
OpenMP to GPGPU: A Compiler Framework for Automatic
Translation and Optimization

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann

School of ECE, Purdue University
West Lafayette, IN, 47907, USA

{lee222,smin,eigenman}@purdue.edu

Abstract

GPGPUs have recently emerged as powerful vehicles for general-
purpose high-performance computing. Although a new Compute
Unified Device Architecture (CUDA) programming model from
NVIDIA offers improved programmability for general computing,
programming GPGPUs is still complex and error-prone. This pa-
per presents a compiler framework for automatic source-to-source
translation of standard OpenMP applications into CUDA-based
GPGPU applications. The goal of this translation is to further im-
prove programmability and make existing OpenMP applications
amenable to execution on GPGPUs. In this paper, we have iden-
tified several key transformation techniques, which enable efficient
GPU global memory access, to achieve high performance. Experi-
mental results from two important kernels (JACOBI and SPMUL)
and two NAS OpenMP Parallel Benchmarks (EP and CG) show
that the described translator and compile-time optimizations work
well on both regular and irregular applications, leading to perfor-
mance improvements of up to 50X over the unoptimized translation
(up to 328X over serial on a CPU).

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers, Optimization

General Terms Algorithms, Design, Performance

Keywords OpenMP, GPU, CUDA, Automatic Translation, Com-
piler Optimization

1. Introduction

Hardware accelerators, such as General-Purpose Graphics Process-
ing Units (GPGPUs), are promising parallel platforms for high-
performance computing. While a GPGPU provides an inexpensive,
highly parallel system to application developers, its programming
complexity poses a significant challenge for developers. There has
been growing research and industry interest in lowering the barrier
of programming these devices. Even though the CUDA program-
ming model [4], recently introduced by NVIDIA, offers a more
user-friendly interface, programming GPGPUs is still complex and
error-prone, compared to programming general-purpose CPUs and
parallel programming models such as OpenMP.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

OpenMP [13] has established itself as an important method and
language extension for programming shared-memory parallel com-
puters. There are several advantages of OpenMP as a programming
paradigm for GPGPUs.

• OpenMP is efficient at expressing loop-level parallelism in ap-
plications, which is an ideal target for utilizing GPU’s highly
parallel computing units to accelerate data-parallel computa-
tions.

• The concept of a master thread and a pool of worker threads
in OpenMP ’s fork-join model represents well the relationship
between the master thread running in a host CPU and a pool of
threads in a GPU device.

• Incremental parallelization of applications, which is one of
OpenMP’s features, can add the same benefit to GPGPU pro-
gramming.

The CUDA programming model provides a general-purpose
multi-threaded Single Instruction, Multiple Data (SIMD) model for
implementing general-purpose computations on GPUs. Although
the unified processor model in CUDA abstracts underlying GPU
architectures for better programmability, its unique memory model
is exposed to programmers to some extent. Therefore, the manual
development of high-performance codes in CUDA is more involved
than in other parallel programming models such as OpenMP [2].

In this project, we developed an automatic OpenMP to GPGPU
translator to extend the ease of creating parallel applications with
OpenMP to GPGPU architectures. Due to the similarity between
OpenMP and CUDA programming models, we were able to con-
vert OpenMP parallelism, especially loop-level parallelism, into
the forms that best express parallelism in CUDA. However, the
baseline translation of existing OpenMP programs does not al-
ways yield good performance. Performance gaps are due to ar-
chitectural differences between traditional shared-memory multi-
processors (SMPs), served by OpenMP, and stream architectures,
adopted by most GPUs. Even though the OpenMP programming
model is platform-independent, most existing OpenMP programs
were tuned to traditional shared-memory multiprocessors. We refer
to stream architectures as those that operate on a large data space
(or stream) in parallel, typically in an SIMD manner and tuned
for fast access to regular, consecutive elements of the data stream.
In GPU architectures, optimization techniques designed for CPU-
based algorithms may not perform well [7]. Also, GPUs face bigger
challenges in handling irregular applications than SMPs, because of
the stream architectures’ preference for regular access patterns.

To address these issues, we propose compile-time optimiza-
tion techniques and an OpenMP to GPGPU translation system,
consisting of two phases: The OpenMP stream optimizer and the
OpenMP-to-GPGPU (O2G) baseline translator with CUDA opti-

101

OpenMP
Stream

Optimizer

O2G
Baseline Translator
+ CUDA Optimizer

OpenMP

Input

Program

Optimized

OpenMP

for GPU

CUDA

GPU

Program

Phase 1 Phase 2

Figure 1. Two-phase OpenMP-to-GPGPU compilation system.
Phase 1 is an OpenMP stream optimizer to generate optimized
OpenMP programs for GPGPU architectures, and phase 2 is an
OpenMP-to-GPGPU (O2G) translator with CUDA optimizations.

mizer, shown in Figure 1. The OpenMP stream optimizer trans-
forms traditional CPU-oriented OpenMP programs into OpenMP
programs optimized for GPGPUs, using our high-level optimiza-
tion techniques: parallel loop-swap and loop-collapsing. The O2G
translation converts the output of the OpenMP stream optimizer
into CUDA GPGPU programs. The O2G CUDA optimizer exploits
CUDA-specific features.

We evaluate the baseline translation methods and the compile-
time optimization techniques using two kernel benchmarks and
two NPB3.0-OMP NAS Parallel Benchmarks, which have both
regular and irregular applications. Experimental results show that
the proposed compile-time optimization techniques can boost the
performance of translated GPGPU programs up to 50 times over
the unoptimized GPGPU translations.

This paper makes the following contributions:

• We present the first compiler framework for automatic source-
to-source translation of standard OpenMP applications into
CUDA-based GPGPU applications. It includes (1) the inter-
pretation of OpenMP semantics under the CUDA programming
model, (2) an algorithm to extract regions to be executed on
GPUs, and (3) an algorithm for reducing CPU-GPU memory
transfers.

• We have identified several compile-time transformation tech-
niques to optimize GPU global memory access: (1) parallel
loop-swap and matrix transpose techniques for regular appli-
cations and (2) loop collapsing for irregular applications.

