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Abstract. With each CMOS technology generation, leakage energy has been in-

creasing at an exponential rate. Since modern processors employ large last level

caches (LLCs), their leakage energy consumption has become an important con-

cern in modern chip design. To address this issue, several techniques have been

proposed. However, most of these techniques require offline profiling and hence,

cannot be used in real-life systems which run trillions of instructions of arbitrary

applications. In this paper, we propose Palette, a technique for saving cache leak-

age energy using cache coloring. Palette uses a small hardware component called

reconfigurable cache emulator, to estimate performance and energy consumption of

multiple cache configurations and then selects the configuration with least energy

consumption. Simulations performed with SPEC2006 benchmarks show the supe-

riority of Palette over existing cache energy saving technique. With a 2MB baseline

cache, the average saving in memory sub-system energy and EDP (energy delay

product) are 31.7% and 29.5%, respectively.

Keywords. Leakage Energy Saving, Dynamic Profiling, Cache coloring, Reconfigurable

Cache Emulator, Dynamic Cache Reconfiguration

1. Introduction

Large power consumption of high-performance processors has been identified as the

most severe obstacle in scaling their performance towards Exascale computing [1, 2]. It

has been estimated that an exascale machine using the technology used in today’s super-

computers will consume several giga watts of power [3]! For this reason, power man-

agement techniques are extremely essential for enabling high-performance computing

(HPC) to transition towards Exascale processing.

Further, in recent years, the cache energy consumption of computing systems has

also increased. There are several trends motivating this shift. Several state-of-the-art ap-

plications executed on modern processors require high computation resources [4–7], and

to improve their performance, designers use large sized last level caches (LLCs) as the

last line of defense against memory wall; for example, Intel’s Enterprise Xeon processor

uses 30 MB LLC [8]. Further, with each CMOS technology generation, the leakage en-

ergy consumption has been dramatically increasing [9] and hence, the energy consump-
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tion of LLCs is also on rise. Since caches consume a large fraction of chip area, they con-

tribute significantly to the processor power consumption. To manage increased energy

dissipation levels, expensive cooling solutions (e.g. liquid cooling) are required, which

also increase the design complexity. Thus, saving cache energy is crucial for continuing

to scale performance and also realize the goals of green computing.

Recently several techniques have been proposed for saving energy in caches. How-

ever, these techniques have several limitations. Several existing techniques require of-

fline profiling [10, 11], however, due to the large difference between profiled and actual

runs, and the overhead of offline profiling, these techniques are not suitable for real-

world systems. Several existing techniques turn off cache blocks based on number of

accesses to them in a given time period. However, for many programs, the number of

accesses does not accurately reflect the cache reuse characteristic and benefit obtained

from cache allocation. Hence, these techniques fail to save large amount of energy for

such programs.

In this paper, we propose Palette, a cache coloring based leakage energy saving tech-

nique using dynamic cache reconfiguration. Palette uses a small hardware component

called “reconfigurable cache emulator” (RCE) which provides miss rate estimates for

multiple cache sizes. Using this, along with the memory stall cycle estimation model,

Palette estimates program execution time under multiple possible cache configurations.

Then, for these configurations, memory sub-system energy is estimated. Further, using

the energy saving algorithm, the cache is reconfigured to the most energy efficient con-

figuration and the unused colors are turned off for saving leakage energy. For switching

(i.e. turning on/off) cache blocks, Palette uses the gated Vdd scheme [12].

Palette has several salient features which address the limitations of previous tech-

niques. Palette uses dynamic profiling and not offline profiling and hence, it can be easily

used in production systems. Palette optimizes for energy directly, unlike existing tech-

niques, which control other parameters (e.g. miss rate, number of dead blocks [13, 14])

to save energy in an indirect manner. By virtue of this feature, Palette can optimize for

system (or subsystem e.g. memory sub-system) energy, and not merely cache energy and

hence, it can easily detect the case when saving cache energy may increase the energy

consumption of other components of the processor. Palette allocates cache based on how

much a program will benefit from extra cache. Hence, it saves large amount of energy

for most programs, including streaming programs.

