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Abstract—Recent advancements in CMOS fabrication and
processor architectures have posed new challenges to the chip
designers. The availability of a large number of design con-
figurations, along with constraints such as energy consumption
and real-time response demand exploring a large design-space
for choosing the best possible configuration. However, the high
cost of detailed simulators prohibit the designers from doing
this. The existing techniques of performance estimation generally
use intrusive methods or have high overhead or inaccuracy and
hence, are not suitable for real-world processors.

In this paper we present ESTO, a simulation-based approach
for estimating application performance (execution time and
energy) under multiple last level cache (LLC) configurations.
ESTO uses a multi-level profiling cache which provides low-cost
and non-intrusive dynamic profiling. A unique feature of ESTO
is its ability to estimate performance of a cache of higher size
than the baseline cache present. Experiments performed using
a state-of-art simulator and benchmarks from SPEC2006 suite
show the effectiveness of ESTO. For our workload, the average
error in estimating execution time and memory subsystem energy
are 3.7% and 3.3% respectively.

I. INTRODUCTION

Recent advancements in the field of processor architecture

and chip design have opened new horizons for both archi-

tects and end-users. While these architectures promise high

performance [1–4], they also pose significant challenges to

the designers, due to the increasing number of design options

(e.g. cache configurations) and design constraints (e.g. energy).

Further, to bridge the widening gap between DRAM speed

and processor speed, modern processors are using increasingly

large LLCs and hence, LLCs have a significant influence on

their performance. Over several years of CPU evolution, the

size of L1 cache has stayed at 16KB or 32KB, while the size

of the LLC has grown from nearly 256KB to 1, 2 or 4 MB

in modern day processors, with future processors expected to

have even larger LLC sizes. Hence, while translating a design

from concept phase to a working chip, a designer must choose

a suitable LLC size, based on the application requirements and

also meet the constraints posed by chip power budget and real-

life timing requirements. For this purpose, designers generally

use detailed simulators for evaluating different design options,

however, the high simulation time of these simulators makes

it infeasible to use them for testing all possible configurations

in the design space. This forces the designers to take deci-

sions without considering all the design constraints or fully

exploring the design space.

To address this challenge, several techniques have been

proposed for performance estimation and fast design space

exploration [5–7]. However, existing techniques of perfor-

mance estimation have several drawbacks. Superscalar out-

of-order processors use speculative execution and hence, the

possible overlap between execution and different miss events

such as cache misses and branch mispredictions etc. make

it challenging to estimate performance under multiple design

options. For this reason, several techniques use simplistic

platforms or require offline profiling or multiple runs (e.g.

[8, 9]) and hence these techniques are difficult to scale to

real-world processors and applications, which execute trillions

of instructions. Many performance estimation techniques use

intrusive methods which have a large space/time overhead.

A few other techniques have a large error of estimation and

hence, the conclusions derived from them could be very

misleading. Thus, an efficient and accurate performance es-

timation method is required for design space exploration and

making crucial design decisions.

In this paper, we present ESTO, a dynamic profiling based

technique for estimating the performance of an application

program under a range of possible last level cache (LLC)

sizes1. The key idea behind our approach is the use of a small

profiling cache, to estimate the number of LLC misses under

different cache configurations and to compute their effect on

program performance. Profiling cache is a data-less cache

which is based on the idea of set sampling [10] and has an

energy overhead of less than 1% of that L2 cache. ESTO uses

memory stall cycle model to take into account the possible

overlap between different miss events and thus ESTO can

be used in out-of-order processors with speculative execution

support.

For a system with L2 cache size of X , we define any

cache with size ≤X as sub-sized cache and any cache of size

≥X as super-sized cache. A unique feature of ESTO is its

capability to estimate execution time and energy of both super-

sized caches and sub-sized caches. Thus, for example, using

a 4MB L2 cache, a designer can estimate the performance of

8MB L2, as well as 2MB, 1MB, 512KB and 256KB caches.

This feature is extremely useful for making projections about

a future configuration which may be presently unavailable.

1In this paper, we use the term performance to refer to execution time (ET)
and energy consumption together.



Thus, ESTO helps a designer in choosing most suitable LLC

configuration and fulfill the design constraints.

ESTO addresses several limitations of the existing ap-

proaches. Firstly, ESTO uses non-intrusive dynamic profiling

and hence, does not require any changes to application source

code or binaries. The profiling cache works in parallel with

L2 and hence does not affect the access latency of the L2

cache. ESTO provides online estimates of performance and

does not require offline profiling or any separate runs. To

evaluate ESTO, simulations were performed using Sniper [11],

simulator and benchmark programs from SPEC2006 suite.