• We have evaluated the proposed translator and optimizations
on both applications (NAS OpenMP Benchmarks EP and CG)
and kernels, resulting in performance improvements up to 50X
(12X on average) over the unoptimized translations (up to 328X
over serial on the CPU).

The rest of this paper is organized as follows: Section 2 provides
an overview of the CUDA programming model, and Section 3
presents the baseline OpenMP to CUDA GPGPU translator. In
Section 4, various compiler techniques to optimize the performance
of GPGPU programs are explained. Experimental results are shown
in Section 5, and related work and conclusion are presented in
Section 6 and Section 7, respectively.

2. Overview of the CUDA Programming Model

The CUDA programming model is a general-purpose multi-threaded
SIMD model for GPGPU programming. In the CUDA program-
ming model, a GPU is viewed as a parallel computing coproces-
sor, which can execute a large number of threads concurrently. A
CUDA program consists of a series of sequential and parallel exe-
cution phases. Sequential phases have little or no parallelism, and
thus they are executed on the CPU as host code. Parallel phases
that exhibit rich data parallelism are implemented as a set of kernel
functions, which are executed on the GPU. Each kernel function

specifies GPU code to be executed in an SIMD fashion, by a num-
ber of threads invoked for each parallel phase.

In the CUDA model, threads are grouped as a grid of thread
blocks, each of which is mapped to a multiprocessor in the GPU
device. In CUDA-supported GPU architectures, more than one
thread block can be assigned to a multiprocessor, and threads within
each thread block are mapped to SIMD processing units in the
multiprocessor. The number of thread blocks and the number of
threads per thread block are specified through language extensions
at each kernel invocation.

The CUDA memory model has an off-chip global memory
space, which is accessible by all threads, an off-chip local memory
space, which is private to each thread, a fast on-chip shared mem-
ory space, which is shared only by threads in the same thread block,
and registers, which are private to each thread. The CUDA mem-
ory model also has separate memory spaces to exploit specialized
hardware memory resources: constant memory with a dedicated
small cache for read-only global data that are frequently accessed
by many threads across multiple thread blocks and texture mem-
ory with a dedicated small cache for read-only array data accessed
through built-in texture functions. The shared memory and the reg-
ister bank in a multiprocessor are dynamically partitioned among
the active thread blocks running on the multiprocessor. Therefore,
register and shared memory usages per thread block can be a limit-
ing factor preventing full utilization of execution resources.

In the CUDA programming model, a host CPU and a GPU
device have separate address spaces. For a CPU to access GPU
data, the CUDA model provides an API for explicit GPU memory
management, including functions to transfer data between a CPU
and a GPU.

One limitation of the CUDA model is the lack of efficient
global synchronization mechanisms. Synchronization within a
thread block can be enforced by using the syncthreads() run-
time primitive, which guarantees that all threads in the same thread
block have reached the same program point, and data modified by
threads in the same thread block are visible to all threads in the
same block. However, synchronization across thread blocks can be
accomplished only by returning from a kernel call, after which all
threads executing the kernel function are guaranteed to be finished,
and global memory data modified by threads in different thread
blocks are guaranteed to be globally visible.

3. Baseline Translation of OpenMP into CUDA

This section presents a baseline translator, which performs a
source-to-source conversion of an OpenMP program to a CUDA-
based GPGPU program. The translation consists of several steps:
(1) interpreting OpenMP semantics under the CUDA programming
model and identifying kernel regions (code sections executed on
the GPU), (2) outlining (extracting into subroutines) kernel re-
gions and transforming them into CUDA kernel functions, and (3)
analyzing shared data that will be accessed by the GPU and insert-
ing necessary memory transfer calls. We have implemented these
translation steps using the Cetus compiler infrastructure [8].

3.1 Interpretation of OpenMP Semantics under the CUDA
Programming Model

OpenMP directives can be classified into four categories:
(1) Parallel constructs – these are the fundamental constructs

that specify parallel regions. The compiler identifies these regions
as candidate kernel regions, outlines them, and transforms them
into GPU kernel functions.

(2) Work-sharing constructs (omp for, omp sections) – the com-
piler interprets these constructs to partition work among threads on
the GPU device. Each iteration of an omp for loop is assigned to a
thread, and each section of omp sections is mapped to a thread.

102

#pragma omp parallel

{

For (k=0; k<N; k++)

{

//other codes1

#pragma omp for

For (i=0; i<N1; i++) {…}

//other codes 2

#pragma omp for

For (j=0; j<N2, j++) {…}

}

}

#pragma omp parallel

{

For (k=0; k<N; k++)

{

//other codes1

#pragma omp for

For (i=0; i<N1; i++) {…}

//other codes 2

#pragma omp for

For (j=0; j<N2, j++) {…}

}

}

sp0

sp1

sp2

sp3

sp0

sp1

sp2

sp3

sp4KR1

KR2 KR2

KR1’

(a) Initial split at synchronization points (b) Further split at multiple entry points

Figure 2. Parallel region example showing how multiple splits are applied to identify kernel regions. sp0 - sp4 are split points enforced to
preserve OpenMP semantics, and KR1’ and KR2 are kernel regions to be converted into kernel functions.

(3) Synchronization constructs (omp barrier, omp flush, omp
critical, etc.) – these constructs constitute split points, points where
a parallel region must be split into two sub-regions; each of the
resulting sub-regions becomes a kernel region. This split is required
to enforce a global synchronization in the CUDA programming
model, as explained in Section 2.

(4) Directives specifying data properties (omp shared, omp
private, omp threadprivate, etc.) – these constructs are used to
map data into GPU memory spaces. As mentioned in Section 2,
the CUDA memory model requires explicit memory transfers for
threads invoked for a kernel function to access data on the CPU.
OpenMP shared data are shared by all threads, and OpenMP pri-
vate data are accessed by a single thread. In the CUDA memory
model, the shared data can be mapped to global memory, and the
private data can be mapped to registers or local memory assigned
for each thread. OpenMP threadprivate data are private to each
thread, but they have global lifetimes, as do static data. The se-
mantics of threadprivate data can be implemented by expansion,
which allocates copies of the threadprivate data on global mem-
ory for each thread. Because the CUDA memory model allows
several specialized memory spaces, certain data can take advan-
tage of the specialized memory resources; read-only shared data
can be assigned to either constant memory or texture memory to
exploit temporal locality through dedicated caches, and frequently
reused shared data can use fast memory spaces, such as registers
and shared memory, as a cache.