We perform microarchitectural simulations using out-of-order core model from

Sniper simulator [15] and benchmark programs from SPEC2006 suite. Further, we com-

pare Palette with a well-known cache leakage saving technique, called “decay cache

technique” (DCT) [14]. The experimental results show that Palette is effective in saving

energy and outperforms the conventional energy saving technique. Using Palette, the av-

erage saving in memory sub-system energy and EDP (energy delay product), compared

to a 2MB baseline cache are 31.7% and 29.5%, respectively. In contrast, using DCT, the

saving in energy and EDP are only 21.3% and 10.9%, respectively.

The rest of the paper is organized as follows. Section 2 discusses the related work

and Section 3 explains the design of Palette. Section 4 presents the energy saving al-

gorithm and Section 5 discusses the hardware implementation of Palette. Section 6 dis-

cusses the simulation environment, workload, and energy model. Section 7 presents re-

sults on energy saving. Finally, Section 8 concludes the work.



2. Background and Related Work

Recent advances in high performance computing have made several applications com-

putationally amenable [16–18]. High performance computing platforms provision large

cache resources to bridge the gap between the speed of processor and main memory. This

however, also brings the issue of managing power consumption of caches. In this paper,

we address this issue using dynamic cache reconfiguration approach.

In literature, several techniques have been proposed for saving cache energy. A few

techniques aim to save cache dynamic energy [19]. However, a large fraction on energy

dissipated in LLCs is in the form of leakage energy [20], and hence, cache dynamic

energy saving techniques have only limited utility in saving energy in LLCs. Palette aims

at saving leakage energy of the cache and hence, it is useful for saving energy in LLCs.

Several techniques use static cache reconfiguration [21, 22], however, programs

show a large variation in their cache demands over different phases and hence, dynamic

cache reconfiguration is important to achieve large energy savings. Some leakage energy

saving techniques always keep the tag fields turned on and turn off only the selected re-

gions of the data-array, e.g. [23]. In contrast, Palette turns off both tag and data arrays of

the inactive region.

Different energy saving techniques turn off cache at different granularity, such as

cache ways [22], cache sets [13], hybrid (sets and ways) [10, 24] and cache blocks [14,

23]. Selective ways approach incurs low reconfiguration overhead; however, its cache

allocation granularity is limited by the number of cache ways. Selective sets and hybrid

approaches generally incur higher reconfiguration overhead, since on a change in the set-

counts, the set-decoding scheme changes and whole cache needs to flushed. In contrast,

the cache coloring scheme used in Palette incurs smaller reconfiguration overhead than

selective sets or hybrid approaches, since on a change in the number of active colors,

the set-locations of only the affected cache colors are changed. Some existing cache

energy saving techniques (e.g. [25]) work for QoS systems where tasks have deadlines.

Hence, these techniques aims to meet deadline, even at the cost of losing the opportunity

of saving energy. In contrast, Palette aims to save energy while keeping performance

loss small; thus Palette is suitable for systems which do not have task deadlines and for

such systems, Palette can provide even more energy saving than the techniques for QoS

systems.

As for circuit-level leakage control mechanism, both state-destroying [12] and state-

preserving [26, 27] techniques have been used. The state-preserving techniques typi-

cally save less power in low-leakage mode than the state-destroying techniques and also

increase the noise susceptibility of the memory cell [28]. For this reason, Palette uses

state-destroying leakage control using gated Vdd mechanism [12].

