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Abstract—Leakage energy has been estimated to increase by
five-times with each CMOS technology generation and this
is expected to become a major source of energy dissipation,
especially in large last-level caches (LLCs). We present EnCache,
a novel cache leakage energy saving scheme that uses a new
micro-architecture component called profiling cache. With this
hardware support, system software can accurately predict the
cache usage and energy efficiency of a running program for 32
possible cache configurations and vary the cache configuration
for saving cache leakage power. Unlike existing schemes, En-
Cache can directly optimize for the overall memory subsystem
power efficiency instead of only cache power efficiency. EnCache
employs dynamic performance regulation and hence does not re-
quire offline profiling or per-application tuning. The experiments
performed over our workload confirm the superiority of EnCache
scheme over conventional energy-saving schemes. On a baseline
configuration of 2MB cache size, the average improvement of
memory subsystem energy and energy-delay-product (EDP) by
using EnCache are 31.7% and 28.8%, respectively.

Keywords: Last-level cache, leakage energy saving, profiling
cache, dynamic performance regulation, set-sampling

I. INTRODUCTION

Leakage current and leakage power have been predicted

to increase by 7.5 times and 5.0 times respectively, with

each CMOS technology generation [1]. Further, leakage power

is likely to dominate the power consumption for sub-45nm

technology. Caches occupy more than 50% of the total area

of the processor [2] and most modern processors use a

large shared LLC to bridge the widening gap between the

speed of main memory and processor core. Therefore, power

consumption of caches is increasingly becoming a concern in

modern processor design.

Since programs show large intra- and inter- program varia-

tions in their cache requirements, processor designers have to

use cache with average case in mind. This, however, leads to a

large wastage of energy for the applications with small work-

ing set size (WSS), or cache thrashing for the applications with

large WSS. Recently, several approaches have been proposed

which dynamically reconfigure the caches to save leakage

power. However, the hardware-based approaches (such as [3])

have a common limitation. Reducing cache size increases

cache miss rate and program execution time. Therefore, it

involves a delicate trade-off between performance and energy

efficiency. In the absence of online profiling, downsizing cache

may cause severe cache thrashing and therefore may dramati-

cally increase program execution time and power consumption

in the processor core and DRAM memories. This increase may

even offset the power savings in cache. It is very difficult, if

not impractical, for non-adaptive hardware-based schemes of

cache energy saving to also take into account the components

other than the cache. Furthermore, their control mechanism

depends on arbitrary parameters (e.g miss-bound, decay in-

terval) that must be tuned per application. The presence of

large intra-program variations and the differences between the

profiled runs and actual programs make the approach of per-

application tuning highly ineffective and difficult-to-scale.

We present EnCache (Energy saving approach for Caches),

a new software-based approach on top of lightweight hardware

support. The key component of the hardware support is a sim-

ple profiling cache. It is tag-only cache and uses set-sampling

to predict cache miss rates of multiple cache configurations of

much larger sizes in an onlinemanner. It works non-intrusively

and due to its decoupled and parallel operation and small-size,

its latency is easily hidden. Profiling cache is not a part of the

cache hierarchy and it does not lie at the critical access path

of the cache. Further details are explained in Section III-A.

The previous approaches such as [4] utilize sampling only to

profile different associativities of the current size of the cache,

while EnCache provisions a separate cache structure which can

profile different associativities at different cache sizes. Thus,

EnCache considerably expands upon the potential of sampling.

This is a significant difference, which enables the prediction

of energy efficiency of multiple cache sizes and thus, guide

reconfiguration. Profiling cache has an energy overhead of less

than 0.5% of L2 cache energy. Our simulation results show that

a profiling cache is highly accurate, with an average error of

0.26MPKI (miss-per-Kilo-instruction) in predicting the cache

miss rates for 100 benchmark/configuration combinations.

Our profiling cache is designed to also estimate the impact

of cache miss-rates on performance, in terms of memory stall

cycles. Using these estimates and other performance counters,

an OS component periodically predicts the memory-subsystem

(which includes LLC and main memory) energy for multiple

cache configurations. Then, the cache configuration with the

minimum estimated energy is chosen for the next interval and,

if necessary, the cache is reconfigured to that configuration.