3.2 OpenMP to CUDA Baseline Translation

The previous subsection described the interpretation of OpenMP
semantics under the CUDA programming model. The next step
performs the actual translation into a CUDA program. A simple
translation scheme might convert all code sections specified by
work-sharing constructs into kernel functions, since work-sharing
constructs contain the only true parallel code in OpenMP. Other
sub-regions, within an omp parallel but outside of work-sharing
constructs, are executed by one thread (omp master and omp sin-

gle), serialized among threads (omp ordered and omp critical), or
executed redundantly among participating threads. However, our
compiler includes some of these sub-regions into kernel regions,
thus redundantly executing them; this method can reduce expen-
sive memory transfers between the CPU and the GPU.

With these concepts in mind, we will explain the baseline trans-
lation schemes in the following subsections.

3.2.1 Identifying Kernel Regions

The compiler targets OpenMP parallel regions as potential kernel
regions. As explained above, these regions may be split at synchro-
nization constructs. Among the resulting sub-regions, the ones con-
taining at least one work-sharing construct become kernel regions.

The translator must consider that split operations may break the
control flow semantics of the OpenMP programming model, if the
split points lie within control structures. In the OpenMP program-
ming model, most directives work only on a structured block – a
block of code with one entry and one exit point. If a parallel re-
gion is split in the middle of a control structure, the resulting kernel
regions may become an unstructured block. Figure 2 (a) shows an
example where a split operation would result in incorrect control
flow. In the OpenMP programming model, a flush synchronization
construct is implied at the entry to and exit from parallel regions
(sp0 and sp3 in Figure 2 (a)) and at the exit from work-sharing re-
gions (sp1 and sp2), unless a nowait clause is present. The split
operation identifies two kernel regions: KR1 and KR2. Because the
first kernel region, KR1, has multiple entry points, outlining this re-
gion will break control flow semantics. To solve this problem, our
translator splits KR1 further at multiple entry points. In Figure 2
(b), an additional split is applied at sp4, turning KR1’ into a struc-
tured block with correct control flow.

The overall algorithm to identify kernel regions is shown in Fig-
ure 3. The idea behind this top-down splitting algorithm is to merge
as many work-sharing regions as possible to reduce overheads by
kernel invocations and CPU-GPU data transfers.

3.2.2 Transforming a Kernel Region into a Kernel Function

The translator outlines the identified kernel regions into CUDA
kernel functions and replaces the original regions with calls to these
functions.

At this stage, two important translation steps are involved: work
partitioning and data mapping. For work partitioning, iterations of
omp for loops are partitioned among threads using the rules of the
OpenMP schedule clause, each section in omp sections is mapped
to a thread, and remaining code sections in the kernel region are
executed redundantly by all threads. The compiler decides the
number of threads to be invoked for the kernel execution as the
maximum number of threads needed for each work-sharing sub-
region contained in the kernel region. Once the compiler figures
out the total number of threads, the number of thread blocks is also

103

Identifying kernel regions

Input: R /* a set of OpenMP parallel regions */

Output: KR /* a set of identified GPU kernel regions */

Foreach R(i) in R

Foreach split point in R(i)

Divide R(i) into two sub-regions at the split point

Build cfg, a control flow graph for R(i)

Foreach sub-region SR(j) in R(i)

Foreach entry/exit points other than the one at the top/bottom of SR(j)

Divide SR(j) into two sub-sub-regions at such entry/exit points

Foreach sub-sub-region SSR(k) in SR(j)

If SSR(k) contains an OpenMP work-sharing construct

Add SSR(k) to KR set

Figure 3. Algorithm to identify kernel regions

calculated using default thread block size, which can be set through
a command line option.

After work partitioning, the compiler constructs the sets of
shared data and private data used in the kernel region, using the
information specified by data property constructs. In the OpenMP
programming model, data is shared by default, including data with
global scope or with heap-allocated storage. For the data that are
referenced in the region, but not in a construct, the compiler can
determine their sharing attributes using OpenMP data sharing rules.
Basic data mapping follows the rule explained in Section 3.1;
shared data are mapped to global memory, threadprivate data are
replicated and allocated on global memory for each thread, and
private data are mapped to register banks assigned for each threads.

As a part of the data mapping step, the compiler inserts nec-
essary memory transfer calls for the shared and threadprivate data
accessed by each kernel function. A basic strategy is to move all the
shared data that are accessed by kernel functions, and copy back
the shared data that are modified by kernel functions. (threadpri-
vate data transfers are decided by OpenMP semantics.) However,
not all shared data are used by the CPU after the kernel completes.
Also, data in the GPU global memory are persistent across kernel
calls. Therefore, not all these data transfers are needed. The com-
piler optimization technique to eliminate redundant data transfers
will be discussed in the following section.

Additionally, during this translation, if a omp for loop contains
a reduction clause, the compiler replaces the reduction operation
with the two-level tree reduction form proposed in [5]: a local
parallel reduction within each thread block, followed by a host-side
global reduction across thread blocks.

In the baseline translation scheme, omp critical regions are ex-
ecuted on the host CPU since the omp critical construct involves
global synchronizations, which are expensive on GPU kernel ex-
ecutions due to kernel splits, and the semantic of omp critical
requires serialized execution of the specified region. However, if
the critical regions have reduction forms, the same transformation
technique used to interpret a reduction clause [5] can be applied.

4. Compiler Optimizations

We describe our two-phase optimization system. The first is the
OpenMP stream optimizer, and the second is O2G (OpenMP-to-
GPGPU) CUDA optimizer.

4.1 OpenMP Stream Optimizations

Both the OpenMP and GPGPU models are suitable for expressing
data parallelism. However, there are important differences. GPUs
are designed as massively parallel machines for concurrent execu-
tion of thousands of threads, each executing the same code on dif-
ferent data (SIMD). GPU threads are optimized for fine-grain data
parallelism, which is characterized by regular memory accesses and
regular program control flow. On the other hand, OpenMP threads
are more autonomous, typically execute coarse-grain parallelism,
and are able to handle MIMD computation.