3. Palette Design and Architecture

It is well-known that there exists large intra-application and inter-application variations

in the cache requirements of different applications. Since several applications executed

on the modern processors are performance-critical [29–31] and hence, designers use an

LLC size which meets the requirements of such performance-critical applications. How-

ever, this leads to wastage of energy in the form of cache leakage energy. Palette works



on the intuition, that in any interval, a suitable amount of cache can be allocated to a

program, while the rest of the cache can be turned-off for saving leakage energy. Figure

1 shows the overall flow of Palette. In this section, we discuss each of the components

of Palette in detail. We assume that the LLC is the L2 cache, and the discussion can be

easily extended to the case when the LLC is an L3 cache.
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Figure 1. Palette Flow Diagram

3.1. Coloring Scheme

To selectively reconfigure the cache, Palette uses cache coloring technique [32, 33]. Let B

denote the L2 block size;H denote the physical page size and P denote the number of sets

in L2. In modern memory management, physical memory is divided into physical pages

(see Figure 2). Thus, the least significant log2H bits of physical address are referred to

as page offset and the remaining bits are referred to physical page number. Further, the

least significant log2B bits are used as block offset and the next log2P bits are used for

finding the set index of the address in the cache. Thus, there are several common bits

between the physical page number and the cache set index, which are referred to as the

cache color. The number of these bits is given by log2N, whereN shows the total number

of cache colors. Thus, we have

log2N+ log2H = log2P+ log2B (1)

=⇒ N =
P×B

H
(2)

Further, we logically group these pages into N memory regions. A memory region

refers to a group of physical pages that share the log2(N) least significant bits of the
page number. Cache coloring works by controlling the mapping from memory regions to
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cache colors such that all the physical pages in a memory region are mapped to the same

color in the cache.

To enable flexible cache indexing and also avoid the cost of page migration (which

is incurred in [34]), we use a smallmapping-table (MT), which stores the region-to-color

mapping. Thus MT has N entries. To see the typical value of N, we note that for a page

size (H) of 4KB and L2 block size (B) of 64 byte (or 512 bits), for 8-way, 2MB L2 cache,

N = 64. Hence, the size of MT is 384 (= 64× log2(64)) bits. Clearly, the size of MT is
extremely small and hence, its access latency and energy consumption are negligible.

For enabling reconfiguration, the amount of cache allocated to the application is

controlled by controlling the number of active cache colors. At any point of execution, if

the number of colors allocated to an application isM (≤N), then the mapping-table stores
the mapping of N regions to M colors. Note that, here M can have a non-power-of-two

value also and thus Palette has the flexibility to allocate any cache size to the application.

Thus a cache configuration is specified in terms of the number of active colors.

3.2. Reconfigurable Cache Emulator

To estimate the cache miss-rate under various cache configurations, Palette uses a small

microarchitectural component, called reconfigurable cache emulator (RCE). RCE has

one or more profiling units. Each profiling unit is based on the principle of set sampling

[35, 36] and thus estimates L2 miss rate by sampling only a few sets. The profiling unit

is a data-less (tag-only) component and it emulates the L2 cache by having similar re-

placement policy and associativity. It does not store data and hence does not communi-

cate with other caches on a hit or miss. It works in parallel to L2 and does not lie at the

critical access path. We use the sampling-ratio (R) of 64, which implies that profiling unit

samples only 1 out of 64 sets of the L2 cache. The sampling ratio of 64 is chosen, since

it enables us to achieve reasonable accuracy of miss rate prediction, while still keeping

the overhead of RCE small.

The small size of profiling unit and parallel operation enables us to use multiple

profiling units in the RCE. In this paper, we use six profiling units, each of which profiles

a cache size of X/16, 2X/16, 4X/16, 8X/16, 12X/16, 16X/16, where X shows the L2
cache size (or equivalently number of L2 colors). A unique feature of the RCE design is

that the profiling unit can profile a cache size for which the set-counts are not power-of-

two values. This becomes possible by using cache coloring scheme (as explained above).

This is a significant improvement over previous works based on cache reconfiguration

(e.g. [24]).

The RCE works as follows (Figure 3). Each L2 access address is passed through a

small queue and then passed through a sampling filter. The sampled addresses are fed to

address decoding units (ADUs). Each ADU uses its own mapping table. To compute the

set index and tag of the address, first, the region number of address is computed and then,
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Figure 3. RCE block diagram

its color is read from the mapping-table. Using this, the set index value of the address is

obtained. After ADU, the accesses are fed to the core storage using a simple MUX.

