
June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

Journal of Circuits, Systems, and Computers
c⃝ World Scientific Publishing Company

A Survey of Techniques for Managing

and Leveraging Caches in GPUs

SPARSH MITTAL

Future Technologies Group, Oak Ridge National Laboratory (ORNL)
Oak Ridge, Tennessee, 37830 United States.

mittals@ornl.gov

Initially introduced as special-purpose accelerators for graphics applications, GPUs have
now emerged as general purpose computing platforms for a wide range of applications. To

address the requirements of these applications, modern GPUs include sizable hardware-
managed caches. However, several factors, such as unique architecture of GPU, rise of
CPU-GPU heterogeneous computing etc., demand effective management of caches to
achieve high performance and energy efficiency. Recently, several techniques have been

proposed for this purpose. In this paper, we survey several architectural and system-
level techniques proposed for managing and leveraging GPU caches. We also discuss the
importance and challenges of cache management in GPUs. The aim of this paper is to

provide the readers insights into cache management techniques for GPUs and motivate
them to propose even better techniques for leveraging the full potential of caches in the
GPUs of tomorrowa.

Keywords: GPU (graphics processing unit); GPGPU (general purpose GPU); cache

memory; performance; energy efficiency; classification

1. Introduction

Recent years have witnessed a phenomenal growth in the capabilities and applica-

tions of graphics processing units (GPUs). GPUs, which were initially introduced

as special-purpose accelerators for games and graphics code are now used as ubiq-

uitous high-performance computing platforms, in systems ranging from hand-held

embedded systems to massive supercomputers. This has led to the emergence of

GPGPU (general-purpose GPUs) field.

The demands of new application domains have motivated novel changes in GPUb

design and architecture. Traditionally GPUs only provided software-managed local

memories, however as the application domain of GPU broadens, these memories

become insufficient in fulfilling the need of applications running on GPUs. To ad-

dress this challenge, state-of-the-art GPUs provide hardware-managed multi-level

aPreprint version of paper
accepted in Journal of Circuits, Systems and Computers (JCSC) World Scientific, article number
1430002, to be published in Vol. 23, No.8 (September 2014). DOI: 10.1142/S0218126614300025
URL http://www.worldscientific.com/doi/abs/10.1142/S0218126614300025
bIn the rest of the paper, we use the term GPU to also refer to a GPGPU.

1



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

2 Sparsh Mittal

caches. In fact, introduction of caches in Fermi has been seen as one of the “Top 10

most important innovations” in the GPU architecture” 1, which has helped GPUs

to move towards mainstream computing. Caches affect application performance in a

significant manner, as confirmed by several researchers 2,3,4,5,6,7,8,9,10,11. This makes

management of GPU caches extremely important. While CPU cache management

has been studied over years, GPU cache management is a relatively new research

field 12,13,14.

In this paper, we present a survey of techniques for managing and leveraging

GPU caches. Further, we present a classification of these on the basis of their key

characteristics. We also discuss the factors which motivate the importance of GPU

cache management. Since it is not possible to cover the full range of research works

in the area of GPU cache management, we take the following approach to restrict

the scope of the paper. We only discuss techniques proposed for managing GPU

caches, although some techniques proposed in the context of CPU caches may also

be beneficial for GPU caches. We mainly discuss hardware-managed caches and not

software-managed caches. We focus on architectural and system-level techniques

and not device-level (VLSI-design level) techniques. We present the key idea of

each research work and do not present the quantitative results since different tech-

niques have been evaluated on different platforms. We discuss techniques dealing

with issues such as performance and energy efficiency and not dealing with other

aspects such as reliability. The objective of this paper is to equip the researchers,

application-developers and architects with the knowledge of importance and work-

ing of GPU cache management techniques and motivate them to propose novel

solutions for architecting GPU caches of tomorrow.

The remainder of the paper is organized as follows. Section 2 provides a brief

overview of GPU architecture and its evolution over time. Section 3 summarizes the

importance of cache management techniques in GPUs. Section 4 discusses several

cache management techniques in detail. Finally Section 5 presents the conclusion.

2. GPU Architecture and State-of-the-art GPUs

In this section, we briefly review the GPU architecture, as relevant to this pa-

per and refer the reader to prior work for more details 15. GPUs have been de-

signed to provide very high computational power and are suited for applications

which are throughput-oriented and not latency-sensitive. GPUs use numerous pro-

grammable computational cores and fine-grained threads. Moreover, to achieve

scalability, GPUs minimize use of global structures. For example, unlike CPUs,

the streaming-multiprocessors (SMs) in GPUs have simple in-order pipelines. GPU

chips spend more die-space on ALUs and less on caches, thus instead of seeking

performance via out-of-order processing over large instruction windows and large

caches, they incorporate low-overhead thread scheduling and hide memory latencies

via multithreading. Further, to exploit data access locality, GPUs feature large reg-

ister files, shared memory and relatively small caches. For example, Intel’s Itanium



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

A Survey of Techniques for Managing and Leveraging Caches in GPUs 3

9560 CPU uses 32MB last level cache (LLCs) 16. In contrast, the GT200 architec-

ture GPUs did not feature an L2 cache, the Fermi GPU has 768KB LLC and the

Kepler GPU has 1536KB LLC 17.