EnCache addresses the aforementioned shortcomings of

the hardware-based approaches. It optimizes for memory-

subsystem energy rather than merely cache energy. It opti-

mizes directly for energy, unlike previous approaches which
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work by trying to control miss-rate and thus optimizing cache

energy indirectly. Furthermore, EnCache uses dynamic perfor-

mance monitoring and regulation and thus, does not require

offline profiling or per-application tuning. A comparison with

a popular technique named Hybrid Dynamic ResIzing (HDRI)

cache [3, 5] shows the superiority of EnCache approach.

The rest of the paper is organized as follows. Section II

discusses related work and Section III and IV explain the

design and algorithms in more detail. Section V discusses

the simulation environment, workload, and energy model.

Section VI presents results on profiling cache accuracy and

energy saving. Finally, we conclude in Section VII.

II. BACKGROUND AND RELATED WORK

Profiling cache is based on the idea of set-sampling, which

states that the behavior of the cache can be estimated by

sampling only a small subset of cache sets [6, 7]. Qureshi et al.

use set-sampling method to decide the best replacement policy

among two choices [8]. Qureshi and Patt employ sampling

idea for profiling L2 cache configurations having different

number of active ways [4]. Profiling cache’s ability to estimate

performance of multiple cache configurations (Section III-A)

is a significant improvement over these works, where set-

sampling is used to predict the performance of only the

different ways of the current set-count. This difference is

critical for the purpose of improving energy efficiency.

In literature, several techniques have been proposed for

saving cache-energy. For saving cache leakage energy Kaxiras

et al. propose turning off the cache lines which have not been

accessed for a certain number of cycles (called decay interval)

[9]. However, the techniques based on a fixed decay-interval

are shown to be less effective for L2 than for L1 [10]. Also,

the optimal value of decay interval varies widely for different

benchmarks [11]. Thus, for real-world applications, the utility

of these approaches is limited. Flautner et al. [12] and Hanson

et al. [13] propose placing idle cache lines in state-preserving

mode and thus reduce static power consumption. However,

these techniques are not suitable for high-performance proces-

sors, because of their requirement of multiple votage supplies.

Leakage energy forms a large fraction of energy spent in last-

level caches and hence some techniques (such as [14]) which

focus on saving dynamic energy of cache are not so useful for

saving energy in LLCs. A few techniques (e.g. [10, 11]) turn

off only data-array of inactive regions of the cache and must

always keep tag fields on; however, EnCache can have both

tag and data arrays of the inactive regions turned off.

Kin et al. propose a small filter cache which is placed in

front of L1 cache [15]. In essence, filter cache is a yet another

level of cache in the hierarchy. Our profiling cache is different

in that it is not a part of the cache hierarchy and hence, it does

not lie at the critical access path of the cache.

Since miss-rates for some benchmarks can be arbitrarily

small, even a small change in a small miss-rate shows up as

a large percentage distorting its contribution to performance.

Hence, to quantify increase in miss rates from the use of the

energy saving techniques, we use absolute difference in misses

(measured in MPKI) instead of percentage absolute difference

in misses, following [16].

III. SYSTEM DESIGN AND IMPLEMENTATION

In what follows, we assume that the LLC is an L2 cache,

although the discussion can also be applied to an L3 cache.

A. Profiling cache

The energy consumption of a program with any config-

uration depends on dynamic activity and execution time of

the program with that configuration. Hence, energy estimation

requires estimation of program response for that configuration.

For this purpose we use “profiling cache”, which employs set-

sampling to estimate cache miss rate.

Profiling cache is a data-less cache and gives accurate

predictions even for sampling ratios (RS) as high as 32

(Section VI-A); thus its storage size is very small compared

with L2 cache. Furthermore, it is decoupled from L2 cache.