Let P denote the number of sets in L2 cache and S denote the total number of sets in

the RCE. Then, we have

S =
P

16R
+
2P

16R
+
4P

16R
+
8P

16R
+
12P

16R
+
16P

16R
=
43P

16R
(3)

To see the overhead of RCE (Fpro f ) compared to L2 cache size, we assumeW way

L2 cache, with B bit block size and T bit tag. Thus,

Fpro f =
SizeRCE

SizeL2
=

S×W ×T

P×W × (B+T)
=

43T

16R(B+T)
(4)

For R = 64, T = 40, B = 512 (i.e. 64 byte), we get Fpro f =.003 or 0.3%. Thus, the
overhead of RCE is small.

3.3. Predicting Memory Stall Cycle For Energy Estimation

To compute the leakage energy of memory sub-system under different L2 configurations,

the program execution time under those configurations needs to be estimated. This, how-

ever, presents several challenges, since modern out-of-order processors use ILP (instruc-

tion level parallelism) techniques which partially hide the cache miss latency [37]. To

get an estimate of program execution time under different configurations, Palette uses a

hardware counter to continuously measure effective memory stall cycles, taking into ac-

count possible overlap with other miss events (e.g. branch misprediction, L1 miss). Fur-

ther, extra counters are used with RCE for also measuring the number of L2 load misses

under different cache configurations.

Using the above hardware support, we proceed as follows. First, the total-cycles of

the program is decomposed into base-cycles and stall-cycles. We assume that in an inter-

val i with configurationC⋆, the effective stall-cycles (StallCyclesi(C⋆)) are proportional
to the number of load-misses (LoadMissesi(C⋆)). Thus, their ratio (termed as stall-cycle



per load-miss or SPMi) is independent of the number of load-misses. Using this, the

StallCyclesi(C) for any configurationC can be estimated as

StallCyclesi(C) = SPMi×LoadMissesi(C) (5)

where LoadMissesi(C) shows the number of load-misses under that configuration.
From StallCyclesi(C) value, the total-cycles (or equivalently execution time) under

configurationC are computed by adding base-cycles value to it. Using this, the leakage

energy of the program under any configuration can be easily estimated (Section 6.3).

A limitation of this approach is that for those programs which show significant vari-

ation in the number of load-misses with the L2 cache size, the SPM value varies with L2

cache sizes and this affects the accuracy of energy estimation. However, as shown next,

Palette only searches for configurations which differ in a small-number of colors from

C⋆ and hence the above assumption holds reasonably well.

4. Palette Energy Saving Algorithm

In each interval, Palette uses energy saving algorithm (ESA) which works by intelligently

selecting a small number of candidate configurations, estimating their energy and then

selecting the most energy efficient configuration from them. Before discussing the energy

saving algorithm, we first discuss the concept of marginal gain and then show its use in

ESA.

4.1. Marginal Gain Computation

Palette computes marginal gain values and utilizes them to make an intelligent guess

about candidate configurations. At any configurationC, the value of marginal gain,G(C),
is defined as the reduction in cache misses on increasing a single color. Thus, G(C)
is a measure of utility of increasing unit cache resource of the program. We assume

that between two profiling points, the number of misses vary linearly with cache size

(piecewise linear approximation) and hence, the marginal gain remains constant. For

the six profiling points viz. C1p = N/16, C2p = 2N/16, . . . C6p = 16N/16, if the number

of L2 misses at these profiling points (i.e. cache sizes) is denoted by Miss(C jp) (where
j = {1,2,3,4,5,6}), then the marginal-gainG(C) at C (C1p ≤C ≤C6p ) is defined as

G(C) =



















Miss(C jp)−Miss(C
j+1
p )

C
j+1
p −C

j
p

C
j
p ≤C <C j+1p

Miss(C5p)−Miss(C
6
p)

C6p−C
5
p

C =C6p

(6)

4.2. ESA Description

We now discuss the working of ESA and then present its pseudo-code. We use the fol-

lowing notations. Let ConfigSpace denote the set of candidate configurations, which are



Algorithm 1. Palette Energy Saving Algorithm (ESA)