3. Importance of Techniques for Managing and Leveraging GPU

Caches

In this section, we first discuss the factors that affect the efficiency of GPU caches

to highlight the limitations of the existing cache management techniques. We then

discuss the motivations and challenges for designing novel techniques for GPU cache

management.

3.1. Limitations of existing cache management techniques

The need to account for unique GPU characteristics: Conventional cache

management techniques (e.g. LRU replacement policy, coherence protocols etc.)

have been designed to exploit the architectural characteristics of CPU and applica-

tion behavior of serial applications. However, GPU architecture and programming

are significantly different from their CPU counterpart. This fact introduces several

new constraints and performance-objectives and hence, the effectiveness of conven-

tional cache management techniques is greatly reduced when they are used in GPUs
18,19,20. Also, demand-fetched caches are only recent additions in GPUs and hence,

designers have very little intuition about which applications will benefit from these

caches.

The need to cope with small cache size: GPU caches are shared by

thousands of active threads which makes the cache a scarce resource. This may

lead to cache contention in the case when the required dataset size of thread groups

assigned to a SM cannot fit into the local cache 21,22,23. In absence of caches, the

bandwidth utilization of GPUs becomes very high, which significantly harms the

DRAM performance due to queuing effects and memory access bursts 24.

The need to avoid negative effect of caches on performance: For several

applications, caches may actually harm the performance 25,26. For example, when

cache line size exceeds the minimum fetch size of main memory, unnecessary data

are fetched. Similarly, with write-allocate policy, data are copied to cache on a cache

miss, although they are not reused for applications with high miss-rate. Moreover,

given the limitations posed by chip-area, increasing the GPU cache size reduces

the area available for ALUs, which also reduces the throughput. Thus, the GPU

performance cannot be improved simply by increasing the cache sizes.

3.2. Motivations and challenges for designing novel cache

management techniques

Achieving a balance between multithreading and cache usage efficiency:

GPUs employ deep multithreading by which the control switches among numerous



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

4 Sparsh Mittal

active threads to hide the memory latency. This helps in achieving maximum level of

execution parallelism. However, due to deep multithreading, different thread groups

may replace the useful blocks of other threads (called interference), which may lead

to poor performance 27,28. Use of smaller number of threads alleviates this issue,

however, this comes at the cost of reduced execution parallelism 29. Thus, due to

availability of multithreading in GPUs, an improvement in cache performance does

not directly translate into improved program performance 30 and hence, intelligent

cache management techniques are required for achieving a balance between the two

factors.

Avoiding off-chip accesses and increasing bandwidth: To provide high

performance, GPUs demand very high memory bandwidth. Due to the power-wall

problem and the physical limitations of chip-packaging, achieving high bandwidth

by increasing clock-frequency or pin-count is extremely challenging. Intelligent

cache management policies can be highly useful in such scenarios since they can

help in reducing the off-chip accesses by capturing data locality 31,32,33,20,26. This

also increases the effective memory bandwidth, which translates into improved per-

formance and energy-efficiency. Several researchers have compared the performance

of Tesla and Fermi GPUs and have observed that hardware-managed caches play

an important role in offering Fermi GPUs a performance advantage over previous

generation GPUs 34,35,36,37,38,39. L2 caches in Fermi also improve the performance

of atomic operations 40.

Managing shared cache in CPU-GPU heterogeneous computing pro-

cessors: Since CPUs and GPUs are more suitable for different classes of applica-

tions, chip-designers have recently focused on CPU-GPU heterogeneous computing

to achieve the best of two worlds. Such chips may feature a last level cache which

is shared by both CPU and GPU, for example, on Intel’s Sandy Bridge processor,

CPU and GPU are on the same chip with a shared on-chip 8MB L3 cache 41. It

is well known that CPU and GPU applications have different characteristics and

cache requirements, for example, GPUs have very large number of threads and

hence, they may access the cache much more frequently, which would lead to star-

vation of CPU application. Hence, intelligent techniques are extremely important

for managing caches in such heterogeneous computing systems.

4. GPU Cache Management Techniques

Table 1 presents a classification of the techniques proposed for GPU caches. In the

remainder of the section, we summarize the key ideas of several of these techniques.

4.1. GPU Memory Hierarchy Design/Exploration

Although the primary function of the shared caches in GPGPUs is to reduce off-chip

memory traffic rather than to hide memory latency, for applications with limited

or no parallelism, caches can be highly useful for hiding the memory latency 57.