The OpenMP stream optimizer addresses these differences by
transforming the traditional CPU-oriented OpenMP programs into
GPU-style OpenMP programs. One benefit of this high-level trans-
lation method is that the user can see the optimization result at the
OpenMP source code level.

4.1.1 Intra-Thread vs. Inter-Thread Locality

In OpenMP, data locality is often exploited within a thread (intra-
thread locality), but less so among threads that are executed on
different CPU nodes (inter-thread locality). This is because spatial
data locality within a thread can increase cache utilization, but, lo-
cality among OpenMP threads on different CPUs of cache-coherent
shared-memory multiprocessors can incur false-sharing. Therefore,
in OpenMP, parallel loops are usually block-distributed, rather than
in a cyclic manner.

In contrast to OpenMP, inter-thread locality between GPU
threads plays a critical role in optimizing off-chip memory ac-
cess performance. For example, in CUDA, GPU threads that ac-
cess the off-chip memory concurrently can coalesce their memory
accesses to reduce the overall memory access latency. These coa-
lesced memory accesses can be accomplished if such GPU threads
exhibit inter-thread locality where adjacent threads access adjacent
locations in the off-chip memory. In the OpenMP form, a cyclic
distribution of parallel loops can expose inter-thread locality.

The following subsections describe our two compile-time op-
timization techniques, parallel loop-swap and loop-collapsing, to
enhance inter-thread locality of OpenMP programs on GPGPUs.

4.1.2 Parallel Loop-Swap for Regular Applications

In this section, we introduce a parallel loop-swap optimization
technique to improve the performance of regular data accesses in
nested loops. Previously, we have described how cyclic distribution
can improve inter-thread locality in a singly nested loop via an

104

#pragma omp parallel for
for (i=1; i<=SIZE; i++) {

for (j=1; j<=SIZE; j++)
a[i][j] = (b[i-1][j] + b[i+1][j]

+ b[i][j-1] + b[i][j+1])/4;
}

(a) input OpenMP code

#pragma omp parallel for
for (i=1; i<=SIZE; i++) {
#pragma cetus parallel

for (j=1; j<=SIZE; j++)
a[i][j] = (b[i-1][j] + b[i+1][j]

+ b[i][j-1] + b[i][j+1])/4;
}

(b) Cetus-parallelized OpenMP code

#pragma omp parallel for schedule(static, 1)
for (j=1; j<=SIZE; j++)

for (i=1; i<=SIZE; i++) {
a[i][j] = (b[i-1][j] + b[i+1][j]

+ b[i][j-1] + b[i][j+1])/4;
}
(c) OpenMP output by OpenMP stream optimizer

// tid is a GPU thread identifier
for (tid=1; tid<=SIZE; tid++)

for (i=1; i<=SIZE; i++) {
a[i][tid] = (b[i-1][tid] + b[i+1][tid]

+ b[i][tid-1] + b[i][tid+1])/4;
}
(d) internal representation in O2G translator

// Each iteration of the parallel-for loop
// is cyclic-distributed to each GPU thread
if (tid<=SIZE) {

for (i=1; i<=SIZE; i++) {
a[i][tid] = (b[i-1][tid] + b[i+1][tid]

+ b[i][tid-1] + b[i][tid+1])/4;
}

}
(e) GPU code

Figure 4. Regular application example from JACOBI, to show
how parallel loop-swap is applied to a nested parallel loop to
improve inter-thread locality

OpenMP schedule(static, 1) clause. However, in a nested
loop, we need advanced compile-time techniques to achieve this
goal. For example, the input OpenMP code shown in Figure 4 (a)
has a doubly nested loop, where the outer loop is parallelized with
a block distribution of iterations, which prevents the O2G translator
from applying the coalesced memory optimization to the accessed
arrays.

To solve this problem, our OpenMP stream optimizer performs
a parallel loop-swap transformation. We define continuous memory
access as a property of an array in a loop-nest, where the array sub-
script expression increases monotonically with a stride of one, and
the adjacent elements accessed by the subscript expression are con-
tinuous in the memory. An array with continuous memory access is
a candidate for the coalesced memory access optimization.

#pragma omp parallel for
for (i=0; i<NUM_ROWS; i++) {

for (j=rowptr[i]; j<rowptr[i+1]; j++)
w[i] += A[j]*p[col[j]];

}
(a) input OpenMP code

#pragma omp parallel for
for (i=0; i<NUM_ROWS; i++) {

#pragma cetus parallel reduction(+:w[i])
for (j=rowptr[i]; j<rowptr[i+1]; j++)
w[i] += A[j]*p[col[j]];

}
(b) Cetus-parallelized OpenMP code

#pragma omp parallel
#pragma omp for collapse(2) schedule(static, 1)
for (i=0; i<NUM_ROWS; i++) {

for (j=rowptr[i]; j<rowptr[i+1]; j++)
w[i] += A[j]*p[col[j]];

}
(c) OpenMP output by OpenMP stream optimizer

// collapsed loop
for (tid1=0; tid1<rowptr[NUM_ROWS]; tid1++)

l_w[tid1] = A[tid1]*p[col[tid1]];

// For each GPU thread, a new thread-id, tid2,
// is assigned for the reduction loop
for (tid2=0; tid2<NUM_ROWS; tid2++) {

for (j=rowptr[tid2]; j<rowptr[tid2+1]; tid2++)
w[tid2] += l_w[j];

}
(d) internal representation in O2G translator

if (tid1<rowptr[NUM_ROWS]) {
l_w[tid1] = A[tid1]*p[col[tid1]];

}
if (tid2<NUM_ROWS) {

for (j=rowptr[tid2]; j<rowptr[tid2+1]; j++)
w[tid2] += l_w[j];

}
(e) GPU code

Figure 5. Example of an irregular application, CG NAS Parallel
Benchmark. Loop-collapsing eliminates irregular control flow and
improves inter-thread locality

The OpenMP stream optimizer performs parallel loop-swap
in five steps: (1) for a given OpenMP parallel loop nest with an
OpenMP work-sharing construct on loop L, the compiler finds a
set of candidates, arrays with continuous memory access within
the loop-nest. (2) The compiler selects the loop, L∗, whose index
variable increments the subscript expression of the array accesses
in candidates by one. (3) The compiler applies parallelization tech-
niques to find all possible parallel loops. (4) If all the loops between
L and (including) L∗ can be parallelized, these two loops are in-
terchanged. (5) An OpenMP parallel work-sharing construct with
cyclic distribution is added to loop L∗.