Input: Estimates ofMisses (from RCE), Current Config=C⋆

Output: Best configuration for interval i+1
1: BestEnergy = ∞, BestCon f ig= -1

2: G(C⋆) = marginal gain at(C⋆)

3: ConfigSpace= config space for(C⋆, G(C⋆))
4: for each configCi in ConfigSpace do

5: Ei= estimated energy of(C⋆)

6: if Ei < BestEnergy then
7: BestEnergy= Ei
8: BestCon f ig=Ci
9: end if

10: end for

11: RETURN BestCon f ig

initially chosen in an interval. Also, let D be its cardinality, i.e. the number of candidate

configurations. Also, we useC⋆ to denote the actual configuration in interval i.

To keep the reconfiguration overhead small and avoid oscillation, ESA selects con-

figurations in neighborhood ofC⋆ using following criterion.

1. The algorithm always considers the current configuration (C⋆) as one of the can-

didates.

2. To keep algorithm overhead low, D is set to a small value. In our experiments, D

is taken as 11 which includesC⋆ itself.

3. To avoid the possibility of thrashing/starvation of the application, ESA only se-

lects configurations with at-least Min active colors; thus, at least Min colors are

allotted to the application. In our experimentsMin is set to N/16.

4. The granularity of cache allocation is taken as two colors, since this allows us

to test a wider range of configurations, while still keeping algorithm overhead

small. Thus a configurationC is ‘valid’ if it fulfills the criterion (N/16)≤C≤ N

andC (mod 2) = 0.

5. To allow for possible reduction or increase in number of active colors, the can-

didate configurations include both kinds of configurations, namely those with

lower and higher number of active colors thanC⋆. Intuitively, for a program with

low G(C⋆) value, configurations with smaller cache size are likely to be energy

efficient and vice-versa. Thus, for programs with low G(C⋆) value, out of D con-

figurations, the number of candidate configurations having colors less than C⋆ is

higher than those having colors more than C⋆. Similarly, for programs with high

C⋆ value, out of D configurations, the number of candidate configurations having

colors more thanC⋆ is higher than those having colors less thanC⋆.

Afterwards, for each configuration in the ConfigSpace, the memory subsystem en-

ergy is computed and the configuration with the least amount of energy is selected for

the next interval. Algorithm 1 shows the pseudo-code of ESA.



5. Hardware Implementation

For cache block switching (i.e. turning off and on), we use the well-known gated-Vdd
technique [12]. Gated Vdd works on the basis of transistor stacking effect [38]. A gated

Vdd memory cell uses an extra transistor in the supply or ground path. For the active

regions of the cache, this transistor is kept on. For deactivating a memory cell, this tran-

sistor is turned off, which drastically reduces the leakage current supply in the cell and

the memory cell loses its stored value. We use a specific implementation of gated-Vdd
(NMOS with dual Vt, wide, with charge pump) which results in minimal impact on ac-

cess latency but introduces a 5% area penalty. We account for the effect of increased area

on leakage energy in Section 6.

The reconfigurations are handled in the following manner. When the active cache

colors are decreased, the contents of the disabled cache colors are flushed (i.e. dirty

blocks are written-back to memory and other blocks are discarded). The memory re-

gions mapped to these colors are remapped to other active colors. When the active cache

colors are increased, some memory regions, which were mapped to another color, are

remapped to newly active colors and the blocks of those memory regions in their previ-

ous colors are flushed. Our reconfiguration scheme is simple and requires less state stor-

age than previous schemes [34, 39]. Moreover, since Palette uses a large interval length

(e.g. 10M instructions), reconfigurations are minimized and their cost is amortized over

the phase length. Our experimental results (Section 7) have shown that Palette provides

large saving in energy and also keeps the increase in execution time and L2 misses per

kilo instruction (MPKI) small. This confirms that the reconfiguration overhead of Palette

is indeed small.