These properties of profiling cache enable us to further extend

it to a multi-level profiling cache: each level emulating a cache

of 1X, 0.5X, 0.25X and 0.125X size of the L2 cache. Here

all the four L2 caches are assumed to have same block-size

and associativity and differ only in number of sets. As shown

below, this extension increases the size of profiling cache to

only double the size of a single-level profiling cache.

Let M be the number of sets in L2 and a be the number
of sets in a single-level profiling cache for profiling L2 cache

of M sets. Thus, we have a = M/RS . Then the total number

of sets in an n level profiling cache is

S = a +
a

2
+

a

22
+

a

23
+

a

24
+ . . . +

a

2n−1
(1)

A profiling cache must contain at least one set. Hence

a

2n−1
= 1 ⇒ a = 2n−1 (2)

⇒ S −
S

2
= a −

a

2n
⇒ S = 2a −

2a

2n
(3)

⇒ S = 2a − 1 ≈ 2a =
2M

RS

(4)

To see the typical values of n and S, we substitute RS = 32
and M = 4096 (for 2MB baseline cache) . Then, we get from
above, n = 8 and S = 256.
The L2 cache in our experiments uses LRU replacement

policy and for such cases, the profiling cache uses extra coun-

ters to provide miss rates for configurations having different

number of ways as well. This is based on the Mattson stack

algorithm [17] for LRU caches. Thus, with merely (2M)/Rs

sets, a profiling cache can simultaneously emulate many

caches of much large sizes. This feature is especially useful

for miss-rate curve generation. Since profiling cache accounts

for all accesses made to L2, calculation of actual miss rate

does not require post-processing of data; this is a significant

improvement over previous approaches (e.g. [16]). For the

purpose of energy saving, we provision the configuration to

only four levels, since this gives a large saving in energy,

with a small performance loss. Thus, EnCache chooses a



suitable configuration from a large configuration space of 32

configurations of L2 (four states with eight ways each). These

configurations are shown as an ordered 2-tuple (S, W ), where
S and W denote the L2 state and active ways respectively.

Fig. 1. The Design of Profiling Cache.

Figure 1 shows the frontend logic and storage component of

the profiling cache design. Its core storage is a tag-only cache,

which has the same set-associative structure and replacement

policy as the L2 and thus, it emulates normal cache accesses.

Each L2 cache access block address first passes a hashing

logic (for randomization) and then goes through to a sampling

filter. The sampling ratio is chosen at design time and is taken

as 32 in our experiments, which means that only 1 out of

32 of memory block addresses in the physical address space

will pass the filter. Sampling is implemented by merely a bit-

shifting operation. Then, those addresses are sent through a

small queue to the profiling cache core.

The core storage is split into four regions, called “Full”,
“Half”, “Quarter” and “Eighth”, respectively. Each region
represents an emulated cache size (called L2 cache state), i.e.

“Full” for full size, “Half” for half size, and so on. Each
hashed address from the head of the queue is sent to four

address mappers (M1, M2, M3 and M4). Each mapper is a

simple logic that removes a subset of the address bits (decided

byRS) and then inserts a subset of bits that is the offset of each

region in the profiling cache core. Thus it maps the addresses

onto a unique cache set in one of those four regions (M1 for

“Full” and so on). The four mapped addresses are sent to
a multiplexer (MUX), from where they are sequentially sent

to the profiling cache core by the control of a small finite

state machine. A “miss” in profiling cache does not generate

any further request for other caches; rather, the LRU block is

evicted and the tag of the address missed is copied in its place.

The profiling cache core is accessed four times for each

sampled address. Note that this does not cause congestion

even in the case of bursty last-level cache accesses, because

of a large value of RS and the presence of queue. Profiling

cache has small size and does not lie at the critical access

path of the cache; thus its latency is small and easily hidden;

moreover, it does not affect L2 cache access time. In what

follows, we simply use the term profiling cache to denote

multi-level profiling cache, unless otherwise mentioned.

B. Stall Cycle Prediction Based on Load Miss Count

For accurately estimating leakage energy for different con-

figurations, the program execution time under those configura-

tions needs to be estimated. However, the variation in number

of cache-misses with cache configurations and the possibility

of overlap between different miss events makes prediction of

CPI of superscalar out-of-order processors a challenging task.