Figure 4 (b) shows the result of step 3, where a Cetus paral-
lel pragma is added to the discovered parallel loop. Figure 4 (c)
illustrates the result of the parallel loop-swap transformation per-

105

formed by the OpenMP stream optimizer. The O2G translator con-
verts this transformed OpenMP code into the internal representa-
tion, as shown in Figure 4 (d). Figure 4 (e) shows the CUDA GPU
code.

4.1.3 Loop Collapsing for Irregular Applications

Irregular applications pose challenges in achieving high perfor-
mance on GPUs because stream architectures are optimized for reg-
ular program patterns. In this section, we propose a loop-collapsing
technique, which improves the performance of irregular OpenMP
applications on such architectures.

There are two main types of irregular behavior in parallel pro-
grams: (1) data access patterns among threads due to indirect ar-
ray accesses and (2) different control flow paths taken by different
threads, such as in conditional statements. Irregular data accesses
prevent the compiler from applying the memory coalescing tech-
nique because it cannot prove continuous memory access in the
presence of indirect references. Irregular control flow prevents the
threads from executing fully concurrently on the GPU’s SIMD pro-
cessors.

Figure 5 (a) shows one of the representative irregular program
patterns in scientific applications. It exhibits both irregular data
access patterns caused by the indirect array accesses in A, p, and
col and control flow divergence because the inner loop depends
on the value of array rowptr; different GPU threads will execute
different numbers of inner loop iterations. Our first optimization
technique, parallel loop-swap, cannot be applied to this irregular
case because the dependency prevents loop interchange.

In this example, the compiler tries to collapse the doubly nested
loop into a single loop and prove that the accesses to array A and
col are continuous memory accesses. This technique eliminates
both irregular data accesses to arrays A and col as well as control
flow divergence in the inner loop. To prove the continuous memory
access property to array A and col, one needs to prove that i,
rowptr, and j are all monotonically increasing, and i and j are
increasing with stride one. Since both i and j are loop index
variables, this proof can be done at compile-time. However, the
monotonicity of array rowptr cannot be proven at compile-time
if it is read from a file. In that case, the compiler inserts a runtime
check, after the array rowptr is defined, to verify monotonicity.

The loop-collapsing optimization is implemented in three steps.
First, for each perfectly nested loop in the OpenMP source, the
OpenMP stream optimizer finds all possible parallel loops in a
given nest (Figure 5 (b)). Second, among parallel loops, the opti-
mizer performs monotonicity checks to identify the parallel loops
eligible for loop-collapsing. Third, the optimizer annotates an
OpenMP clause collapse (k) to indicate that the first k nested loops
can be collapsed (Figure 5 (c)). The O2G translator reads this op-
timized OpenMP program and transforms the loops into a single
loop. Figure 5 (d) shows two loops in the internal representation of
the O2G translator. The first loop is the output of loop-collapsing,
where each GPU thread executes one iteration of the collapsed
loop. The second loop is for handling the reduction pattern recog-
nized in Figure 5 (b).

The loop-collapsing transformation improves the performance
of irregular OpenMP applications on GPUs in three ways:

• The amount of parallel work (the number of iterations, to be
executed by GPU threads) is increased.

• Inter-thread locality is increased, especially for cases where
parallel loop-swap cannot be applied.

• Control flow divergence is eliminated, such that adjacent
threads can be executed concurrently in an SIMD manner.

4.2 O2G CUDA Optimization Techniques

This section describes the CUDA optimizer, a collection of opti-
mization techniques for translating OpenMP programs into actual
GPGPU programs. These transformations differ from those in the
OpenMP stream optimizer in that they are specific to features of
the CUDA memory architecture.

4.2.1 Caching of Frequently Accessed Global Data

In the CUDA model, the global memory space is not cached. There-
fore, to exploit temporal locality, frequently accessed global data
must be explicitly loaded into fast memory spaces, such as regis-
ters and shared memory. In CUDA, exploiting temporal locality
both within threads (intra-thread locality) and across threads (inter-
thread locality) is equally important. Shared memory is shared by
threads in a thread block, and the dedicated caches for texture mem-
ory and constant memory are shared by all threads running on the
same multiprocessor.

In traditional shared-memory systems, temporal locality across
threads is automatically exploited by the hardware caches. There-
fore, in the OpenMP programming model, most existing caching-
related optimizations focus on temporal locality within a thread
only. However, under the CUDA memory model, software cache
management for both intra- and inter-thread locality is important.

Our compiler performs the requisite data flow analysis to iden-
tify temporal locality of global data and inserts the necessary
caching code. Table 1 shows caching strategies for each global
data type. The baseline translator maps globally shared data into
global memory, but depending on the data attributes, they can be
cached in specific fast memory spaces, as shown in the table.

Table 1. Caching strategies for globally shared data with temporal
locality. In A(B) format, A is a primary storage for caching, but B
may be used as an alternative. Reg denotes Registers, CC means
Constant Cache, SM is Shared Memory, and TC represents Texture
Cache.

Temporal locality
Intra-thread Inter-thread

R/O shared scalar Reg (CC or SM) CC (SM)
R/W shared scalar Reg (SM) SM
R/O shared array TC (SM) TC (SM)
R/W shared array SM SM

Another CUDA-specific caching optimization is to allocate a
CUDA-private array in shared memory if possible. In the CUDA
memory model, a device-local array is allocated in local memory,
which is a part of the off-chip DRAM; accessing the local memory
is as slow as accessing global memory. If the private array size
is small, it may be allocated on shared memory using an array
expansion technique.

However, complex interactions among limited hardware re-
sources may cause performance effects that are difficult to control
statically. Therefore, our compiler framework provides language
extensions and command line options for a programmer or an au-
tomatic tuning system to guide these optimizations.

