval
deadline; by feedback adjustment, it compensates for
positive or negative deviations from the allowed slack.

PSM Algorithm:
1) If the total execution time at the end of interval i is

Ti, then (Ti − ti) gives the estimate of baseline time
till interval i. Using this, Δi is calculated as follows:

Δi =
ti × 100

(Ti − ti)
(4)

Clearly, Δi gives the estimate of percentage of extra
time taken by the PSM Algorithm over the baseline.

2) PSM Algorithm always tries to conservatively keep Δi

below the actual allowed percentage slack (Υ), by a
small margin δ (0.3% in this paper). Thus, Δi ≤ Υ−δ.

3) Based on Δi and Υ, Algorithm computes maximum
percentage slack over the baseline for i + 1. This is
termed as MPSi+1 and represents the maximum per-
centage slack allowed in next interval. Then, to make

2Note that the execution time estimates for baseline cache configuration
are also obtained in run-time using RCE and not in offline manner.

performance aware choices, the configurations with
estimated percentage slack greater than MPSi+1 are
removed from E. Thus, in effect, the configurations
with number of active colors below a certain threshold
color are rejected. We call this step as thresholding.

4) If E �= φ, then the configuration from E with mini-
mum estimated energy is selected for interval i + 1.

5) If E = φ then the configuration closest to threshold,
viz. (C� + L) is chosen for next interval. The reason
for this is same as explained above.

We now explain the MSM algorithm with a simple
example and PSM can be similarly understood. Assume
N=64 and L=8 and in any interval, C�=28. Then, ini-
tially, E = {20, 25...35, 36}. If MASi+1 is such that the
configurations with C < 20 give an absolute slack value
greater than MASi+1, then all configurations in E pass
thresholding step and the one with minimum energy is
selected for next interval. However, if MASi+1 were such
that configurations with C < 40 were to be removed, then
after thresholding step, E = φ. In such case, the algorithm
selects the configuration with 36 (i.e. C� +L) active colors,
which is the closest to threshold. In the next interval, C�

becomes 36 and then depending on MASi+2 and threshold-
color, a suitable color value can be chosen.

V. HARDWARE IMPLEMENTATION

For cache block switching, we use the gated-Vdd scheme
[7]. We assume a specific implementation of gated-Vdd

transistor (NMOS gated Vdd, dual Vt, wide, with charge
pump) which results in minimal impact on access latency,
but 5% increase in the cell area [7]. We account for this
overhead in our energy model (Section VI).

Cashier ESA runs after a large interval length (e.g. 5M
instructions). Cache reconfiguration changes the mapping of
memory regions to cache colors. During such time, when
a color is to be turned off, its dirty data is written back
to memory and the clean data is discarded; and then the
cache color is turned off. When a color is turned on, some
regions are mapped to this color and thus, this color starts
storing data. The cache reconfiguration scheme of Cashier
may introduce a one time overhead but is simple and has
less overhead than the previous techniques (e.g. [11, 12]).

VI. EXPERIMENTAL METHODOLOGY

A. Simulation Environment and Workload

We conduct out-of-order simulations using interval core
model from Sniper simulator [8, 9]. The processor frequency
is 2 GHz and ROB size is 128. Dispatch width is 4 micro-
operations. Each of L1I and L1D is 4-way 32KB, LRU cache
with 1ns latency. The L2 is 8-way 2MB, LRU cache with 6ns
latency. All caches use a block size of 64B. Main memory
latency is 70ns with peak bandwidth of 8GB/s and memory
queue contention is also modeled. The interval length is
5M instructions. To simulate the representative behavior of
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SPEC2006, while still limiting the simulation time, we use
12 benchmarks from this suite, as suggested by Phansalkar
et al. [25] based on their multivariate statistical data analysis.
These 12 benchmarks, 6 each from integer point (gcc, hm-
mer, libquantum, mcf, sjeng, xalancbmk) and floating point
(cactusADM, lbm, milc, povray, soplex, wrf) benchmarks,
represent the behavior of entire SPEC2006 suite [25]. We
use ref inputs. We fast-forwarded each benchmark for 10B
instructions and then simulated for 1B instructions.

B. Energy Modeling

We take into account the energy spent in L2 cache, main
memory and the cost of executing the algorithm (EAlgo),
since other components are minimally affected by our ap-
proach. Note that for baseline experiments, EAlgo = 0.