To address this issue, EnCache works as follows. Firstly,

it uses a hardware counter to continuously measure the

memory stall cycles due to L2 load miss events, taking into

account the overlap between different L2 miss events. Now,

for different L2 cache sizes, the miss-rate and hence the

number of stall cycles would be different. However, it is

observed that for a same interval i, if the miss-rate does
not change considerably between two cache configurations,

the ratio StallCyclesi/LoadMissesi does not change signifi-

cantly between those cache configurations. This ratio is called

Penalty Per Miss (PPM). Thus, we take PPMi(S, W ) =
PPMi(S

⋆, W ⋆)=PPMi, for all configurations, where (S⋆, W ⋆)
is the actual cache configuration in that interval.

The profiling cache is so designed that apart from estimat-

ing total misses, it can also estimate total load misses for

various configurations using additional counters. Thus, using

LoadMissesi(S, W ) and PPMi(S, W ), StallCyclesi(S, W ) are
estimated for all configurations. Then, using these estimates,

along with the observed compute cycles for current cache size,

Cyclesi(S, W ) values for all configurations are computed.
When the number of load-misses changes considerably with

L2 cache size, the PPM value varies with L2 cache sizes and

this affects the accuracy of energy estimation. However, a large

saving in energy (as shown in results) indicates that for most

cases, the variation is small enough and program performance

and choice of best configuration are minimally affected.

C. Dynamic Performance Monitoring and Regulation (DPMR)

Energy minimization through reconfiguration involves per-

formance trade-off. To make performance-efficient choices and

control the aggressiveness of cache reconfiguration, EnCache

makes use of DPMR, which works as follows. For any

configuration (S, W ), we define,

∆Timei(S, W ) =
Timei(S, W ) − Timei(Full, 8)

Timei(Full, 8)
× 100

Note that Timei(Full, 8) is obtained in run-time with the help
of profiling cache, even though the actual configuration in

interval i may be different. ∆Timei(S, W ) gives an estimate
of percentage extra time that the configuration (S, W ) would
take compared to the baseline. If ∆Timei(S, W ) exceeds a
threshold (λ), EnCache rejects the configuration (S, W ) for
interval i + 1; thus dynamically adjusting the configuration
space available for reconfiguration algorithm. Here λ is an
application-independent constant and its value is set as 3%.

D. Energy Saving Algorithm

At any time, by allocating just appropriate LLC space to an

application so that its working set can fit, the rest of the L2



cache can be turned off with little impact on performance.

Using this observation, system software (which could be

a kernel module) periodically chooses a configuration with

minimum estimated energy using the algorithm given below.

Here Energy(S, W ) is defined in Equation (5) in Section
V-C. Initially L2 cache configuration is set to (Full, 8).

Algorithm 1 EnCache: Algorithm For Energy Saving

Input: Misses and T ime estimates (for all configurations)
Output: Best State and Ways for interval i + 1
1: Energy⋆ = ∞, S⋆= -1, W ⋆= -1
2: for S = {Full,Half ,Quarter, Eighth} do
3: for W = 1 to Assoc do
4: Estimate PPMi(S,W ), ∆T imei(S,W )
5: if ∆T imei(S, W ) ≥ λ then
6: Disregard (S,W ) for interval i + 1; Continue to next

configuration
7: end if
8: Estimate Energyi(S,W )
9: if Energyi(S,W ) < Energy⋆ then
10: Energy⋆=Energyi(S,W ), S

⋆=S, W ⋆=W
11: end if
12: end for
13: end for

14: RETURN (S⋆, W ⋆) for interval i + 1

IV. HARDWARE IMPLEMENTATION

The L2 cache controller is shown in the Figure 2. The

controller uses an eight-bit way-selection mask. For select-

ing or deselecting a particular way k, the corresponding bit
Wk (for k={1, 2, ..., 8}) in this mask can be turned on
or turned off respectively. The L2 cache has an eight-bank

structure and switching to Half , Quarter and Eighth states
is accomplished by keeping four, two and one bank of cache

ON respectively and turning off the rest of the banks. This is

achieved by a simple logic controlled by just eight bits. The

approach of turning-off cache banks for leakage saving has

been used by other researchers also, e.g. [18, 19].

