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Abstract. Understanding how a program behaves is important for effec-
tive program development, debugging, and optimization, but obtaining
the necessary level of understanding is usually a challenging problem.
One facet of this problem is to understand how a value (the content
of a variable at a particular moment in time) influences other values
as the program runs. To help developers understand value influence for
their programs, we are developing a tool that allows a user to tag a
value as being of interest, and then track the influence of that value as
it, or values that were derived from it, are used in later computation,
communication, and I/O. We believe that understanding how a value’s
influence propagates will enable algorithm designers to more easily iden-
tify optimizations such as the removal of unnecessary computation and
communication. In this paper, we describe our value influence tracking
approach and our tool’s design and implementation status.

1 Introduction

Understanding how a program behaves is necessary for effective program devel-
opment, debugging, optimization, and fault tolerance. One facet of this problem
is the challenge of understanding how a program’s values are propagated through
time and space as the program runs. For instance, one of a program’s input val-
ues may contribute to nearly all of a program’s output values, whereas another
may contribute to very few (or none). We call this contribution the value’s in-
fluence on other values. Knowing the degree of a value’s influence can provide
insight into how to optimize a program. For example, N-body algorithms often
include the notion of a cut-off distance. If two entities are further apart than the
cut-off distance, the algorithm does not consider the effects of either entity on the
other, reducing the total amount of computation and computation required by
an implementation of the algorithm. The results of a value influence analysis can
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identify not only that this type of optimization is feasible, but can also suggest
what a good cut-off distance should be by indicating when the value’s influence
becomes small enough that it can be ignored in the computation without causing
too great of an error in the algorithm’s result. In general, value influence analysis
can help a developer determine how much detail needs to be included in a model
to balance its fidelity with the cost of computing the model. We hypothesize
that many developers of scientific aplications do not know with certainty the
best level of detail to include in their model, and thus we expect there are often
opportunities for optimizations that give results that are still “good enough.” In
addition to performance optimization, a value influence analysis may also inform
decisions about fault tolerance by allowing a developer to know how unintended
changes to a value can impact the program’s results. If a value’s influence over
later computation is large, the developer may wish to protect the value with a
strong resilience strategy.

To facilitate the understanding of value influence propagation, we are devel-
oping an empirical approach for tracking value influence as a program executes,
and developing a prototype tool that implements this approach. In this approach,
a value may be tagged at some point during the program’s execution as being
a value of interest. After a value is tagged, the approach tracks how the tagged
value is used in later computations and how it propagates to other program ad-
dress spaces. When a tagged value is used in a computation, its influence data is
combined with that of other inputs to the computation and the resulting influ-
ence value is associated with the computation’s output value. For instance, when
the statement c = a+ b executes, if the influence associated with variables a and
b are 0.5 and 0.2, respectively, then the influence associated with the output
value c would be 0.35 assuming the value influence analysis uses the “average”
function to combine influences. Although this example is presented at the state-
ment level, we track value influence at the machine instruction level to reflect the
computation that is actually executed on the system and to avoid the complex-
ities of a source code-level analysis. Our initial work on value influence tracking
targets scientific and engineering applications, and our approach supports appli-
cations that use the Message Passing Interface [2, 3] (MPI) for communication
and synchronization, and multithreading technologies like OpenMP [8].

2 Value Influence

In this section, we detail the concept of value influence and discuss the challenges
in propagating value influence as a program executes.

2.1 Assigning and Combining Value Influences

To track value influence, we maintain a set of pairs (L, I), where I is the influence
associated with the current value held at location L, where L can represent
either a location in memory or a register. Whenever the value held at a location
Lk is used in an operation, its associated influence Ik is combined with the



influence values of the other operation inputs, and the resulting influence Ioutput
is associated with the value at the output location Loutput in our set of location-
influence pairs. Influence values I are real-numbered values in the interval [0, 1].
When a value is tagged as being of interest, it is assigned an influence of 1. To
control the storage requirements for our approach, if a location is not included
in our set the influence of its current value is assumed to be zero.