4.2.2 Matrix Transpose for Threadprivate Array

The OpenMP-to-GPGPU translator must also handle the mapping
of threadprivate data. When threadprivate array is placed into
global memory, the translator implements correct semantics by ex-
panding the threadprivate array for each thread. Row-wise expan-
sion is a common practice to preserve intra-thread locality in tra-
ditional shared-memory systems. However, row-wise array expan-
sion would cause uncoalesced memory accesses in GPUs. In this
case, parallel loop-swap can not be applied due to dependencies or
threadprivate semantics.

106

(a) JACOBI kernel (b) NAS Parallel Benchmark EP

GPU Performance of JACOBI

0

5

10

15

20

25

30

2048 4096 8192 12288

Input Matrix Size N (N by N matrix)

S
p

e
e
d

u
p

Baseline

OO(PLS)

GPU Performance of EP

0

50

100

150

200

250

300

350

S W A B C

Input Data Class

S
p

e
e
d

u
p

Baseline

CO(MT)

CO(MT + LU)

CO(MT + PAA)

CO(MT + LU + PAA)

Figure 6. Performance of Regular Applications (speedups are over serial on the CPU). Baseline is the baseline translation without
optimization; the other bars measure the following OpenMP optimizations (OO) or CUDA optimizations (CO): Parallel Loop-Swap (PLS),
Matrix Transpose (MT), Loop Unrolling (LU), and private array allocation on shared memory using array expansion (PAA). The performance
irregularity shown in the left figure is caused by reproducible, inconsistent behavior of the CPU execution; the average CPU execution time
per array element is longer at N = 8192 than others.

The matrix transpose transformation solves this problem by
converting the array into a form where the threadprivate array
is expanded in a column-wise manner. Matrix transpose changes
intra-thread array access patterns from row-wise to column-wise,
so that adjacent threads can access adjacent data, as needed for
coalesced accesses.

4.2.3 Memory Transfer Reduction

A final, important step of the actual OpenMP to GPGPU transla-
tion is the insertion of CUDA memory transfer calls for the shared
and threadprivate data accessed by each kernel function. The base-
line translation inserts memory transfer calls for all shared data ac-
cessed by the kernel functions. However, not all of these data moves
between the CPU and the GPU are needed. To remove unnecessary
transfers, our compiler performs a data flow analysis; for each ker-
nel region, (1) the compiler finds a set of shared data read in the
kernel (UseSet) and a set of shared data written in the kernel (Def-
Set), (2) for each variable in the UseSet, if its reaching definition
is in the host code, it should be transferred from the CPU, and (3)
for each variable in the DefSet, if the variable is used in the host
code, it should be copied back to the CPU after the kernel returns.
The algorithm reduces unnecessary data transfers between the CPU
and the GPU for each kernel function. Currently, the algorithm per-
forms conservative array-name only analysis for shared array data.
Our experimental results show that this analysis is able to reduce
memory transfers sufficiently.

5. Performance Evaluation

This section presents the performance of the presented OpenMP to
GPGPU translator and compiler optimizations. In our experiments,
two regular OpenMP programs (JACOBI kernel and NAS OpenMP
Parallel Benchmark EP) and two irregular OpenMP programs (SP-
MUL kernel and NAS OpenMP Parallel Benchmark CG) were
transformed by the translator. The baseline translations and opti-
mizations were performed automatically by the compiler frame-

work, but some advanced compiler optimizations using interproce-
dural analysis were applied manually.

We used an NVIDIA Quadro FX 5600 GPU as an experimental
platform. The device has 16 multiprocessors with a clock rate of
1.35 GHz and 1.5GB of DRAM. Each multiprocessor is equipped
with 8 SIMD processing units, totaling 128 processing units. The
device is connected to a host system consisting of Dual-Core AMD
3 GHz Opteron processors. Because the tested GPU does not sup-
port double precision, we manually converted the OpenMP source
programs into single precision before feeding them to our transla-
tor. (NVIDIA recently announced GPUs supporting double preci-
sion computations.) We compiled the translated CUDA programs
with the NVIDIA CUDA Compiler (NVCC) to generate device
code. We compiled the host programs with the GCC compiler ver-
sion 4.2.3, using option -O3.

5.1 Performance of Regular Applications

JACOBI is a widely used kernel containing the main loop of an
iterative solver for regular scientific applications. Due to its simple
structure, the JACOBI kernel is easily parallelized in many parallel
programming models. However, the base-translated GPU code does
not perform well, as shown in Figure 6 (a); Baseline in the figure
represents the speedups of the unoptimized GPU version over serial
on the CPU. This performance degradation is mostly due to the
overhead in large, uncoalesced global memory access patterns.
These uncoalesced access patterns can be changed to coalesced
ones by applying parallel loop-swap (PLS in Figure 6 (a)). These
results demonstrate that, in regular programs, uncoalesced global
memory accesses may be converted to coalesced accesses by loop
transformation optimizations.

EP is one of the NAS OpenMP Parallel Benchmarks. EP has
abundant parallelism with minimal communication; it is often used
to demonstrate the performance of parallel computing systems.
However, the baseline translation of EP shows surprisingly low
speedups on the tested GPU (Baseline in Figure 6 (b)).

107

(a) SPMUL kernel (b) NAS Parallel Benchmark CG

GPU Performance of CG

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S W A B C

Input Data Class

S
p
e
e
d
u
p

Baseline

CO(LCO)

CO(LCO + MM)

CO(LCO + MM)

+ OO(LC)

GPU Performance of SPMUL

0

5

10

15

20

25

appu hood kkt_power msdoor

Sparse Matrix Input

S
p
e
e
d
u
p

Baseline

CO(LCO)

CO(LCO) + OO(LC)

Figure 7. Performance of Irregular Applications (speedups are over serial on the CPU). Baseline is the baseline translation without
optimization; the other bars represent the following OpenMP optimizations (OO) or CUDA optimizations (CO): LCO is a local caching
optimization for global data, LC means the loop collapsing transformation technique, and MM represents a redundant memory transfer
minimizing optimization.

At the core of EP is a random number generator; each partic-
ipating thread or process performs some computations based on
the chosen numbers. In an OpenMP version, each thread stores the
random numbers in a threadprivate array. The baseline translation
scheme allocates the memory space for the threadprivate array by
expanding the array in a row-wise fashion. However, this row-wise
array expansion causes uncoalesced memory access problems un-
der the CUDA memory model.