To quantify the average percentage of active L2 cache lines,

we define L2 ActiveRatio as:

ActiveRatio =

∑N

i=1
Fraction(S⋆

i ) × W ⋆
i

N × Assoc
× 100

S⋆
i = {Full,Half,Quarter,Eighth}

Fraction(S⋆
i ) = {1, 0.5, 0.25, 0.125}

Here Assoc = L2 associativity, N = number of intervals
and (S⋆

i , W ⋆
i ) shows the actual configuration used in an

interval i.
To handle the change in set and tag decoding resulting

from change in L2 state, suitable tag and index(set) mask

are used (Figure 2). We show the calculation of these masks

for 2MB, 8-way cache with block size of 64. For index

mask, a total of 12 bits are required since Full state has
4,096 sets. Out of these, 9 LSBs are always set to 1, since

Eighth state has 512 sets. The three MSBs are: a2a1a0 =
Binary(8 × Fraction(Si) − 1). Assuming a 45-bit address,
maximum number of bits in tag-mask are 45 − 6 − 9 = 30,

Fig. 2. L2 cache access logic (index mask omitted for clarity).

as required for Eighth state (6 bits for block offset). Out
of these, 27 MSBs are always set to 1 since a minimum of

45 − 6 − 12 = 27 bits are required for Full state. The three
LSBs are simply a2a1a0. In Figure 2, these are shown as ABC.

Reconfigurations are handled in the following manner.

When only the number of Ways is decreased, the dirty data
of disabled ways are written back to memory and other blocks

are discarded. On a change in state, the new set and tag for

cache blocks are computed and the blocks are re-located to the

new addresses. Out of the blocks not fitting the available cache

space, the dirty blocks are written back to memory and others

are discarded. Such an approach can potentially incur a “one

time” high overhead but is simple and requires small state

storage and ensures consistency. The reconfigurations take

place at a fixed interval boundary and hence, block transitions

do not lie at the critical path of cache access. Because of

a large interval-size and small number of reconfigurations

(Section VI), EnCache keeps reconfiguration overhead small,

which is easily amortized over the phase length. Further, on

reconfigurations involving an increase in only active ways or

active sets, writebacks are not required.

V. EXPERIMENTAL METHODOLOGY

A. Simulation Environment and Workload

We have used sim-outorder simulator [20], enhanced with

a more realistic memory model. The important simulation

parameters are shown in Table I. The interval length is set

to be 1M instructions. Except sixtrack, which fails to simulate

on sim-outorder, 25 out of the 26 SPEC2000 benchmarks are

used with ref input data set. To emulate the representative

behavior of benchmarks, while still limiting the simulation

time, a representative simulation point of 100M instructions is

selected for each benchmark using SimPoint 3.0 [21].

B. Comparison with Hybrid DRI Technique

We compare our technique to a well-known technique,

which we refer to as Hybrid Dynamic ResIzing (HDRI)



TABLE I
SIMULATOR PARAMETERS

L1-I 64KB, 64B line-size, 4-way LRU, 1 cycle

L1-D 64KB, 64B line-size, 4-way LRU, 1 cycle

Decode/issue 4-wide, 64 RUU size, 4 INT ALUs,1 INT Mult/Div

4FP ALUs, 1FP Mult/Div, 2 memory ports

Unified L2 2MB, 64B, 8-way, LRU, 10 cycles

Memory 150 cycle initial latency, 8-cycles for every 16 bytes,
bandwith limit and 32-entry request queue are modeled.

technique [3],[5]. HDRI employs selective-ways and selective-

sets to allow a fine resizing granularity. It requires choosing a

benchmark-specificMissBound through offline profiling and
up-sizing or down-sizing the cache size based on whether the

observed misses in an interval are smaller or greater, respec-

tively, than the MissBound. For comparison purposes, we
have implemented their technique for the L2 cache. Following

[3], four states are used and throttling mechanism is also

implemented . For 8-ways and 4 choices of number of sets, 12

among 32 cache configurations become redundant [3]. In such

cases, a cache size with higher number of ways is chosen [3].