When a value is used as an input to an operation, its influence must be com-
bined with that of the other inputs and associated to the output value using
some combining function, F . The simplest way to combine influences is to use a
logical OR operation, such that the influence associated with the output value
is 1 if any of the input values have a non-zero influence. With this combining
function, the value influence analysis indicates which values depend (directly or
indirectly) on the value(s) initially tagged as being of interest, but cannot tell
how much the initial value contributed to later values. Combining functions that
take into account the operation being performed provide a more nuanced view
of value influence propagation. For instance, for a sum instruction the combin-
ing function may average the influences of the input values. In contrast, for a
max instruction (available in some instruction set architectures such as Intel’s
Streaming Single Instruction Multiple Data Extensions), the combining function
may use the influence associated with the maximum value as the influence of
the output. As an example, if a program adds two variables u and v, u’s value
has an associated influence of 0.3 and v’s value has an influence of 0.5, the value
produced as the output of the instruction and stored in a destination dest is
assigned an influence of 0.4, the average of the influences of u and v. A very
sophisticated combining function might take into account not only the type of
operation but also the input values themselves. For instance, if the two input
values for a sum instruction are 1 × 109 and 0.5, the combining function may
give the first value’s influence much more weight than the second’s influence.

2.2 Variable Lifetime

Our value influence tracking approach associates an influence with a memory
location or register. Because the number of registers is limited, and because
frames are added and removed dynamically from the stack as a thread runs, it is
common that two or more variables share the same memory location or register
at different moments during a program’s execution. Compilers use the concept
of variable lifetime—the execution interval during which its value is still needed
for some future operation—to determine whether two variables can share the
same register or memory location. When two variables share the same register
or memory location, and the influence of at least one of them is being tracked,
our approach takes variable lifetime into account so that it does not mistakenly
use a dead variable’s influence data instead of that of the live variable that
shares its register or memory location. Information about variable lifetime is not
explicitly present in the code generated by most compilers, but our approach
correctly determines when to “forget” the influence data of a dead variable for
most code, because the influence data associated with the dead variable’s value



is replaced when live value is initialized. If the value used to initialize the live
variable has no associated influence data, the influence data associated with
the now-live variable is deleted. The only situation where our value influence
tracking approach does not handle influence propagation correctly as a natural
by-product of the code’s initialization of live registers is when the code uses a
register or memory location without initializing it.

2.3 Tracking Influences for Multiple Initial Values

Tracking the influence of multiple values within the same run of the program
can be accomplished with minor additions to the approach as presented so far.
We differentiate between two multiple-value scenarios: one where the program’s
run is separated into a sequence of phases, and another where the influences of
multiple values are tracked simultaneously.

We support value influence tracking for one value per program phase by
providing mechanisms (such as application programming interface [API] calls)
that allow access to the current value influence data and that can reset the value
influence data in preparation for the next phase.

To support tracking the influence of multiple values simultaneously, a “color”
is associated with each influence value. The influence data associated with a lo-
cation is now a set of (color, influence) pairs. When a value is first tagged as
being of interest, its initial influence is assigned a color that is unique within
the current phase. Then, when an operation uses input variables to produce
an output variable, the combining function combines the influences for each
color individually to produce the influence data vector associated with the out-
put value. For instance, if the influences associated with the values of vari-
ables u and v are {(0, 0.2), (1, 0.4), (2, 0.7)} and {(0, 0.4), (1, 0.5)}, respectively,
the influence associated with the output value when u and v are summed is
{(0, 0.3), (1, 0.45), (2, 0.35)} (assuming the influence combining operator is the
“average” function). If the input does not have an associated influence for a
given color (e.g., v does not have a color 2 influence), it is assumed to be zero.
Thus, in the example, the color 2 influences of 0.7 and 0 are averaged to give
0.35, and this is assigned as the color 2 influence on the result.