Across 80 combinations of benchmarks and configurations,

the average error in execution time (ET) estimation is 3.7%.

Further, the average error in memory subsystem energy (L2

cache+ main memory energy) is 3.3%. These results confirm

the effectiveness of ESTO.

As computer systems are becoming increasingly power

constrained, workload optimized system design is expected

to become even more prominent, as seen through example of

Intels Many Integrated Core (MIC) architecture and IBM’s

BlueGene processor. Hence, our approach is likely to become

even more important in the design of future computer chips.

Profiling cache can be easily used for saving cache energy,

thus helping the designers in realizing the goals of sustainable

and green IT.

II. MOTIVATION AND SCOPE OF THE WORK

We present the motivation for using ESTO with a typical

design scenario. Modern portable devices such as personal

digital assistants, phones, laptops and iPODs etc are powered

by the battery which supplies limited energy. Thus, the amount

of battery dissipation which is induced by program execution

becomes an important factor in assessing battery life and

gives valuable information to take decision about recharging or

replacement. This is especially important in situations such as

traveling in flight etc. To address such needs, ESTO enables an

architect to use a suitable cache size, taking into account the

energy budget, usage scenario and quality of service (QoS)

requirement. For example, if a certain delay in response is

acceptable, the architect can use a smaller sized cache if

that is more energy efficient. Similarly, within a same energy

budget, an architect can use a larger sized cache if that is more

performance efficient.

Our objective in this paper is to propose and experiment

with the methods which enable exact program execution time

estimation for a given input and hardware for different config-

urations of L2 cache sizes. The WCET analysis approach is

different from our work. Worst-Case Execution Time (WCET)

prediction approach seeks to estimate the upper bound of

the program execution time under different program inputs

or hardware platforms or system resources. Given the large

number of possible inputs, only a range or bound is estimated

for WCET. Moreover, such analysis has been done by as-

suming simplified/idealized platforms (e.g. perfect processor

pipeline with no stalls [12] etc). In contrast, we estimate

exact execution time, using a detailed out-of-order superscalar

processor which presents challenges of its own.

III. METHODOLOGY

It is well-known that under different cache configurations,

program applications show different number of cache misses,

and hence different performance. Hence, to estimate the im-

pact of multiple L2 cache configurations on performance,

ESTO uses profiling cache to predict L2 misses under those

configurations (Section III-A). Using these estimates, along

with CPI stack model, ESTO estimates execution time of

the application under those configurations (Section III-B).

Finally, using these estimates, ESTO estimates both dynamic

and leakage energy component of memory subsystem energy

(Section III-C). Based on these estimates and the domain

knowledge of design constraints, a designer can take suitable

design decisions. Figure 1 shows the overall flow diagram of

ESTO. In what follows, we explain each of these components

in detail.

A. Profiling cache

Profiling cache is a small, dataless (tag only) cache, which

is designed based on the well-known set sampling technique

[13], which states that the miss rate characteristics of a set

associative cache can be estimated by sampling only a few

of its sets. The ratio of set count of L2 and that of a

profiling cache is termed as sampling ratio (Rs). Profiling

cache emulates L2 and thus, has same associativity, block

size and replacement policy as L2. On an access to profiling

cache, a hit or miss is decided and corresponding counters are

updated. Note that, it does not store or communicate data and

hence does not generate traffic. On a miss, the tag of missed

address is copied and the victim is evicted. Thus, profiling

cache is decoupled from L2 cache and as shown in Section

IV, the size of this ‘single level’ profiling cache is only 0.10%

of L2 cache size.

We use the above mentioned properties to extend profiling

cache, such that it profiles multiple cache sizes in parallel;

each size is referred to as a level. For our experiments, we

choose six levels, each level profiling a cache of size 2X, 1X,

X/2, X/4, X/8, X/16 respectively. These levels, also referred to

as configurations, are, in general, shown as C and the baseline

(1X) configuration is shown as C⋆. Also, note the unique ca-

pability of profiling cache: because of its decoupled operation

with L2, it can also profile a cache of 2X size (double the

baseline cache size) with reasonable accuracy, as we will see

in the results section (Section VI). This feature is an important

improvement over previous works based on profiling and it

allows a designer to estimate program performance for a cache

size which may be currently unavailable.