The reconfigurations are handled as explained in Section IV.

Yang et al. do not detail the systematic procedure for finding

MissBound [3, 5]. Based on inferences, the miss-bound is
chosen as follows. For each benchmark, the number of L2

misses (TotL2Miss) for 100M instructions in baseline cache
were recorded. Using this, average miss per interval (η) was
calculated as follows: η = TotL2Miss× (1M/100M). Now,
for each benchmark, simulations were performed using HDRI

technique, with three values ofMissBound (η+200, η+300,
η + 400), and the value of MissBound leading to smallest
(i.e. best) EDP was chosen for that benchmark. These offset

values (between 200 and 400) were chosen considering the

costs of cache access and off-chip access. At each of the three

MissBound values, at least four benchmarks shows best EDP
value. This confirms the validity of the offset values chosen.

C. Energy Modeling

We calculate the energy spent in L2 cache, main memory

and the run-time cost of executing the algorithm (EAlgo), since

other components are minimally affected by our approach.

Note that for baseline experiments, EAlgo = 0 and for HDRI
technique Eprof = 0 (shown below). Using DE to show
dynamic energy and LE to show leakage energy, we get,

Energy = DEL2 +LEL2 +DEmem +LEmem +EAlgo (5)

We use the symbols EXY Z
dyn and PXY Z

leak to show the dynamic

energy per access and leakage energy per second respectively,

spent in any component XY Z (e.g. L2 cache, memory etc.).
The L2 energy is calculated as follows. An L2 miss is

assumed to consume twice the energy as that of an L2 hit

[13]. The leakage energy depends on active ratio (and hence,

number of enabled sets and ways) of the cache [5]. The

dynamic energy depends on the number of enabled ways [14]

but is independent of the number of enabled sets, since it

is the energy spent for accessing a read/write port. Hence,

PL2

leak[S⋆] = Fraction(S⋆) × PL2

leak[Full]. Thus,

DEL2 = EL2

dyn × (2 × ML2 + HL2) × (W ⋆/Assoc) (6)

LEL2 = PL2

leak[S⋆] × (Cyc/Freq) × (W ⋆/Assoc) (7)

Here, for any interval with configuration (S⋆, W ⋆), or entire

execution, we have correspondingML2 =L2 misses, HL2=L2

hits, Cyc =cycles consumed and Freq =processor frequency
(2GHz). T ime and Cyc are related as T ime = Cyc/Freq.
The L2 energy parameters, as obtained from CACTI 5.3

(http://quid.hpl.hp.com:9081/cacti/) are shown in Table II.

TABLE II
ENERGY VALUES FOR L2 CACHE AND CORRESPONDING PROFILING
CACHE. UNITS: NANOJOULE/ACCESS FOR Edyn ; WATT FOR Pleak

L2 Cache Profiling Cache

Baseline Cache Size EL2

dyn
P L2

leak
[Full] E

prof
dyn

P
prof
leak

2MB 1.086 2.016 0.005 0.007

4MB 1.24 3.264 0.008 0.013

8MB 1.44 5.81 0.01 0.025

The memory energy is calculated as follows. Each memory

access consumes 70 nJ [22], thus Emem
dyn = 70nJ . The main

memory is assumed to use aggressive power saving mode as

allowed in DDR3 DRAM, and thus Pmem
leak = 0.18nJ/nSec

when there is no memory access [22]. Thus,

DEmem = Emem
dyn × Amem (8)

LEmem = Pmem
leak × Cyc/Freq (9)

Here Amem denotes the number of memory accesses (includ-

ing additional write-backs generated due to reconfigurations).

The energy-cost of algorithm is calculated as follows.