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

A Survey of Techniques for Managing and Leveraging Caches in GPUs 5

Table 1. Classification of Approaches For Managing and Leveraging GPU Caches

Classification References

Application Domain

For CPU-GPU heterogeneous systems 18,42,43,44

For discrete GPU systems almost all others

Essential approach used for cache management

Memory hierarchy redesign/exploration 45,46,13,47,8,48

Thread/warp scheduling 49,22,50,51,52,28,53,6

3d stacking and use of non-volatile memory 54

Power-gating (leakage control) 55

Cache partitioning 18,42

Cache bypassing 18,19

Prefetching 43,51

Improving cache hit-rate and avoiding interference 56,21,22,28,6

Goal of the cache management technique

Implementing cache coherence 44,20

Improving performance 46,28,6

Saving energy 46,55,47,13

Gebhart et al. 46 present the design of a unified local memory in GPU which

can dynamically change the partitioning among registers, cache, and scratchpad on

a per-application basis. The existing designs use rigid partition sizes, however, dif-

ferent GPU workloads have different requirements of registers, caches and scratch-

pad (also called shared memory). Based on the characterization study of different

workloads, they observe that different applications and kernels have different re-

quirements of cache, shared memory etc. To address this, they propose a unified

memory architecture that aggregates these three types of storage and allows for a

flexible allocation on a per-kernel basis. Before the launch of each kernel, the sys-

tem reconfigures the memory banks to change the memory partitioning. By virtue

of effective use of local-storage, their design reduces the accesses to main memory.

They have shown that using their approach broadens the range of applications that

can be efficiently executed on GPUs and also provides improved performance and

energy efficiency.

Sankaranarayanan et al. 45 propose adding small sized caches (termed as tiny-

Caches) between each lane in a streaming multiprocessor (SM) and the L1 data

cache which is shared by all the lanes in an SM. Further, using some unique fea-

tures of CUDA/OpenCL programming model, these tinyCaches avoid the need of

complex coherence schemes and thus, afford low-cost implementation. They have

shown that these small caches effectively filter a large fraction of memory requests

that would otherwise need to be serviced by the first level cache or scratchpad

memory. This leads to improvement in the energy efficiency of the GPU.

Lashgar et al. 47 propose a technique to reduce accesses to instruction cache

and save energy by using filter-cache. Their technique aims to exploit “inter-warp

instruction temporal locality” which means that during short execution intervals,

a small number of static instructions account for a significant portion of dynamic



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

6 Sparsh Mittal

instructions fetched and decoded within the same stream multiprocessor. Due to

this, the probability that a recently fetched instruction will be fetched again be-

comes high. They propose using a small filter-cache to cache these instructions,

which reduces the number of accesses to instruction cache and improves the energy

efficiency of the fetch engine. Filter-cache has been used in the context of CPUs

also, however, in GPUs the instruction temporal locality is even higher. This is due

to the fact that GPUs interleave thousands of threads per core, which are grouped

in warps. The warp scheduler continuously issues instructions from different warps

which fills the warp, thus it fetches the same instruction for all warps during short

intervals.

Hughes et al. 13 study the performance and power implications of GPU caches.

They study different last level cache designs, such as private, shared, caches with or

without replications etc. They observe that shared LLC provides the best perfor-

mance, while the private LLC provides the highest energy efficiency. This is because,

the shared LLC provides highest throughput, while the private LLC minimizes on-

die traffic.

Jia et al. 25 characterize GPU application performance on a real GPU with L1

caches turned on and off. They study the degree to which L1 caches may either

improve or hurt program performance. In NVIDIA GPUs, L1 caches are not coher-

ent across SMs, and hence, global memory writes (stores) ignore L1 caches. Hence,

applications with global memory writes do not benefit from L1 caches. Those ap-

plications which use global memory (rather than shared memory) to hold their

working sets achieve benefit from the use of L1 caches. Based on their observations,

they provide a taxonomy of GPU memory access locality to systematically analyze

the reasons about when caches are likely to be helpful. They also propose methods

to enable automated compile-time optimizations to determine when to use/disable

L1 caches in GPUs.

Ristov et al. 8 study the impact of different sizes and associativities of L1 and

L2 caches on a GPU on the performance of matrix multiplication application. They

observe that only L2 cache impacts the overall performance of the algorithm. Differ-

ent configurations of L1 cache have only small effect on the performance of matrix

multiplication algorithm.

Maashari et al. 54 study the impact of 3D stacking of caches (e.g. texture unit

caches and Z caches) on GPU performance. They observe that compared to an iso-

cost 2D GPU design, a 3D GPU design offers significant performance advantage.

They also investigate use of non-volatile magnetic RAM (MRAM) for designing

caches. Note that compared to SRAM, non-volatile memories have higher density

and negligible amount of leakage energy, but they also have small write endurance

and high write latency and energy 58. They observe that due to high write latency

of MRAM compared to SRAM, MRAM does not always provide performance ad-

vantage over SRAM, although use of MRAM is beneficial for improving energy

efficiency.



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

A Survey of Techniques for Managing and Leveraging Caches in GPUs 7

4.2. Microarchitectural Cache Management Issues/Policies

Singh et al. 20 propose a time-based coherence framework for GPUs, that uses glob-

ally synchronized counters in a single-chip system to develop a streamlined GPU

coherence protocol. GPUs lack cache coherence and if an application requires mem-

ory operations to be visible across all cores, the private caches must be disabled.

Further, conventional cache coherence protocols introduce unnecessary coherence

traffic overheads in GPUs and require very high amount of storage for tracking

thousands of in-flight coherence requests. To eliminate the coherence traffic and

avoid protocol races, Singh et al. use synchronized counters which enable all co-

herence transitions to happen synchronously. Their coherence framework works on

the intuition that if the lifetime of a memory address’ current epoch can be pre-

dicted and shared among all readers when the location is read, then the readers

can leverage the counters to self-invalidate synchronously, eliminating the need for

end-of-epoch invalidation messages.