Because of the need to store multiple influences per location, and the need
for the combining function to combine influences for each color independently,
tracking the influences of multiple values per phase can add a significant overhead
in both space and time to the basic value influence tracking approach. The actual
time and space requirements depend on the number of initial values being tracked
and the number of times those values, and values derived from them, are used
in operations during the computation.

2.4 Multithreaded Programs

Multithreaded programs present an interesting set of challenges when tracking
variable influence. In a multithreaded program, a value in a memory locations
is shared among all of the program’s threads. Any thread may read or write



that value whenever the thread is executing on a processor core. To avoid race
conditions in accessing this influence data, we use a mutual exclusion lock (also
known as a mutex) to protect the internal data structure that maintains influence
variables for values in memory. For values in registers, we use thread-local storage
so that we are sure to use the correct influence data for a register as threads are
switched onto and off of processor cores.

2.5 MPI Programs

We aim to support value influence tracking not only for multithreaded programs
involving a single address space, but also for MPI programs involving multiple
MPI processes each with its own address space. Such programs use MPI API
functions to transfer data from one address space to another and to synchronize
the program’s processes. Our approach to support MPI programs require the
ability to detect when the program transfers data, and the ability to modify
the behavior of that transfer. The MPI standard defines a profiling API that
provides both of these features. This interface allows link-time interposition of a
function between the caller of an MPI function like MPI_Send and the library’s
implementation of that function. By defining a collection of interposition func-
tions corresponding to MPI’s data transfer functions, we can detect when the
application is sending data from one address space to another using MPI those
functions. Our interposed versions of the MPI data transfer functions use the
underlying MPI data transfer functions to transfer both the application-level
data and any influence values associated with that data. Two-sided and collec-
tive operations use the same two-sided and collective operations, respectively, to
transfer the influence data as the application data. One-sided MPI operations
require the use of a separate “value influence service thread” (VISTs) to run
in each MPI process for maintaining and serving the value influence data, plus
an out-of-band channel for transferring influence data between interposed MPI
one-sided functions like MPI_Put and these VISTs.

3 Implementation

We are implementing the value influence tracking approach described in Sect. 2
in a tool called VIT. In this section, we discuss some of the VIT implementation
details.

When tracking value influence, we associate influence data with a memory
address (for values in memory) or a register ID (for values in registers). This
approach gives us a concise way to represent locations, but because memory
addresses and register IDs are from distinct name spaces, this approach requires
us to keep separate collections of location-influence pairs for memory locations
and registers. In our current VIT implementation, we use the C++ standard
template library’s map class to hold location-influence pairs. Because a given
CPU core’s registers are accessible only to the thread executing on that core,



we use thread local storage when associating a register-influence map with each
thread.

VIT is built on the Intel Pin instrumentation meta-tool [7]. Pin allows de-
velopers to create tools (commonly called Pintools) that analyze and instrument
the machine code of an x86 or x86 64 executable program. Pin uses dynamic
instrumentation—the instrumentation code is added while the program is ex-
ecuting. The instrumentation code is Pintool-specific. For instance, the instru-
mentation for an instruction mix tool would analyze each instruction as it was
executed and count the number of instructions of each type. In contrast, the
instrumentation for a simple performance tool may count the number of times
each function is called and to measure how long it takes to execute each function.

VIT uses Pin’s trace instrumentation mode to insert the bulk of its instru-
mentation code. When Pin gives control to VIT’s trace-level instrumentation
because a new trace of instructions is about to be executed, VIT’s trace-level
instrumentation examines each instruction in the trace to determine whether
the instruction writes a value to a destination location (a memory location or
register). If so, the trace-level instrumentation code inserts instruction-level in-
strumentation for that instruction. This instruction-level instrumentation com-
putes the value’s new influence as described in Sect. 2.1 and associates the new
influence data with the destination location in the appropriate location-influence
map.