As shown in Section IV, even with this extension, the size

of multilevel profiling cache is only 0.40% of L2 cache size.

Thus, the multilevel profiling cache has a small size and access

latency and since it does not lie on the critical access path,

its latency is easily hidden. In what follows, we use the word



Fig. 1. ESTO flow diagram

profiling cache to refer to a multilevel profiling cache, unless

otherwise mentioned.

The profiling cache works as follows (ref. Fig. 1). The L2

access addresses are passed through a small queue and then

sampled using a sampling filter. Then these sampled addresses

are passed through address decoding region for calculating the

set (index) and tag values. Then these addresses are sent to

the core storage component through a multiplexer (MUX). We

mention that even though profiling cache is accessed multiple

times for each sampled address, the presence of the queue

and use of a large sampling ratio avoids the possibility of any

congestion.

B. Execution time Estimation

For estimating both execution time and leakage energy

under different cache configurations, we need to estimate

memory stall cycles under those configurations as a function

of L2 misses. However, modern out-of-order processors use

several features for hiding latency (e.g. overlap between miss

events such as branch misprediction and L2 miss), and hence

the memory stall cycles cannot be computed as a linear

function of the number of L2 misses.

To address this issue, ESTO uses a well known technique,

called CPI stack model [11]. CPI stack shows the contribution

of base execution along with different miss events, (such as

branch mispredictions, cache misses) in the overall CPI of the

program. For example, in any interval i, the memory stall cycle

component of CPI stack (termed as StallCPIi(C
⋆) ) shows the

net contribution of memory stall cycles on overall cycles, after

taking into account the overlap with other miss events. Let

LoadMissesi(C
⋆) show the number of load misses in interval

i. Now, since memory stall cycles are primarily due to L2 load

misses [10], we define Ki(C
⋆) as follows.

Ki(C
⋆) =

StallCPIi(C
⋆)

LoadMissesi(C⋆)
(1)

Here Ki(C
⋆) shows memory stall CPI per load miss. We

assume that Ki(C
⋆) value is independent of the number of load

misses and hence remains same for different cache configura-

tions, thus Ki=Ki(C
⋆), for all configurations. Further, we also

use extra counters in profiling cache to record load misses,

along with total misses, for different L2 configurations. Then,

StallCPIi(C) for any configuration (C) can be computed, using

StallCPIi(C) = Ki × LoadMissesi(C) (2)

Then, using StallCPIi(C) and other components of CPI
stack, total CPI value at any configuration C can be com-

puted. Using total CPI, along with given frequency value and

number of instructions, execution time under C can be easily

estimated.

C. Energy Estimation

We now discuss the energy model used in ESTO and

also show the procedure for estimating program energy value

under any configuration using the estimates of miss rates

and execution time. Since other components of processor are

minimally affected by change in L2 cache size, we only

consider memory subsystem energy, which is given as the sum

of L2 and memory energy.

Energy = EL2 + Emem (3)

We use the symbols E
dyn
L2
and P leak

L2
to show the dynamic

energy per access and leakage energy per second, respectively,

consumed in L2 cache. For memory, these parameters are

shown by Edyn
mem and P leak

mem respectively.

To calculate L2 energy, we assume that an L2 miss con-

sumes twice the energy as that of an L2 hit [13]. Thus,

EL2 = E
dyn
L2

× (2ML2 + HL2) + P leak
L2

× T ime (4)

Here, for any configuration, we have corresponding

ML2=L2 misses, HL2=L2 hits, T ime=execution time.

The L2 energy values are obtained using CACTI 5.3



(http://quid.hpl.hp.com:9081/cacti/) for 4 bank, 8-way caches

with 64 byte block size at 45nm. These values are shown in

Table I.

TABLE I
L2 CACHE ENERGY VALUES

Edyn

L2
(nJ/access) P leak

L2 (Watt)
8MB 1.525 5.588

4MB 1.148 2.848

2MB 0.985 1.568

1MB 0.912 0.966

512KB 0.872 0.664

256KB 0.848 0.500

To calculate memory energy, we note that P leak
mem=0.18 Watts

and Edyn
mem=70 nJ [10]. Thus, we get,

Emem = Edyn
mem × Amem + P leak

mem × T ime (5)

where Amem denotes the number of memory accesses. From

Eq. 4 and 5, it is clear that using miss rate and execution

time estimates, program energy under any configuration can

be estimated.