EAlgo = (#Tran × 0.002 nJ) + Eprof (10)

Here #Tran denotes total block transitions (blocks turned
off or on) and each transition is assumed to consume 0.002 nJ
energy. Using Aprof to denote profiling cache accesses, Eprof

is calculated as

Eprof = Eprof
dyn × Aprof + P prof

leak × Cyc/Freq (11)

We use CACTI 5.3 to estimate profiling cache energy, using

Equation (4), single bank, 8-way structure for block-size of 8.

The value of M for 2MB, 4MB and 8MB cache are 4096,
8192, 16384 respectively. CACTI assumes normal tag+data
design and presents leakage power and dynamic energy values

and also their percentage distribution in tag and data arrays.

We take the energy of tag arrays only, since profiling cache is

a tag-only structure. This value acts as an upper bound, since

in absence of data arrays and less circuitry (e.g. no dirty bit, no

communication with memory etc.) the profiling cache can be

designed more efficiently. These values are shown in Table II.

Since, on average, for every 32 accesses to L2, profiling cache

is accessed only four times, profiling cache energy parameters



Fig. 3. Profiling Cache Prediction Verification. Absolute Difference in MPKI obtained from actual L2(size) and Multi-level Profiling cache.

Fig. 4. Experimental Results with 2MB Baseline Cache (Here wup=wupwise, equk=equake, face=facerec, perl=perlbmk, avg=average).

are less than 0.5% compared to the corresponding parameters

for baseline L2.

For each of the 32 configurations, EnCache maintains

counters to measure L2 misses, load misses, predicted cycles,

∆T ime etc. Many processors already contain several counters
for measuring performance or for operating system [9]. These

can be used as global counters, and hence the overhead of

counters is ignored in energy calculations.

VI. RESULTS AND ANALYSIS

A. Profiling Cache Prediction Accuracy

We explain profiling cache accuracy verification procedure

with 2MB baseline cache; a similar procedure applies for

4MB and 8MB baseline caches. The profiling cache predicts

miss-rates for four states and with 2MB baseline cache, these

states correspond to L2 cache sizes of 2MB, 1MB, 512KB and

256KB. Hence, for each benchmark, experiments were carried

out using baseline cache configuration of size 2MB, 1MB,

512KB and 256KB (each having 8-way and 64B block size)

and miss per Kilo instructions (MPKI) were recorded. These

values were compared with corresponding estimates obtained

from a four-level profiling cache. For example, the miss-rate

obtained from 2MB cache was compared with the miss-rate

estimate obtained from profiling cache region that emulates

“Full” size cache and so on. The results are shown in Fig. 3.
Across 25 benchmarks, the average absolute error in profiling

cache miss-rate estimates is merely 0.26 MPKI and average

percentage absolute error is 5.91%. For 4MB baseline cache,

these values are 0.22 MPKI and 5.34% and for 8MB baseline

cache, these values are 0.13 MPKI and 4.15%. These results

confirm the high accuracy of the multi-level profiling cache.

B. Energy Saving Results

Fig. 4 shows the saving in memory-subsystem energy when

baseline cache of 2MB and its average value for EnCache and

HDRI are 31.7% and 27.4% respectively. Average increase



Fig. 5. Experimental Results with 4MB Baseline Cache (Here wup=wupwise, equk =equake, face=facerec, perl=perlbmk, avg=average).

in simulation cycles for EnCache and HDRI are 3.93% and

8.2% respectively and average saving in EDP are 28.8% and

20.6% respectively. The average ActiveRatio with EnCache

and HDRI are 49.5% and 47.1% respectively and average

increase in MPKI are 0.45 misses and 0.62 misses respectively.

The figures for other quantities have been omitted for brevity.

The adaptive nature of both the algorithms especially ben-

efits benchmarks such as eon, gzip, mesa, crafty, wupwise,

perlbmk etc, where a large saving in energy is achieved. The

worst-case performance of HDRI is very poor; as mcf shows

loss in EDP of 39%. Similarly galgel shows loss of energy of

13% and parser shows simulation cycle increase of 30%. For

EnCache, the worst-case performance happens on mcf, where

loss in EDP is 19%. For art EnCache does not choose to

reconfigure the cache at all, since the extra misses generated by

reconfiguration would have offset energy saved in cache. On

the other hand, HDRI performs poorly for art and shows loss

in energy. A negligibly small (0.2%) loss in energy, observed

with EnCache arises due to the use of profiling cache.