Power et al. 44 present a framework for supporting directory-based hardware

coherence between CPUs and GPUs in a heterogeneous CPU-GPU system. They

assume a heterogeneous system where CPU and GPU clusters have two separate,

non-inclusive, shared L2 caches. Their coherence scheme replaces a standard direc-

tory with a region directory and adds region buffers to L2 caches of both CPU and

GPU to track the regions over which the CPU or GPU currently hold permission.

These structures allow the system to move the coherence-related traffic from the

coherence network to the high-bandwidth direct-access bus while still maintaining

coherence.

Choi et al. 19 propose two cache management schemes for GPUs, viz. write-

buffering and read-bypassing. Their schemes work by controlling the placement of

data in the shared L2 cache to maximally reduce the memory traffic. By analysis

of the code, data usage characteristics are identified, which is used to direct data

placement of individual load or store instruction in the cache. With this support, the

write-buffering technique utilizes the shared cache for inter-block communication

to reduce memory traffic. The read-bypassing scheme attempts to avoid placing

streaming data in the shared cache, that are consumed only within a thread-block.

They have shown that their techniques significantly reduce the off-chip memory

accesses.

Meng et al. 56 propose a technique to reduce conflict misses in LLC of GPUs.

They note that the private data of each thread, which need not reside in the LLC, is

one of the most important sources of thrashing in LLC. To reduce LLC conflicts and

mitigate cache thrashing, they propose a run-time stack allocation mechanism that

randomizes the offset of the stack bases relative to page boundaries. This leads to

more uniform distribution of thread-private data in the LLC, which reduces conflict

misses. They also study the effectiveness of different cache replacement policies in

addressing this issue. Further, they propose a non-inclusive semi-coherent cache

design which allows the private data to exist only in L1 cache.



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

8 Sparsh Mittal

Rhu et al. 59 propose a locality-aware technique for finding the right fetch gran-

ularity for improving performance and energy-efficiency of GPUs. Their approach

enables adaptively adjusting the memory access granularity depending on the spa-

tial locality present in the application. They show that only few applications use

all the four 32B sectors of the 128B cache-block. This leads to over-fetching of

data from the memory. To address this, they first decide the appropriate granu-

larity (coarse-grain or fine-grain) of data fetch. Using this, a hardware predictor

adaptively adjusts the memory access granularity without programmer or runtime

system intervention.

4.3. Thread Scheduling Policies

Yen et al. 49 propose a hardware-based thread scheduler to dynamically adjust

the degree of multithreading in GPU with the awareness of cache contention. Their

technique works in two phases. In the first phase, called training phase, the statistics

are collected from the L1 and L2 cache. In the second phase, called tuning phase,

PID (Proportional Integral Derivative) control is used to dynamically adjust the

degree of multithreading based on the information obtained from the first phase.

Thus, when the system is short of cache resources, the degree of multithreading

is reduced and in the case of low cache contention, degree of multithreading is

increased to benefit from the massive parallelism.

Rogers et al. 22 propose a cache-conscious wavefront (warp) scheduling tech-

nique. Their technique uses a lost intra-wavefront localityc detector (LLD) which

informs the scheduler if its decisions are destroying intra-wavefront locality. Based

on this feedback, the scheduler assigns intra-wavefront locality scores to each wave-

front and ensures that those wavefronts losing intra-wavefront locality are given

more exclusive access to the L1 cache. Their technique effectively changes the re-

reference interval to reduce the number of interfering references between repeated

accesses to the high locality data, which reduces the thrashing in L1 cache.

Rogers et al. 28 propose a divergence-aware warp scheduling technique. Their

technique uses a divergence-based cache footprint predictor to estimate how much

L1 data cache capacity is needed to capture intra-warp locality in loops. These

estimates are obtained from runtime information about the level of control flow

divergence in warps and online characterization of memory divergence. Based on

these estimates, warp scheduling is done in a manner that the data reused by active

threads may not exceed the capacity of the L1 data cache. Thus, their technique

minimizes interference in L1 cache.

Jog et al. 50 present a coordinated CTA (cooperative thread arrayd) aware

cIntra-wavefront locality is termed as the locality that occurs when data is initially referenced and
re-referenced from the same wavefront.
dGPU applications are generally divided into several kernels, where each kernel spawns many
threads. These threads are grouped together into thread blocks, which are known as cooperative

thread arrays (CTAs). At the beginning of execution of an application, the CTA scheduler initiates



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

A Survey of Techniques for Managing and Leveraging Caches in GPUs 9

scheduling policy that aims to minimize the impact of long memory latencies.

They propose a CTA-aware two-level warp scheduler that groups all the avail-

able CTAs on a core into smaller groups and schedules all the groups (instead of

individual CTAs or warps) in a round-robin fashion. This allows a smaller group of

warps/threads to access the L1 cache in a particular interval of time, which reduces

the cache contention. It also reduces the inactive periods since the time at which

different warps reach long latency operations becomes different and hence memory

stalls can be effectively hidden. To further improve the L1 hit rate, they propose

a locality-aware scheduling scheme, which always prioritizes a group of CTAs in a

core over the rest of the CTAs until they finish. This helps in taking advantage of

the locality between nearby threads and warps which are associated with the same

CTA. This is because the higher priority CTAs can keep their data in private caches

and get opportunity to reuse it.