IV. OVERHEAD OF ESTO

ESTO uses profiling cache and computations for perfor-

mance estimation, and hence the overhead of ESTO comes

from these two components. ESTO does computations for

ET and energy only at the end of a large interval length

(e.g. 5M instructions). Thus, the cost of these calculations is

amortized over interval length. In remainder of this section,

we first compute the size of single level and multilevel

profiling cache and then compute the energy consumption of

multilevel profiling cache, to show that the overhead of ESTO

is extremely small. We use the subscripts Single andMulti to

represent any quantity (e.g. size) for single level and multilevel

profiling cache respectively. For a W way L2 cache having Q

sets, B byte cache block and G bit tag, the total cache size in

bits is

SizeL2 = Q × W × (B × 8 + G) (6)

Since profiling cache is a dataless cache, its size is

SizeSingle =
Q

Rs

× W × G (7)

If ΘSingle shows the size of single level profiling cache as a

percentage of L2 size, we get

ΘSingle =
G

Rs(G + B × 8)
× 100 (8)

For Rs=64, B=64 and G=36 we get ΘSingle=0.10%.

For computing size of multilevel profiling cache, we first

compute the number of sets (SetsMulti) in it, as follows.

SetsMulti =
2Q

Rs

+
Q

Rs

+
Q

2Rs

+
Q

4Rs

+
Q

8Rs

+
Q

16Rs

(9)

SetsMulti =
63Q

16Rs

<
4Q

Rs

(10)

Using above equations, we compute the size of multilevel

profiling cache as a percentage of L2 size (ΘMulti) as follows.

ΘMulti =
4G

Rs(G + B × 8)
× 100 (11)

Thus, for Rs=64, B=64 and G=36 we get ΘMulti=0.40%.

To cross-check, we have computed the area of L2 and multi-

level profiling cache using CACTI, for the cache sizes used in

our experiments (Section V). Since multilevel profiling cache

is a tag only structure, we take 8B block size, which is smallest

allowed block size in CACTI and only take the area values

for tag arrays. From these values, we compute ΘMulti and

find that ΘMulti=0.29%, which is in the same range as that

obtained above.

To compute the energy values for (multilevel) profiling

cache, we take Rs=64 and use CACTI 5.3. As explained

above, we only take the energy figures for tag arrays. For

a profiling cache corresponding to a baseline L2 of 2MB,

we get the energy values as E
dyn
Multi= 0.004 nJ/access and

P leak
Multi=0.007 Watt. Noting that, profiling cache is accessed

only 6 times for every 64 L2 accesses, we find that profiling

cache energy consumption is a very small fraction of L2 cache

energy consumption. Thus the overhead of ESTO is indeed

very small. Moreover, by taking large value of sampling ratio

(e.g. Rs=128), the overhead of ESTO can be even further

reduced.

V. EXPERIMENTAL PLATFORM

For evaluating ESTO, we have used Sniper [11], which has

been validated against the real hardware. We model 4-way

processor with 1GHz frequency. L1I and L1D are 32KB, 4-

way caches with 4 cycle latency. L2 is 4MB, 8-way cache

with 12 cycle latency. All caches use LRU and 64B block

size. Memory has 90 cycle latency, 6GB/s peak bandwidth

and memory request queue is also modeled. The performance

estimates are collected after every 5M instructions.

Our workload consists of 16 benchmark programs from

SPEC2006 (astar, bwaves, cactusADM, gamess, gemsFDTD,

gobmk, h264ref, hmmer, lbm, leslie, libquantum, mcf, perl-

bench, sjeng, sphinx and tonto), which represent a wide range

of cache usage characteristics. Each benchmark program was

fast forwarded for 10B instructions and then simulated for

100M instructions.

VI. RESULTS

In this section, we present the results on accuracy of estima-

tion of program execution time and memory subsystem energy.

Further, to be strict in evaluation, we compare execution time

and energy values only for cache sizes other than 1X, since,

for 1X size (i.e. baseline), these values are easily predicted

with high accuracy. ESTO provides performance and energy

estimates for five cache sizes (other than baseline) and with

4 MB cache as baseline, these caches have the size of 8MB,

2MB, 1MB, 512KB and 256KB (4MB itself is baseline and

is skipped). Hence, using 4MB cache, a single run was

performed for each benchmark, and performance estimates
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Fig. 2. %Error in Exeuction Time and Energy Estimation

were obtained using ESTO. These estimates were compared

with the corresponding actual values obtained using 8MB,

2MB, 1MB, 512KB and 256KB caches and percentage errors

were computed with respect to baseline values.