The Matrix transpose transformation in Section 4.2.2 resolves
this limitation; it changes the access patterns of the threadpri-
vate arrays into coalesced accesses. MT in Figure 6 (b) shows
the speedups when the matrix transpose transformation is applied.
The results show that matrix transpose increases the performance
tremendously. To increase the performance of the translated EP
further, additional CUDA-specific optimizations are applied; if the
size of a private array, which is normally mapped to local memory
in the GPU device, is small, it can be allocated on shared mem-
ory by using array expansion (PAA in Figure 6 (b)). Also, loop un-
rolling can be applied to reduction computations (LU in Figure 6
(b)). Performance variations in Figure 6 (b) indicate that complex
interactions among the hardware resources may need fine tuning
for optimal performance. EP is a representative case showing the
importance of compile-time transformations.

5.2 Performance of Irregular Applications

Sparse matrix-vector (SpMV) multiplication is an important rep-
resentative of irregular applications. In our experiments, we have
translated two codes using SpMV, the SPMUL kernel and the NAS
OpenMP Parallel Benchmark CG, to measure the performance of
the proposed system on irregular applications.

In SPMUL, a baseline translation without optimizations gives
reasonable speedups (Baseline in Figure 7 (a)) on several real
sparse matrices in the UF Sparse Matrix Collection [6]. Simple
local caching optimizations, such as caching frequently accessed
global data on registers and using texture memory to exploit a
dedicated cache for read-only global data, work well (LCO in

Figure 7 (a)), since some data in the global memory are accessed
repeatedly either within each thread or across threads.

From an algorithmic perspective, the translated SPMUL con-
ducts SpMV multiplications by assigning each row to a thread
and letting each thread compute the inner product for the assigned
row, which takes a reduction form. This algorithmic structure is
implemented as a nested loop, which exhibits blocked access pat-
terns, where each thread accesses a block of continuous data in
global memory. Blocked access results in significantly lower mem-
ory bandwidth than cyclic access due to uncoalesced memory ac-
cess. The loop collapsing technique in Section 4.1.3 can change
the blocked access patterns to a cyclic access pattern, increasing
the effective bandwidth on global memory (LC in Figure 7 (a)).

CG is another sparse linear solver program. While both CG and
SPMUL use similar SpMV multiplication algorithms, CG poses
additional challenges. In CG, each parallel region contains many
work-sharing regions including omp single. Depending on kernel-
region-extracting strategies, the amount of overheads related to
kernel invocations and memory transfers will be changed. The
kernel-region-identifying algorithm in Section 3.2.1 merges as
many work-sharing regions as possible to minimize the kernel-
related overheads. As indicated in Figure 7 (b), however, the base
GPU version (Baseline) still incurs very large memory transfer
overheads, degrading the performance below the serial version.
Eliminating redundant memory transfers with the algorithm de-
scribed in Section 4.2.3 reduces these overheads. In CG, interpro-
cedural data flow analysis is needed to identify this redundancy,
since work-sharing regions are distributed among several subrou-
tines. The results show that eliminating redundant data transfers
increases the performance significantly (MM in Figure 7 (b)), and
loop collapsing transformation, used in SPMUL, also works well
on CG (LC in Figure 7 (b)).

6. Related Work

Prior to the advent of the CUDA programming model [4], pro-
gramming GPUs was highly complex, requiring deep knowledge
of the underlying hardware and graphics programming interfaces.

108

Although the CUDA programming model provides improved pro-
grammability, achieving high performance with CUDA programs
is still challenging. Several studies have been conducted to opti-
mize the performance of CUDA-based GPGPU applications; an
optimization space pruning technique [15] has been proposed, us-
ing a Pareto-optimal curve, to find the optimal configuration for a
GPGPU application. Also, an experimental study on general op-
timization strategies for programs on a CUDA-supported GPU has
been presented [14]. In these contributions, optimizations were per-
formed manually.

For the automatic optimization of CUDA programs, a compile-
time transformation scheme [2] has been developed, which finds
program transformations that can lead to efficient global memory
access. The proposed compiler framework optimizes affine loop
nests using a polyhedral compiler model. By contrast, our com-
piler framework optimizes irregular loops, as well as regular loops.
Moreover, we have demonstrated that our framework performs well
on actual benchmarks as well as on kernels. CUDA-lite [18] is an-
other translator, which generates codes for optimal tiling of global
memory data. CUDA-lite relies on information that a programmer
provides via annotations, to perform transformations. Our approach
is similar to CUDA-lite in that we also support special annota-
tions provided by a programmer. In our compiler framework, how-
ever, the necessary information is automatically extracted from the
OpenMP directives, and the annotations provided by a programmer
are used for fine tuning.

OpenMP [13] is an industry standard directive language, widely
used for parallel programming on shared memory systems. Due to
its well established model and convenience of incremental paral-
lelization, the OpenMP programming model has been ported to a
variety of platforms. Previously, we have developed compiler tech-
niques to translate OpenMP applications into a form suitable for
execution on a Software Distributed Shared Memory (DSM) sys-
tem [10, 11] and another compile-time translation scheme to con-
vert OpenMP programs into MPI message-passing programs for
execution on distributed memory systems [3]. Recently, there have
been several efforts to map OpenMP to Cell architectures [12, 19].
Our approach is similar to the previous work in that OpenMP
parallelism, specified by work-sharing constructs, is exploited to
distribute work among participating threads or processes, and
OpenMP data environment directives are used to map data into
underlying memory systems. However, different memory architec-
tures and execution models among the underlying platforms pose
various challenges in mapping data and enforcing synchronization
for each architecture, resulting in differences in optimization strate-
gies. To our knowledge, the proposed work is the first to present
an automatic OpenMP to GPGPU translation scheme and related
compile-time techniques.

MCUDA [16] is an opposite approach, which maps the CUDA
programming model onto a conventional shared-memory CPU ar-
chitecture. MCUDA can be used as a tool to apply the CUDA
programming model for developing data-parallel applications run-
ning on traditional shared-memory parallel systems. By contrast,
our motivation is to reduce the complexity residing in the CUDA
programming model, with the help of OpenMP, which we consider
to be an easier model. In addition to the ease of creating CUDA
programs with OpenMP, our system provides several compiler op-
timizations to reduce the performance gap between hand-optimized
programs and auto-translated ones.