Jog et al. 51 propose a prefetch-aware warp scheduling policy to effectively hide

long memory latencies. Since consecutive warps are highly likely to access nearby

cache blocks, prefetches are generated by a warp very close to the time their corre-

sponding addresses are actually demanded by another warp. To address this, their

technique separates in time the scheduling of consecutive warps such that they

are not executed back-to-back. Thus, at the time when one warp stalls and gen-

erates its demand requests, a prefetcher can issue prefetches for the next N cache

blocks, which are likely to be completed by the time the consecutive warps that use

those blocks are scheduled. This improves the effectiveness of prefetching and also

improves the L1 cache hit rate.

Meng et al. 53 propose a technique which allows dynamic sub-division of warps

for hiding latency of branch and memory divergence. In a conventional SIMD (Sin-

gle instruction, multiple data) implementation, branch or memory divergence stalls

an entire warp. In their technique, upon a branch divergence, a warp can be di-

vided into two active warp-splits, each representing threads that fall into one of

the branch paths. The execution of these warp-splits is then interleaved. Similarly,

when threads from a single warp experience different memory-reference latencies

caused by cache misses, memory latency divergence occurs. In such cases, a warp is

divided into two warp-splits, one with the threads whose memory operations have

completed, the other represents threads that are still stalled on cache miss. The

former warp-split runs ahead and can potentially prefetch cache lines that may also

be needed by threads that fell behind. Upon future memory divergence, warp-splits

can be recursively divided. They also provision methods to prevent over-subdivision

since it has a negative effect on performance.

Guz et al. 52 present an analytical model to quantify the harmful effect of in-

creasing the number of threads sharing the cache. They demonstrate that increasing

the thread count improves performance until the total working set no longer fits

scheduling of CTAs onto the available cores. All the threads within a CTA are executed on the

same cores.



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

10 Sparsh Mittal

in cache. Beyond this point, an increase in the number of threads degrades perfor-

mance until enough threads are present to hide the system’s memory latency.

4.4. Cache Management Policies For CPU-GPU Heterogeneous

Systems

Lee et al. 18 propose a thread-level parallelism (TLP) aware cache management

policy of CPU-GPU heterogeneous computing systems. In GPUs, a cache policy

does not directly affect the performance due to presence of deep-multithreading.

To estimate the effect of a cache behavior on GPU performance, they propose a

core-sampling approach which is similar to set-sampling approach used in caches
60,61. Since most GPU applications show symmetric behavior across the running

cores, each core shows similar progress in terms of the number of retired instructions.

Using this, core sampling applies a different policy (e.g. a cache replacement policy)

to each core and periodically collects samples to see how the policies work. A

large difference in performance of these cores indicates that GPU performance is

affected by the cache policy. A negligible difference in performance shows that

caching is not beneficial for this application. Using this, a decision about the best

cache management policy can be made. Further, since the GPU has much larger

number of threads than the CPU, GPU accesses the cache much more frequently

than the CPU and the large number of accesses from GPU are likely to evict data

brought in cache by the CPU threads. To address this issue, they introduce cache

block lifetime normalization approach, which ensures that statistics collected for

each application are normalized by the access rate of each application. Using this,

along with a cache partitioning mechanism, cache can be intelligently partitioned

between CPU and GPU, such that cache is allocated to GPU only if it benefits

from the cache.

Mekkat et al. 42 propose a cache management policy for CPU-GPU hetero-

geneous computing systems with shared LLCs. Their technique leverages GPU’s

ability to tolerate memory access latency to throttle GPU LLC accesses to provide

cache space to latency-sensitive CPU applications. Their technique works on the

principle that the TLP available in an application is a good indicator of cache sen-

sitivity of an application. Based on this, their technique allows GPU memory traffic

to selectively bypass the shared LLC if GPU cores exhibit sufficient TLP to tolerate

memory access latency or when GPU is not sensitive to LLC performance. The avail-

able TLP is measured at runtime using the number of wavefronts (or warps) that

are ready to be scheduled at any given time. Higher number of wavefronts indicate

higher TLP which suggests that GPU can tolerate higher memory access latency.

Their technique uses core-sampling to apply two different bypassing thresholds to

two different cores to find the impact of bypassing on GPU performance. Also, using

cache set-sampling, the effect of GPU bypassing on CPU performance is estimated.

Using these estimates, the rate of GPU bypassing is periodically adjusted.

Yang et al. 43 propose a technique for utilizing the idle CPU in a CPU-GPU



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

A Survey of Techniques for Managing and Leveraging Caches in GPUs 11

heterogeneous system to improve hit-rate of GPU threads in shared LLC (L3). In

their technique, after the CPU launches a GPU program, it starts a pre-execution

program to prefetch the off-chip memory data into the shared L3 cache for ben-

efiting GPU threads. The pre-execution program is developed using a compiler

algorithm and it extracts memory access instructions and the associated address

computations from GPU kernels. Since CPU runs at higher frequency and leverages

ILP (instruction-level parallelism) more aggressively, the pre-execution warms the

shared L3 cache for GPU threads, which significantly reduces the memory access

latency. Periodically, the timing of prefetches is adjusted to avoid cache pollution

and increase the effectiveness of prefetching.