A user must specify to VIT which values are of interest for tracking their
influence, and when to output the VIT influence data. VIT provides a simple
C-based Application Programming Interface (API) for user control. The user
can specify a value of interest using the API function VIT_Track by inserting
a call to this function into the application’s source code such that it will be
executed when the user wants to start tracking the influence of that variable’s
value. For instance, to start tracking the influence of a variable’s value in the
tenth iteration of the application’s main loop, the user might insert a call to
VIT_Track as the body of an if-then statement whose condition is that the
iteration number is 9 assuming iteration numbers start from zero. This approach
to specifying for which values to track influence, and when to start tracking,
provides flexible control over when to start tracking but requires the user to
insert calls to VIT_Track in their application.

In our prototype implementation, VIT outputs the value influence data to
standard output when the program completes. VIT also provides API functions
VIT_Report and VIT_Reset for outputting the value influence data at other
times and for resetting the data, e.g., to restrict value tracking to a certain
phase or particular iteration of a loop.

4 Status

We have implemented the basic intra-process VIT functionality and are cur-
rently implementing inter-process influence tracking functionality for two-sided
and some collective MPI data transfers. For our prototype implementation, we



are using the average operation when combining influences, regardless of the
instruction’s operation.

To demonstrate VIT’s current functionality, we applied it to a self-written
application that solves the two-dimensional heat equation ∂T/∂t = α∇2T (where
T is the temperature of the material and α is its thermal diffusivity) using an
explicit discretization and forward time-centered space (FCTS) method [10] with
a five point stencil. The program keeps the problem state in two 2-dimensional
arrays of double precision values where each value represents a discretization
point of the problem domain. One array holds the current state and its values
are used to compute the updated state in the other array. This implementation is
single threaded. We tracked the influence of one of the problem domain boundary
values as the program executed its time step loop. Because the program uses a
five-point stencil, the value’s influence “diffuses” through the problem state array
by advancing one row and column per time step similar to the way that heat
diffuses throughout the problem domain as the simulation proceeds.

The bulk of VIT’s output is a sequence of (address, influence) pairs for mem-
ory locations with non-zero influence values. If the program contains a symbol
table, each address can then be translated to a symbolic name of a correspond-
ing program variable using software like the GNU Binary File Descriptor (BFD)
library or SymtabAPI [9]. (Our prototype implementation does not perform this
translation, nor does it report influence values associated with registers.) Fig-
ure 1 shows visualizations of this VIT output for select time steps produced as
influence was propagated through the application’s state arrays. In the figure,
each cell represents a memory location in the array. Each cell is colored accord-
ing to the influence value associated with the cell’s associated memory location.
We wrote a simple utility to convert from the addresses in VIT output to the
indices of cells within a two dimensional array. The influence values quickly de-
crease from the initial value of 1, so the visualizations use a log scale to retain
contrast between the cells representing memory locations with non-zero influ-
ence and those with zero influence. Because the heat transfer application uses a
double buffering approach, the value influence “wavefront” alternates between
the two problem state arrays. Thus, for the figure we display value influence data
for one array after even numbers of time steps and the other after odd numbers
of time steps. As expected, the program took 62 time steps for the influence data
to propagate across the 64-element-wide problem state array. (The array bound-
aries are one element wide and immutable). Note that this influence propagation
pattern is independent of the heat transfer problem being solved.

Applying VIT to our example heat transfer application exposed three prob-
lems with the prototype implementation’s intra-process value influence track-
ing. First, the influence values drop rapidly as the computation proceeds. We
determined that our prototype implementation does not handle register-based
addressing modes in the expected way, treating them as uses of a register in the
computation of the instruction’s result. Although this interpretation is techni-
cally correct, we are modifying VIT to distinguish between registers used for ad-
dressing and registers providing source values for the computation. Second, VIT



(a) Before time steps. (b) After 1 time step. (c) After 2 time steps.

(d) After 3 time steps. (e) After 62 time steps. (f) After 100 time steps.