In several techniques (e.g. drowsy cache [26]), the transitioning of cache blocks in

low-power mode and vice-versa happens on the critical path of cache access. This, how-

ever, makes the hit time of cache variable, which also presents difficulties in efficiently

scheduling dependent instructions in the program. In contrast, with Palette, transitioning

happens only at the end of an interval, thus, cache color turning off/on does not lie at

critical path of cache access. This ensures a fixed hit time for the cache.

Palette allocates cache at the granularity of cache colors and not cache ways, and

hence, Palette can easily work with caches of low-associativity, (e.g. a 4-way cache),

which have low dynamic energy. Moreover, Palette uses dynamic reconfiguration and

hence, it does not require storing values from offline profiling (unlike [11]).

6. Simulation Methodology

6.1. Platform, Workload and Evaluation Metrics

For microarchitectural simulations, we have used Sniper [15], a state-of-art simulator,

which has been validated against real hardware [15]. We model a processor with a dis-

patch width of 4 micro-operations and ROB (reorder buffer) size of 128. The frequency

of processor is 1.5 GHz. Both L1 data cache and L1 instruction cache are 4-way set as-

sociative caches with a size of 32KB and a latency of 4 cycles. The L2 cache is unified

and has a size of 2MB. It has latency of 12 cycles and its associativity is 8. All caches

use LRU replacement policy and have a block size of 64B. The DRAM memory has a



latency of 105 cycles and a peak bandwidth of 6GB/sec and the queue contention is also

modeled.

To simulate the representative behavior, while still limiting the simulation time, we

use 12 benchmarks from SPEC2006, which represent the behavior of entire SPEC2006

suite, as shown by Phansalkar et al. [40], based on their multivariate statistical data

analysis. These benchmarks are 6 each from integer point (gcc, hmmer, libquantum,

mcf, sjeng, xalancbmk) and floating point (cactusADM, lbm, milc, povray, soplex, wrf)

benchmarks. We use reference inputs. Each benchmark was fast-forwarded for 10B in-

structions and then simulated for 1B instructions. Algorithm interval size is taken as 10M

instructions.

Our baseline is the full size L2 cache which does not use energy saving technique.

For evaluation, we show results on five metrics, which are as follows.

1. Percent of energy saved over baseline.

2. Percent of simulation cycle increase over baseline.

3. Percent of EDP (energy delay product) saved over baseline. This metric balances

both performance and energy.

4. Active ratio, which shows the average fraction of active cache lines over entire

simulation and is expressed as a percentage [14].

5. Absolute increase in L2 MPKI (miss-per-kilo-instructions).

The computation of energy is shown in Section 6.3. For computation of EDP, delay is

taken to be same as simulation cycles. For MPKI increase, we report absolute increase

and not relative increase, following [24, 41], since MPKI value for some workloads can

be arbitrarily small and hence, even a small change in a small value may show up as a

large percentage, which misrepresents its contribution in the performance.

6.2. Comparison With Existing Technique

For comparison purposes, we have implemented decay cache technique (DCT) [14]. Our

choice of DCT is motivated by two reasons. Firstly, DCT, like Palette, uses state destroy-

ing leakage control. Secondly, it is a well-known technique and has been used/evaluated

by several researchers (e.g. [20, 27, 42]).

DCT monitors accesses to cache blocks and turns off a block which has not been

accessed for the duration of ‘decay interval’ to save cache energy. For implementing

DCT, we follow [14, 43] and use gated Vdd for hardware implementation and hierarchical

counters for measuring the time spent after last access. Also, the latency of waking up

decayed block is assumed to be overlappedwith memory access latency and to maximize

energy saving, both data and tag arrays are decayed [14, 43].

We compute decay interval using competitive algorithms theory [14]. As shown in

Section 6.3, the DRAM access energy (E
dyn
mem) is 70nJ and the leakage power consumption

of 2MB, 8-way L2 cache is 1.568 Watts. Let U denote the leakage energy (in nJ) per

block per cycle for L2 for 1.5GHz frequency, thenU is given by

U =
1.568

1.5×32768
(7)

Then, the ratio E
dyn
mem/U shows the ratio of DRAM access energy and the L2 leakage

energy per block per cycle, which in our case is 2.19M cycles. This suggests the range



of decay interval. To choose a suitable decay interval, we simulated DCT with five decay

intervals, viz. 3M, 5M, 7M, 9M and 11M cycles. We did not choose decay intervals

which are smaller than 2.19M, since for several benchmarks, even at 3M cycle decay

intervals, the performance degradation becomes very high. Based on these simulations,

we chose the decay interval for DCT as 7M cycles, since this gives the largest average

improvement (saving) in EDP.