Energy = EL2 + Emem + EAlgo (5)

Here energy spent in L2 and memory is composed of both
leakage and dynamic energy. Further, we use the symbols
Edyn

XY Z and P leak
XY Z to show the dynamic energy per access

and leakage energy per second, respectively, spent in any
component XY Z (e.g. L2, memory, RCE). To calculate L2
energy, we assume that an L2 miss consumes twice the
energy as that of an L2 hit [10, 12]. The leakage energy
is proportional to active area of the cache [11, 12]. Thus,

EL2 = Edyn
L2
×(2ML2+HL2)+(P leak

L2 ×T ime×C)/N (6)

Here N shows the total number of colors and for any
interval with C active colors, ML2 and HL2 show the
corresponding number of L2 misses and L2 hits respectively
and T ime shows time consumed in the interval. The L2
energy values are obtained using CACTI [26] for 4-bank
caches at 45nm technology. For 2MB L2 cache, we get
Edyn

L2
=0.985 nJ/access and P leak

L2
=1.568 Watt. To account

for the increased area due to use of gated-Vdd technique,
we assume 5% higher value of P leak

L2
for Cashier, but not

for baseline cache (Section V).

To calculate memory energy, we note that Edyn
mem=70 nJ

and P leak
mem=0.18 Watt [12, 27]. Using Amem to denote the

number of memory accesses, we get

Emem = Edyn
mem × Amem + P leak

mem × T ime (7)

Using ARCE to denote the number of RCE accesses and
ETran to denote block-transition energy, we get

EAlgo = Edyn
RCE ×ARCE + P leak

RCE × T ime + ETran (8)

To calculate RCE energy consumption, we use Equation 2
and take power-of-two upper bound of S as S = 64Z/16RS.
We estimate energy using CACTI for a single bank structure,
with 8B block size and count energy consumption of tag
arrays only, since RCE is a tag-only structure. For an RCE
corresponding to 2MB L2, we get Edyn

RCE=0.004 nJ/access
and P leak

RCE=0.007 Watt. Since for every 64 L2 accesses, RCE
is accessed only 6 times, RCE energy consumption is a very
small fraction of L2 cache energy consumption. Each block
transition is assumed to take 0.002 nJ. Using Tran to denote
the total number of blocks transitions, we get

ETran = 0.002× Tran nJ (9)

VII. RESULTS AND ANALYSIS

We now present the results of evaluation of Cashier. Note
that we evaluate Cashier under much more strict deadlines
than that used by previous works (e.g. [15]). For brevity,
we use the names cactus, libquant and xalan to denote
cactusADM, libquantum and xalancbmk, respectively.

A. Magnitude Slack Method

For evaluating MSM, we need to assign a randomly
chosen slack to each application, which is neither too high,
nor too low. Hence, we use two tests which assign slacks
randomly, while still ensuring reasonably strict deadlines and
evaluation. In first test, we generated a list P of 12 random
numbers in the range of [0, 1], using on-line random number
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Figure 3. Results with Magnitude Slack Method: Percentage Energy Saving and Simulation Cycle Increase (mcf and povray miss their deadlines)
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Figure 4. Results with Percentage Slack Method: Percentage Energy Saving and Percentage Simulation Cycle Increase for Υ = 5% (No benchmark
misses the deadline)

generation utility [28] and then calculated (4 + pi)% of
baseline simulation cycles, where pi ∈ P , i = {1, 2..12}.
We then set it as a Tslack for MSM algorithm for each of
the 12 benchmarks. Figure 3 shows the results. The average
saving in energy over baseline cache is 25.9%, and for two
benchmarks (mcf and povray), the deadline is missed.

To test MSM under arbitrary slack value, we use a second
test. We take baseline simulation cycles of all benchmarks
and sort these values in ascending order. We then take the
mean of two medians, and set 5% of this value as Tslack for
all the benchmarks. In our experiments, Tslack value was
46.081M cycles. Using this, we observe 26.8% saving in
energy, and two benchmarks (cactusADM and povray) miss
the deadline (figure omitted due to space limitation).

We further test MSM, as outlined in first test, but this time
with (4+ qi)% of baseline simulation cycles, where qi ∈ Q,
i = {1, 2..12} and Q is another randomly generated list. We
get average energy saving of 25.8% and two benchmarks
(mcf and povray) miss the deadline (figure omitted).

B. Percentage Slack Method

Figure 4 shows the percentage energy saved over a base-
line cache, for percentage slack, Υ=5%. The average saving
in energy is 23.6% and none of the benchmarks misses the
deadline. For Υ=3%, the average saving in energy is 22.4%
and two benchmarks (lbm and mcf) miss their deadlines and
for Υ=7%, the average saving in energy is 25.0% and no
benchmark misses its deadline (figures omitted).

VIII. CONCLUSION

In this paper, we presented Cashier, a dynamic reconfigu-
ration based cache energy saving approach for QoS systems.
Cashier achieves a right balance between the opportunity
of energy saving and performance loss and fully adapts
itself according to the available slack to maximize energy
saving. Thus, Cashier saves energy with a small and bounded
performance loss and may allow using a larger cache for the
same energy budget to obtain even higher performance.
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