To bridge the abstraction gap between domain-specific algo-
rithms and current GPGPU programming models such as CUDA, a
framework for scalable execution of domain-specific templates on
GPUs has been proposed [17]. This work is complementary to our
work in that it addresses the problem of partitioning the computa-
tions that do not fit into GPU memory.

The compile-time transformations proposed in this paper are
not fundamentally new ones; vector systems use similar transfor-
mations [1, 9, 20]. However, the architectural differences between
GPGPUs and vector systems pose different challenges in apply-
ing these techniques, leading to different directions; parallel loop-
swap and loop collapsing transformations are enabling techniques
to expose stride-one accesses in a program so that concurrent GPU
threads can use the coalesced memory accesses to optimize the off-
chip memory performance. On the other hand, loop interchange
in vectorizing compilers is to enable vectorization of certain loops
within a single thread.

7. Conclusion

In this paper, we have described a compiler framework for translat-
ing standard OpenMP shared-memory programs into CUDA-based
GPGPU programs. For an automatic source-to-source translation,
several translation strategies have been developed, including a ker-
nel region identifying algorithm. The proposed translation aims
at offering an easier programming model for general computing
on GPGPUs. By applying OpenMP as a front-end programming
model, the proposed translator could convert the loop-level par-
allelism of the OpenMP programming model into the data paral-
lelism of the CUDA programming model in a natural way; hence,
OpenMP appears to be a good fit for GPGPUs. We have also identi-
fied several key transformation techniques to enable efficient GPU
global memory access: parallel loop-swap and matrix transpose
techniques for regular applications, and loop collapsing for irregu-
lar ones.

Experiments on both regular and irregular applications led to
several findings. First, a baseline translation of existing OpenMP
applications does not always yield good performance; hence, opti-
mization techniques designed for traditional shared-memory multi-
processors do not translate directly onto GPU architectures. Sec-
ond, efficient global memory access is one of the most impor-
tant targets of GPU optimizations, but simple transformation tech-
niques, such as the ones proposed in this paper, are effective in opti-
mizing global memory accesses. Third, complex interaction among
hardware resources may require fine tuning. While automatic tun-
ing may deal with this problem, we believe that the performance
achieved by the presented OpenMP-to-GPGPU translator comes
close to hand-coded CUDA programming.

Our ongoing work focuses on transformation techniques for ef-
ficient GPU global memory access. Future work includes automatic
tuning of optimizations to exploit shared memory and other special
memory units more aggressively.

Acknowledgments

This work was supported, in part, by the National Science Founda-
tion under grants No. 0429535-CCF, CNS-0751153, and 0833115-
CCF.

References

[1] Randy Allen and Ken Kennedy. Automatic translation of FORTRAN
programs to vector form. ACM Transactions on Programming

Languages and Systems, 9(4):491–542, October 1987.

[2] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. A compiler framework for
optimization of affine loop nests for GPGPUs. ACM International

Conference on Supercomputing (ICS), 2008.

[3] Ayon Basumallik and Rudolf Eigenmann. Towards automatic
translation of OpenMP to MPI. ACM International Conference

on Supercomputing (ICS), pages 189–198, 2005.

[4] NVIDIA CUDA [online]. available:
http://developer.nvidia.com/object/cuda home.html.

109

[5] NVIDIA CUDA SDK - Data-Parallel Algorithms: Parallel Reduction
[online]. available: http://developer.download.nvidia.com/compute/
cuda/1 1/Website/Data-Parallel Algorithms.html.

[6] Tim Davis. University of Florida Sparse Matrix Collection [online].
available: http://www.cise.ufl.edu/research/sparse/matrices/.

[7] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A memory
model for scientific algorithms on graphics processors. International

Conference for High Performance Computing, Networking, Storage

and Analysys (SC), 2006.

[8] Sang Ik Lee, Troy Johnson, and Rudolf Eigenmann. Cetus - an ex-
tensible compiler infrastructure for source-to-source transformation.
International Workshop on Languages and Compilers for Parallel

Computing (LCPC), 2003.

[9] David Levine, David Callahan, and Jack Dongarra. A comparative
study of automatic vectorizing compilers. Parallel Computing, 17,
1991.

[10] Seung-Jai Min, Ayon Basumallik, and Rudolf Eigenmann. Opti-
mizing OpenMP programs on software distributed shared memory
systems. International Journel of Parallel Programming (IJPP),
31:225–249, June 2003.

[11] Seung-Jai Min and Rudolf Eigenmann. Optimizing irregular shared-
memory applications for clusters. ACM International Conference on

Supercomputing (ICS), pages 256–265, 2008.

[12] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang. Supporting
OpenMP on Cell. International Journel of Parallel Programming

(IJPP), 36(3):289–311, June 2008.

[13] OpenMP [online]. available: http://openmp.org/wp/.

[14] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming

(PPoPP), pages 73–82, 2008.

[15] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A.
Stratton, and W. W. Hwu. Program optimization space pruning for a
multithreaded GPU. International Symposium on Code Generation

and Optimization (CGO), 2008.

[16] J. A. Stratton, S. S. Stone, and W. W. Hwu. MCUDA: An efficient
implementation of CUDA kernels for multi-core CPUs. International

Workshop on Languages and Compilers for Parallel Computing

(LCPC), 2008.

[17] Narayanan Sundaram, Anand Raghunathan, and Srimat T. Chakrad-
har. A framework for efficient and scalable execution of domain-
specific templates on GPUs. IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), May 2009.

[18] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDA-lite:
Reducing GPU programming complexity. International Workshop on

Languages and Compilers for Parallel Computing (LCPC), 2008.

[19] Haitao Wei and Junqing Yu. Mapping OpenMP to Cell: An effective
compiler framework for heterogeneous multi-core chip. International

Workshop on OpenMP (IWOMP), 2007.

[20] Peng Wu, Alexandre E. Eichenberger, Amy Wang, and Peng Zhao.
An integrated simdization framework using virtual vectors. ACM

International Conference on Supercomputing (ICS), pages 169–178,
2005.

110