4.5. Cache Management Policies For Improving Energy Efficiency

Wang et al. 55 propose a technique for saving static (leakage) energy in both L1

and L2 caches in GPUs. They propose putting L1 cache (which is private to each

core) in state-preservinge low-leakage mode when there are no threads which ready

to be scheduled. Also, L2 cache is transitioned to low-leakage mode when there is

no memory request. They also discuss the micro-architectural optimizations using

which the latency of detecting cache inactivity and transitioning a cache to low-

power and back to normal power can be completely hidden.

4.6. Other Aspects

Some researchers deduce the parameters of GPU caches through microbenchmark-

ing and conducting experiments with specialized benchmarks 63,64,65,66. This is very

useful, since parameters for GPU caches are generally not publicly available. More-

over, it is also useful for developing GPU power/performance model and studying

cache/memory behavior in isolation.

5. Conclusion

Multi-level hardware-managed caches are relatively recent addition to GPUs which

also marks a paradigm shift in GPU architecture towards mainstream computing.

Effective management of caches is vital to fully exploit their potential in boost-

ing GPU performance and energy efficiency. In this paper, we presented a survey of

system-level and architectural techniques for managing and leveraging GPU caches.

We also presented a classification of the techniques based on their characteristics

and optimization goals. We strongly believe that this paper will provide insights to

the architects into working of GPU cache management techniques and also encour-

age them to propose novel techniques for GPUs of tomorrows.

eState-preserving or state-retentive leakage saving mechanism refers to use of a low-power state
where the data stored in the block are not lost 62. This is in contrast with state-destroying leakage

control mechanism where the block data are lost in the low-power mode 62.



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

12 Sparsh Mittal

References

1. D. Patterson, “The top 10 innovations in the new NVIDIA Fermi architecture, and
the top 3 next challenges,” NVIDIA Whitepaper, 2009.

2. X. Cui, Y. Chen, C. Zhang, and H. Mei, “Auto-tuning dense matrix multiplication
for GPGPU with cache,” in IEEE 16th International Conference on Parallel and
Distributed Systems (ICPADS), 2010, pp. 237–242.

3. A. Schäfer and D. Fey, “High performance stencil code algorithms for gpgpus,” Pro-
cedia Computer Science, vol. 4, pp. 2027–2036, 2011.

4. N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha, “A memory model for
scientific algorithms on graphics processors,” in SC 2006 Conference, Proceedings of
the ACM/IEEE, 2006, pp. 6–6.

5. Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Using Fermi architecture knowl-
edge to speed up CUDA and OpenCL programs,” in 10th International Symposium
on Parallel and Distributed Processing with Applications (ISPA). IEEE, 2012, pp.
617–624.

6. H.-K. Kuo, T.-K. Yen, B.-C. C. Lai, and J.-Y. Jou, “Cache Capacity Aware Thread
Scheduling for Irregular Memory Access on Many-Core GPGPUs,” in 18th Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 2013, pp. 338–343.

7. J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis framework for
identifying potential benefits in GPGPU applications,” in ACM SIGPLAN Notices,
vol. 47, no. 8. ACM, 2012, pp. 11–22.

8. S. Ristov, M. Gusev, L. Djinevski, and S. Arsenovski, “Performance impact of recon-
figurable L1 cache on GPU devices,” in Federated Conference on Computer Science
and Information Systems (FedCSIS). IEEE, 2013, pp. 507–510.

9. K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the effi-
ciency of GPU algorithms for matrix-matrix multiplication,” in ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, 2004, pp. 133–137.

10. Z. Zheng and K. Mueller, “Cache-aware GPU memory scheduling scheme for CT back-
projection,” in Nuclear Science Symposium Conference Record (NSS/MIC). IEEE,
2010, pp. 2248–2251.

11. G. J. Katz and J. T. Kider, Jr, “All-pairs Shortest-paths for Large Graphs on the
GPU,” in 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hard-
ware, ser. GH ’08. Eurographics Association, 2008, pp. 47–55.

12. B. A. Hechtman and D. J. Sorin, “Exploring memory consistency for massively-
threaded throughput-oriented processors,” in International Symposium on Computer
Architecture (ISCA), 2013.

13. C. J. Hughes, C. Kim, and Y.-K. Chen, “Performance and energy implications of
many-core caches for throughput computing,” Micro, IEEE, vol. 30, no. 6, pp. 25–35,
2010.

14. E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge,
“Next-generation acceleration and code optimization for light transport in turbid
media using GPUs,” Biomedical optics express, vol. 1, no. 2, p. 658, 2010.