Kaxiras et al. [14] have evaluated DCT for L1 caches and used decay intervals in the

range of hundreds of cycles. They also suggest that since the filtering of the reference

stream in L1 changes the distribution of the access intervals in L2, the decay intervals for

L2 should be much larger than that for L1 caches [14]. Thus, decay intervals for L2 are in

the range of a few million cycles. As shown above, our own experiments and estimation

using competitive algorithms theory confirm their observation.

6.3. Energy Model

We take into account the energy spent in L2 cache (EL2), main memory (Emem) and in

execution of the algorithm (EAlgo), since other components are minimally affected by our

approach.

Energy= EL2+Emem+EAlgo (8)

where energy spent in L2 and memory is composed of both leakage and dynamic energy.

To calculate EL2, we note that the leakage energy depends on active ratio of the

cache [13, 20]. Also, an L2 miss is assumed to consume twice the energy of an L2 hit

[24, 25, 27]. Thus,

EL2 = EdynL2 × (HL2+2ML2)+ (PleakL2 ×Time×C⋆)/N (9)

Here, for any interval, HL2 shows the number of L2 hits, ML2 shows the number of

L2 misses, Time shows the execution time and C⋆ shows the number of active colors.

Also PleakL2 and E
dyn
L2 denote the dynamic energy per L2 access and L2 leakage energy

per second. We use CACTI 5.3 [44] to compute these values for 4-bank, 8-way caches

with 64 byte block size. We obtained PleakL2 =1.568 Watts and EdynL2 =0.985 nJ/access.
To account for the effect of increased area due to gated Vdd (Section 5), we assume 5%

higher value of PleakL2 for both Palette and DCT, but not for baseline LRU cache.

To calculate Emem, we note that the leakage power of memory, P
leak
mem= 0.18 Watt and

dynamic energy per access of memory E
dyn
mem= 70 nJ [24, 45]. Using Amem to denote the

number of memory accesses, we get,

Emem = Edynmem×Amem+Pleakmem×Time (10)

The overheads of RCE (for Palette) and block transitions (for both Palette and DCT)

are calculated as follows.

EAlgo = E pro fdyn ×Apro f +P
pro f
leak ×Time+ETran (11)



HereApro f = profiling cache accesses and E
pro f
dyn andP

pro f
leak are dynamic energy per access

and leakage energy per seconds for profiling cache. ETran shows the energy consumed in

block transitions.

To calculate energy values for profiling cache, we use CACTI along with Eq. 3,

with R=64. Since CACTI only provides values for power-of-two size caches, we take an

upper bound as S= 64P/16R. For the L2 caches used, we compute the energy values for
corresponding profiling cache, by only taking tag energy values since profiling cache is

a tag-only cache. For the RCE corresponding to a 2MB L2, we get PleakRCE=0.007Watt and

E
dyn
RCE=0.004 nJ/access. Clearly, profiling cache consumes a negligibly small fraction of

energy compared to the energy consumed by L2 cache.

Each block-transition is assumed to take 0.002 nJ [24], thus the energy spent in
block transitions is

ETran = 0.002×Tran nJ (12)

where Tran denotes the total number of blocks transitions.

For both DCT and Palette, we ignore the overhead of counters and algorithm exe-

cution etc., since many processors already contain counters for measuring performance

etc. [14] and also because they work with a large interval size.