Figure 2 shows the average error for each benchmark,

across all cache sizes. Across all benchmark/configuration

combinations, the average errors in execution time estimates

and energy estimates are 3.7% and 3.3% respectively.

Figure 3 presents the same result; this time for each cache

size, across all benchmarks. Clearly, for 2X (8MB) and X/2

(2MB), the accuracy is the highest, which decreases gradually

as we move to cache sizes farther from 1X.

We have also tested ESTO for sampling ratio value of 128

and observed that ESTO still provides high estimation accu-

racy. Further, for approximate LRU schemes, such as round-

robin replacement policy also, ESTO provides high accuracy,

which implies that ESTO does not require implementation of

true-LRU policy.
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We have shown the effectiveness of ESTO in execution

time and energy estimation. ESTO can be easily extended to

estimate total system energy by simply including the energy

model of processor core in total energy equations. Also, since

ESTO predicts both energy and execution time; using these

estimates the energy delay product (EDP) of the program can

also be estimated, although with higher error.

VII. RELATED WORK

Recently, several methods have been proposed for estimat-

ing cache miss rate, execution time and energy of a program.

In the following, we review them briefly.

Miss Rate Estimation: Tam et al. [14] present a software

based L2 miss rate prediction approach. This technique works

by recording data addresses of memory accesses to a data

address register and later feeding the log of addresses to an

LRU stack simulator to generate the miss rate curve (MRC)

using the Mattson stack algorithm. This technique only takes

into account L1 data cache misses and does not take into

account L1 instruction cache misses and L1 data write-backs.

This, however, leads to loss of accuracy and hence the miss

rate curve generated using this approach need to be vertically

shifted to better match real MRC. Moreover, this approach

only works for fully-associative caches, while the modern

processors use set-associative caches with finite (e.g. 8 or 16

way) associativity.

Qureshi et al. [15] propose Utility Monitors (UMONs) for

tracking miss rate of L2 caches for different ways of an LRU

cache, using Mattson stack algorithm. However, due to the

high cost of implementation of true-LRU technique, most real-

world processors use an approximation of LRU (e.g. pseudo-

LRU ). Hence, true-LRU based miss rate prediction approaches

are not suitable for real-world processors. In contrast, ESTO



uses set-based profiling, and hence, it can easily work with

different “approximate-LRU” replacement policies.

Execution Time Estimation: Techniques for estimation of

execution time is especially important for high-performance

computing applications [16, 17]. Yamamoto et al. [18] pro-

pose an execution time prediction method which combines

measurement-based execution time analysis and simulation-

based memory access analysis. As for memory access analysis,

the memory access latency value is estimated in terms of the

memory access pattern of a function level and the properties of

the target processor cache architecture. However, the authors

observe an error up to 64% in ET estimation on Pentium-M

processor.

Most methods of computation of L2 cache latency require

running the program twice (e.g [8, 9]). Once the program is

run, with the assumption of infinite cache and then with finite

(real) cache. This method, however, introduces large overhead

and is not suitable for real-time applications.

Because of their dynamic behaviors, caches present several

challenges in WCET analysis. Several studies have focused

on addressing this issue. Li et al. [19] build an Integer

Linear Programming solution for WCET estimation problem

for direct mapped and set-associative caches, while Ferdinand

et al. [20] use abstract interpretation to model the instruction

cache behavior for WCET analysis.

Energy Estimation: Dhouib et al. [21] propose a multi-

layer power and energy estimation approach for embedded

systems. Their approach works by first estimating energy and

power consumption of standalone tasks and then adding energy

overheads of operating system services such as timer interrupt,

inter process communications etc. Zhao et al. [22] present a

microarchitectural approach to estimate the energy consump-

tion of embedded operating systems by taking into account

the energy spent in system calls and kernel execution paths

etc. Our approach is different from these, since we estimate

memory sub-system energy under many configurations in a

single run.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented ESTO, a dynamic profiling

based approach for estimating application performance and

energy consumption under different LLC configurations. We

have shown the utility of ESTO for the case when the LLC is

an L2 cache, although our approach can can also be applied

to an L3 cache. Our future work will focus on making more

accurate prediction of impact of cache miss on execution time.

This will improve the accuracy of execution time and energy

estimation.
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