15. J. Nickolls and W. J. Dally, “The gpu computing era,” Micro, IEEE, vol. 30, no. 2,
pp. 56–69, 2010.

16. Intel, http://download.intel.com/newsroom/archive/
Intel-Itanium-processor-9500 ProductBrief.pdf.

17. A. Heinecke, M. Klemm, and H. Bungartz, “From GPGPU to Many-Core: Nvidia
Fermi and Intel Many Integrated Core Architecture,” Computing in Science & Engi-
neering, vol. 14, no. 2, pp. 78–83, 2012.

18. J. Lee and H. Kim, “TAP: A TLP-aware cache management policy for a CPU-GPU



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

A Survey of Techniques for Managing and Leveraging Caches in GPUs 13

heterogeneous architecture,” in 18th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2012, pp. 1–12.

19. H. Choi, J. Ahn, and W. Sung, “Reducing off-chip memory traffic by selective cache
management scheme in GPGPUs,” in 5th Annual Workshop on General Purpose Pro-
cessing with Graphics Processing Units. ACM, 2012, pp. 110–119.

20. I. Singh, A. Shriraman, W. W. Fung, M. O’Connor, and T. M. Aamodt, “Cache
coherence for GPU architectures,” in HPCA, 2013, pp. 578–590.

21. S. Mu, Y. Deng, Y. Chen, H. Li, J. Pan, W. Zhang, and Z. Wang, “Orchestrating cache
management and memory scheduling for gpgpu applications,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2013.

22. T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious wavefront schedul-
ing,” in 45th Annual IEEE/ACM International Symposium on Microarchitecture,
2012, pp. 72–83.

23. H. Pirk, S. Manegold, and M. Kersten, “Accelerating foreign-key joins using asym-
metric memory channels,” in VLDB-Workshop on Accelerating Data Management
Systems Using Modern Processor and Storage Architectures, 2011, pp. 585–597.

24. E. Blem, M. Sinclair, and K. Sankaralingam, “Challenge benchmarks that must be
conquered to sustain the GPU revolution,” Proceedings of the 4th Workshop on
Emerging Applications for Manycore Architecture, 2011.

25. W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and improving the use of
demand-fetched caches in GPUs,” in 26th ACM international conference on Super-
computing, 2012, pp. 15–24.

26. I. Reguly and M. Giles, “Efficient sparse matrix-vector multiplication on cache-based
GPUs,” in Innovative Parallel Computing (InPar), 2012, 2012, pp. 1–12.

27. Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Understanding the impact of
CUDA tuning techniques for Fermi,” in International Conference on High Perfor-
mance Computing and Simulation (HPCS). IEEE, 2011, pp. 631–639.

28. T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-Aware Warp Schedul-
ing,” in 46th IEEE/ACM International Symposium on Microarchitecture (MICRO-
46), 2013.

29. O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither More nor Less: Opti-
mizing Thread-level Parallelism for GPGPUs,” in 22nd International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’13, 2013, pp. 157–166.

30. Y. Zhang, “Performance and Power Comparisons Between Fermi and Cypress GPUs,”
Louisiana State University, Tech. Rep., 2013, master’s Thesis.

31. H. Choi, K. Hwang, J. Ahn, and W. Sung, “A simulation-based study for DRAM
power reduction strategies in GPGPUs,” in IEEE International Symposium on Cir-
cuits and Systems (ISCAS), 2012, pp. 1343–1346.

32. V. W. Lee et al., “Debunking the 100X GPU vs. CPU myth: an evaluation of through-
put computing on CPU and GPU,” in ACM SIGARCH Computer Architecture News,
vol. 38, no. 3, 2010, pp. 451–460.

33. W. W. Fung and T. M. Aamodt, “Thread block compaction for efficient SIMT con-
trol flow,” in IEEE 17th International Symposium on High Performance Computer
Architecture (HPCA), 2011, pp. 25–36.

34. S. Xiao, H. Lin, and W.-c. Feng, “Accelerating protein sequence search in a hetero-
geneous computing system,” in IEEE International Parallel & Distributed Processing
Symposium (IPDPS)1, 2011, pp. 1212–1222.

35. D. P. Playne and K. A. Hawick, “Comparison of GPU architectures for asynchronous
communication with finite-differencing applications,” Concurrency and Computation:
Practice and Experience, vol. 24, no. 1, pp. 73–83, 2012.



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

14 Sparsh Mittal

36. S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph exploration on multi-
core CPU and GPU,” in Parallel Architectures and Compilation Techniques (PACT),
2011 International Conference on. IEEE, 2011, pp. 78–88.

37. J. Wu and J. JaJa, “Optimized strategies for mapping three-dimensional FFTs onto
CUDA GPUs,” in Innovative Parallel Computing (InPar). IEEE, 2012, pp. 1–12.

38. D. Cederman, B. Chatterjee, and P. Tsigas, “Understanding the performance of con-
current data structures on graphics processors,” in Proceedings of the 18th Interna-
tional Conference on Parallel Processing, ser. Euro-Par’12. Springer-Verlag, 2012,
pp. 883–894.

39. L. H. Lourenço, D. Weingaertner, and E. Todt, “Efficient implementation of Canny
Edge Detection Filter for ITK using CUDA,” in Computer Systems (WSCAD-SSC),
2012 13th Symposium on. IEEE, 2012, pp. 33–40.