7. Results and Discussion
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Figure 4. Experimental Results with DCT and Palette

Figures 4 and 5 show the experimental results. On average, Palette saves 31.7%

energy, while DCT saves 21.3% energy. The increase in simulation cycle using Palette

and DCT are 3.4% and 11.4%, respectively. The percentage saving in EDP by using

Palette and DCT are 29.7% and 10.9%, respectively. The cache active ratio using Palette



and DCT are 27.7% and 59.0%, respectively. Further, the increase in MPKI by using

Palette and DCT is 0.99 and 0.52, respectively.

The results clearly show that compared to DCT, Palette saves much larger amount

of energy and EDP, and keeps increase in simulation cycle smaller. The average percent-

age saving in EDP using Palette are nearly double of that obtained using DCT. Further,

Palette turns off nearly 72% of the cache, while DCT turns off only 41% of the cache.

DCT turns off a cache block based on the number of accesses to the block in a

given time. However, for some benchmarks, such as mcf, lbm, and libquantum, although

the number of cache accesses is large, the miss rate is high and hence the cache reuse

remains very small. For such benchmarks, DCT turns off a negligible fraction of cache

and thus, DCT does not save energy for these benchmarks. In contrast, Palette turns off

cache based on the marginal gain from the allocation of cache, and hence, Palette saves

more than 15% energy for each of these benchmarks. As shown by other researchers

[23], for DCT, finding a suitable decay interval for each program requires significant per-

application tuning. In contrast, Palette optimizes for energy and hence, does not require

tuning and can easily work for a wide variety of benchmarks.

DCT turns off cache at the granularity of a single cache block and hence, it can

exercise very fine-grain cache reconfiguration. Hence, for povray and sjeng, DCT saves

larger amount of energy than Palette. Towards this, we note that in RCE, by using extra

levels of profiling units, such as X/32, the profiling information can be obtained for even
smaller cache sizes (Section 3.2), and thus, the minimum number of colors allocated to

the program can be lowered from X/16 to X/32. However, this increases the number of
profiling units which are consulted in each cache access and hence, a designer can select

a suitable trade-off between desired energy saving and acceptable RCE overhead. For

DCT, choice of a suitable decay interval requires significant efforts in offline profiling.

Moreover, the optimal value of decay interval varies for different benchmarks [23]. In

contrast, Palette works by using dynamic profiling and optimizing based on energy esti-

mates. Thus, Palette can be easily used in real-world systems, which execute trillions of

instructions of arbitrary applications.

The hardware-based techniques such as DCT work by reconfiguring the cache while

trying to control the cache miss-rate. Hence, they do not directly optimize for energy and

cannot easily take the energy consumption of components into account. As an example,

on including the energy model of processor core, the optimal value of decay interval will

also change. In contrast, Palette directly optimizes for energy and hence, it can easily

take the energy consumption of components other than cache into account.

The average increase in MPKI by using Palette is larger than that from DCT. How-

ever, still the increase is small and the extra energy dissipation due to increased DRAM

accesses is compensated by the leakage energy saving achieved in the L2 cache.

We do not model energy consumed in other components of the system; however, we

can estimate the overall energy savings by assuming a particular breakdown between the

energy consumed by the memory subsystem and the rest of the system. If the memory

subsystem representsM% of the total system energy and the memory subsystem energy

savings is m%, and the performance loss is assumed to be 0%, the overall system-wide

energy savings is equal to (M×m)/100. Since the performance loss of Palette is nearly
3% (and not 0%), the actual system-wide energy saving will be slightly smaller, but still

quite close to this figure.
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Figure 5. Experimental Results with DCT and Palette

The results presented in this section confirm that Palette is effective in saving cache

energy and also outperforms the conventional cache energy saving technique.

8. Conclusion

We have presented Palette, a cache coloring based technique for saving leakage energy

in last level caches. Palette employs online profiling to estimate memory subsystem en-

ergy for multiple cache configurations and then dynamically reconfigures the cache to

optimize memory subsystem energy efficiency. The experimental results have shown that

Palette offers large energy savings, while keeping the performance loss small and also

outperforms a conventional leakage energy saving technique. Our future work will focus

on integrating cache reconfiguration scheme of Palette with dynamic voltage/frequency

scaling to further increase the energy savings.
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