Fig. 1. Value influence propagation for two-dimensional heat transfer application,
starting with a single value on the boundary of the problem state array.

does not currently support Single Instruction Multiple Data (SIMD) instructions
that operate on multiple values. However, because the SIMD arithmetic units
tend to be faster than traditional x87 floating point hardware, modern compilers
often generate code for the SIMD units even when operating on single values.
The executable code produced by GCC for our example application uses this
approach, and our prototype VIT implementation handles it correctly. Finally,
our prototype VIT implementation does not correctly propagate influence data
for instruction sequences that use the traditional x87 floating point hardware.
Although we have not yet identified the root cause of this problem, doing so is a
low priority in light of the common use of SIMD hardware by modern compilers.

5 Related Work

Program slicing [12, 13, 6, 14] is a technique for determining which statements
were used to produce the value of a given variable at a point in the program’s
execution (backward slicing) or for determining the statements that will di-
rectly or indirectly use the value of a given variable at some future point in the
program’s execution (forward slicing). Our value influence tracking approach is
similar to forward program slicing in that it focuses on the value of a variable
at a specific point in the program’s execution, and that both are concerned with



how that value is used in the future computation. Unlike traditional forward
program slicing that is concerned with determining which future statements use
the value (a code-centric view), our value influence tracking approach takes a
data-centric perspective by determining which other values the initial value in-
fluences. Also, unlike the traditional analysis, our approach is concerned not
only with whether a value had influence on future values, but also how much
influence it had. Weiser’s original program slicing approach [13] uses a static
analysis of the program’s source code that produces a conservative result con-
taining all statements that might be executed for a given variable, regardless of
the program’s inputs. Dynamic slicing approaches [6] limit the output to only
those statements that are actually executed for specific inputs. In that respect,
our empirical value influence tracking approach is more similar to the dynamic
program slicing approaches than the traditional static slicing approach. A for-
ward program slicing approach could be used by a value influence tracking tool
like VIT to limit the time required to perform the value influence analysis, since
executing the program slice would not execute statements (and any associated
VIT instrumentation) that could not possibly transfer influence.

Chopping [4, 11] is the technique derived from slicing that is closely related
to our value influence tracking approach and VIT tool. For a given set of source
variables and a set of sink variables, chopping is concerned with determining
the set of statements that use the values of the source variables to produce the
values of the sink variables. In our value influence tracking approach, we do
not restrict the influence tracking to a particular set of sink variables. Also, the
original chopping approach [4] supported only source and sink variables within
the same function. This restriction was overcome by Reps et al [11]. Like Reps’
work, our approach is able to track value influence across function boundaries.

Taint Analysis [5, 1] is a computer security technique for tracking data that
is “tainted” as it propagates through a computation, similar to the way we track
a value’s influence. When a tainted value is used to produce another value the
resulting value is also considered tainted, so that taint is propagated through the
computation as it progresses. Kang et al [5] present a Dynamic Taint Analyis
technique that tracks taint using an infrastructure similar to Pin, and Ganai
et al [1] track taint for multi-threaded programs. These approaches are similar
to our value influence tracking approach in the way that they propagate taint
information, but differ from our approach in that the taint analyses consider
taint as a boolean characteristic: either a value is tainted, or it is not. In our
case, we quantify the amount of influence that is transferred when values of
interest are used to compute a new value. Also, this existing work does not
consider analyses for programs running on distributed memory systems such as
the compute nodes of an HPC system.

6 Summary

In this paper, we presented the concept of value influence tracking and the design
of a tool, VIT, that implements that concept. We described the challenges and an



approach for tracking value influence in multi-threaded programs, and in MPI-
based parallel programs. We described our prototype VIT implementation that
supports value influence tracking and demonstrated it with a simple scientific
application.

Once we complete VIT’s basic intra- and inter-process functionality, we plan
to evaluate the trade-offs of using more sophisticated influence combining op-
erations such as those described in 2.1. We will also add the support for more
MPI collectives, and support for MPI one-sided data transfers. We also plan to
evaluate whether and how well this general influence tracking approach applies
to other parallel programming models than MPI, and whether and how it can be
applied to programs that use accelerators like graphics processing units (GPUs).
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