Fig. 5 shows saving in energy with 4MB baseline cache

and its average value for EnCache and HDRI are 41.4% and

36.3% respectively. Average increase in simulation cycles for

EnCache and HDRI are 4.39% and 9.2% respectively and

average saving in EDP are 38.4% and 29.4% respectively.

The average increase in MPKI by using EnCache and HDRI

are 0.44 misses and 0.61 misses respectively and average

ActiveRatio are 43.8% and 43.6% respectively.

Fig. 6 shows energy saving with 8MB baseline and its

average value for EnCache and HDRI are 52.63% and 47.72%,

respectively. The average increase in simulation cycles for

EnCache and HDRI are 4.5% and 9.5% respectively and

average saving in EDP are 50.02% and 41.67%, respectively.

The average increase in MPKI by using EnCache and HDRI

are 0.43 misses and 0.60 misses, respectively and average

ActiveRatio are 36.7% and 35.9% respectively.

C. Further Analysis and Insights

Firstly, for both techniques, the saving in cache energy is

large enough to offset the energy-cost of the algorithm (Ealgo).

At all three cache sizes, for both energy and EDP saving,

EnCache performs superiorly to HDRI in terms of best-case,

average-case and worst-case behavior.

With HDRI, benchmarks show best EDP for different values

ofMissBound and some benchmarks show large variation in
EDP saving with change in MissBound. For example, with
8MB baseline cache, the saving in EDP in wupwise increases

from 4.5% to 45.5% when going from η + 200 to η + 400.
Also, intra-program variations make the HDRI approach of

using fixed value of MissBound highly ineffective. This is
evident from parser benchmark at 8MB baseline, where the

loss in EDP is 59% even at η + 200 and even worse at other
MissBound values. Thus even a small offset of 200 misses
leads to severe cache thrashing (Fig. 6).

EnCache allows a direct change in one state from any other

state without having to go through intermediate state (e.g. Full
to Eight without going through Quarter). Thus, whenever
L2 WSS changes drastically, the EnCache algorithm directly

reconfigures the cache to the most appropriate size. On the

other hand, HDRI approach must go through all the interme-

diate configurations before reaching a desired configuration;

and thus it incurs large reconfiguration overhead.

For different benchmarks, the impact of increased cache

misses on energy is different. HDRI approach fails to capture

this relationship since it works by trying to keep number

of extra misses small and thus, it does not directly work to

choose an energy-efficient configuration. On the other hand,

EnCache optimizes directly for energy and captures the effect

of increased misses on energy consumption. EnCache uses

profiling cache to provide online profiling results for guiding

reconfiguration, while the choice of suitable MissBound
(and hence η and offset) in HDRI scheme requires multiple
simulation-runs in offline profiling. Given that the TotL2Miss
for different benchmarks varies over 3 orders of magnitude,

choosing a benchmark-specificMissBound is absolutely nec-
essary with HDRI technique. Finally, EnCache can optimize

based on the energy consumption in other components (such

as main-memory) also, while the HDRI scheme is insensitive

to the overall energy picture.



Fig. 6. Experimental Results with 8MB Baseline Cache (Here wup=wupwise, equk =equake, face=facerec, perl=perlbmk, avg=average).

VII. CONCLUSION

We have proposed EnCache, a novel scheme for saving leak-

age power consumption of last-level caches. It uses a system-

level approach with lightweight hardware support. Using a

novel, low-cost hardware component called profiling cache,

system software can accurately predict memory-subsystem

energy of a program for multiple cache-configurations. The

dynamic performance monitoring allows controlling aggres-

siveness of reconfiguration and strike suitable balance between

energy minimization and performance loss. The experiments

performed show the superiority of EnCache over conventional

energy-saving scheme. It is straightforward to extend EnCache

to optimize overall system energy efficiency by merely includ-

ing processor core energy in the energy model.
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