40. S. Franey and M. Lipasti, “Accelerating atomic operations on GPGPUs,” in Seventh
IEEE/ACM International Symposium on Networks on Chip (NoCS), 2013, pp. 1–8.

41. M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A fully integrated multi-
CPU, GPU and memory controller 32nm processor,” in IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC), 2011, pp. 264–266.

42. V. Mekkat, A. Holey, P.-C. Yew, and A. Zhai, “Managing shared last-level cache in
a heterogeneous multicore processor,” in 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2013, pp. 225–234.

43. Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “CPU-assisted GPGPU on fused CPU-
GPU architectures,” in IEEE 18th International Symposium on High Performance
Computer Architecture (HPCA), 2012, pp. 1–12.

44. J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S. K. Rein-
hardt, and D. A. Wood, “Heterogeneous System Coherence for Integrated CPU-GPU
Systems,” in 46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-46), 2013.

45. A. Sankaranarayanan, E. Ardestani, J. Briz, and J. Renau, “An energy efficient
GPGPU memory hierarchy with tiny incoherent caches,” in IEEE International Sym-
posium on Low Power Electronics and Design (ISLPED), 2013, pp. 9–14.

46. M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally, “Unifying
primary cache, scratch, and register file memories in a throughput processor,” in
Annual IEEE/ACM International Symposium on Microarchitecture, 2012, pp. 96–106.

47. A. Lashgar, A. Baniasadi, and A. Khonsari, “Inter-Warp Instruction Temporal Lo-
cality in Deep-Multithreaded GPUs,” in Architecture of Computing Systems–ARCS.
Springer Berlin Heidelberg, 2013, pp. 134–146.

48. I. Chakroun, M. Mezmaz, N. Melab, and A. Bendjoudi, “Reducing thread divergence
in a GPU-accelerated branch-and-bound algorithm,” Concurrency and Computation:
Practice and Experience, 2012.

49. T.-K. Yen, H.-K. Kuo, and B.-C. Lai, “A distributed thread scheduler for dynamic
multithreading on throughput processors,” in International Symposium on VLSI De-
sign, Automation, and Test (VLSI-DAT), 2013, pp. 1–4.

50. A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “OWL: cooperative thread array aware scheduling
techniques for improving GPGPU performance,” in 18th International conference on
Architectural support for programming languages and operating systems (ASPLOS).
ACM, 2013, pp. 395–406.

51. A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R.
Das, “Orchestrated Scheduling and Prefetching for GPGPUs,” in 40th Annual Inter-
national Symposium on Computer Architecture, ser. ISCA ’13, 2013, pp. 332–343.



June 3, 2014 12:49 WSPC/INSTRUCTION FILE GPGPU˙Cache˙Survey

A Survey of Techniques for Managing and Leveraging Caches in GPUs 15

52. Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser, “Many-
core vs. many-thread machines: Stay away from the valley,” Computer Architecture
Letters, vol. 8, no. 1, pp. 25–28, 2009.

53. J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for integrated branch
and memory divergence tolerance,” in 37th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’10, 2010, pp. 235–246.

54. A. Al Maashri, G. Sun, X. Dong, V. Narayanan, and Y. Xie, “3D GPU architec-
ture using cache stacking: Performance, cost, power and thermal analysis,” in IEEE
International Conference on Computer Design (ICCD), 2009, pp. 254–259.

55. Y. Wang, S. Roy, and N. Ranganathan, “Run-time power-gating in caches of GPUs for
leakage energy savings,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2012, march 2012, pp. 300 –303.

56. J. Meng and K. Skadron, “Avoiding cache thrashing due to private data placement in
last-level cache for manycore scaling,” in IEEE International Conference on Computer
Design (ICCD), 2009, pp. 282–288.

57. M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular pro-
grams on GPUs,” in IEEE International Symposium on Workload Characterization
(IISWC), 2012, pp. 141–151.

58. S. Mittal, Architectural Techniques For Managing Non-volatile Caches. Germany:
Lambert Academic Publishing (LAP), 2013.

59. M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A Locality-Aware Memory Hierarchy
for Energy-Efficient GPU Architectures,” in International Symposium on Microarchi-
tecture (MICRO), 2013.

60. S. Mittal, “Dynamic cache reconfiguration based techniques for improving cache en-
ergy efficiency,” Ph.D. dissertation, Iowa State University, 2013.

61. T. Puzak, “Cache memory design,” Ph.D. dissertation, University of Massachusetts,
1985.

62. S. Mittal, “A survey of architectural techniques for improving cache power efficiency,”
Sustainable Computing: Informatics and Systems, 2013.

63. H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “Demys-
tifying GPU microarchitecture through microbenchmarking,” in IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS), 2010, pp.
235–246.

64. V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear algebra,”
in ACM/IEEE conference on Supercomputing, 2008, p. 31.

65. J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and
V. J. Reddi, “GPUWattch: Enabling Energy Optimizations in GPGPUs,” in 40th
Annual International Symposium on Computer Architecture, ser. ISCA ’13, 2013, pp.
487–498.

66. J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A Performance Analysis Framework
for Identifying Potential Benefits in GPGPU Applications,” in 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser. PPoPP ’12, 2012,
pp. 11–22.


