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This state-of-the-art snapshot of automatic paral-
lelization for multicores uses the Cetus tool. Cetus is an 
infrastructure for research on multicore compiler optimi-
zations, with an emphasis on automatic parallelization. 
We have created a compiler infrastructure that supports 
source-to-source transformations, is user-oriented and 
easy to handle, and provides the most important par-
allelization passes as well as the underlying enabling 
techniques. The infrastructure project follows Polaris,1,2 

which was arguably the most advanced research infra-
structure for optimizing compilers on parallel machines. 
While Polaris translated Fortran, Cetus targets C programs. 
Cetus arose initially from the work of several enthusiastic 
graduate students, who continued what they began in a 
class project. Recently, we have obtained funding from the 
US National Science Foundation to evolve the project into 
a community resource. 

In our work, we have measured both Cetus and Cetus-
parallelized program characteristics. These results show 
a high-quality parallelization infrastructure equally pow-
erful but easier to use than other choices. Cetus can be 
compared to Intel’s ICC compiler and the COINS research 
compiler. Initially we had also considered infrastructures 
such as SUIF (suif.stanford.edu), Open64 (www.open64.
net), Rose (rosecompiler.org), the Gnu C compiler, Pluto 
(pluto-compiler.sourceforge.net), and the Portland Group 
(PGI) C Compiler. However, parallelization results for these 
tools were either unavailable or lacked explanation. 

W ith the advent of multicore architec-
tures, automatic parallelization has, 
for several reasons, re-emerged as an 
important tool technology. While classi-
cal parallel machines served a relatively 

small user community, multicores aim to capture a mass 
market, which demands user-oriented, high-productivity 
programming tools. Further, multicores are replacing 
complex superscalar processors, the parallelism of which 
was unquestionably exploited by the compiler and under-
lying architecture.

This same model is desirable for the new generation 
of CPUs: Automatic parallelization had its successes on 
shared-address-space architectures exhibiting small num-
bers of processors, which is the very structure of today’s 
multicores. 

The Cetus tool provides an infrastruc-

ture for research on multicore compiler 

optimizations that emphasizes automatic 

parallelization. The compiler infrastruc-

ture, which targets C programs, supports 

source-to-source transformations, is user-

oriented and easy to handle, and provides 

the most important parallelization passes as 

well as the underlying enabling techniques.

Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann, and Samuel Midkiff, 

Purdue University

CETUS: A SOURCE-
TO-SOURCE 
COMPILER  
INFRASTRUCTURE 
FOR MULTICORES 
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Symbol table. Cetus’s symbol table functionality pro-
vides information about identifiers and data types. Its 
implementation makes direct use of the information 
stored in declaration statements in the IR. There is no 
separate and redundant symbol table storage. 
Annotations. Comments, pragmas, directives, and 
other types of auxiliary information about IR ob-
jects can be stored in annotation objects, which 
take the form of declarations. An annotation can 
be associated with a statement (such as informa-
tion about an OpenMP directive belonging to a for 
statement) or could stand independently (such as 
a comment line). 
Printing. The printing functions have been extended 
to allow for flexible rendering of the IR classes.

CETUS ANALYSES AND TRANSFORMATIONS 
Automatically instrumenting source programs is a com-

monly used compiler capability. Figure 1 shows a basic 
loop instrumenter that inserts timing calls around each 
for loop in the given input program. Here we assume that 
the function call cetus_tic(id) stores the current time 
(get time of day, for example) with the given integer tag, 
and cetus_toc(id) computes and stores the time differ-
ence since the last call of cetus_tic(id).

At the end of an application run, basic runtime statis-
tics on the instrumented code sections can be generated 
from this information. The Cetus code in Figure 1 assigns a 

Developing a dependable 
community support system and 
reaching out to Cetus users is one 
of our goals. Cetus maintains a 
community portal at cetus.ecn.
purdue.edu, where the compiler 
can be downloaded under an ar-
tistic license. The portal offers a 
utility for submitting bug reports 
and feature requests, and a Cetus 
users’ mailing list to discuss ideas, 
new functionality, research topics, 
and user concerns. The Cetus 
portal further provides documen-
tation for installing and running 
the compiler and for writing new 
analysis and transformation 
passes using the internal program 
representation (IR) interface.

Several US and worldwide 
research groups already use 
Cetus.3-5 In our ongoing work, 
we apply the infrastructure for 
creating translators that convert 
shared-memory programs written 
in OpenMP to other models, such as message-passing6 and 
CUDA (for graphics processing units).7

CETUS ORGANIZATION AND INTERNAL 
REPRESENTATION 

Cetus’s IR is implemented in the form of a Java class hier-
archy. A high-level representation provides a syntactic view 
of the source program to the pass writer, making it easy 
to understand, access, and transform the input program. 
For example, the Program class type represents the entire 
program that may consist of multiple source files. Each 
source file is represented as a Translation Unit. Other base 
IR object types are Statement, Declaration, and Expres-
sion. Specific source constructs in the IR are represented 
by classes derived from these base classes. For example, 
ExpressionStatement represents a Statement that contains 
an Expression, and an AssignmentExpression represents an 
Expression that assigns the value of the right-hand side to 
the left-hand side. There is complete data abstraction, and 
pass writers only manipulate the IR through access func-
tions. Important features of the IR include the following: 

Traversable objects. All Cetus IR objects are derived 
from a base class “Traversable.” This class provides the 
functionality to iterate over lists of objects generically. 
Iterators. BreadthFirst, DepthFirst, and Flat iterators 
are built into the functionality to provide easy tra-
versal and search over the program IR. 

class Instrumenter 
{ 
 ... 
 public void instrumentLoops(Program p) 
 { 
  DepthFirstIterator iter = new DepthFirstIterator(p); 
  int loop_number = 0; 
  while ( iter.hasNext() ) {
   Object obj = iter.next(); 
   if ( obj instanceof ForLoop ) 
     insertTimingCalls((ForLoop)obj, loop_number++); 
  }
 } 

 private void insertTimingCalls(ForLoop loop, int number) 
 { 
  FunctionCall tic, toc; 
  tic = new FunctionCall(new Identifier(“cetus_tic”)); 
  toc = new FunctionCall(new Identifier(“cetus_toc”)); 
  tic.addArgument(new IntegerLiteral(number)); 
  toc.addArgument(new IntegerLiteral(number)); 
  CompoundStatement parent = (CompoundStatement)loop.getParent();
  parent.addStatementBefore(loop, new ExpressionStatement(tic));
  parent.addStatementAfter(loop, new ExpressionStatement(toc));
 
 }
   ...
}

Figure 1. Implementation example for basic loop instrumentation. The instrumenter 
inserts timing calls around each for loop in the given input program.
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constructs such as “adding argu-
ments” to a FunctionCall or “adding 
an additional Statement” to an exist-
ing CompoundStatement in the IR. 

Analysis passes 
Advanced program analysis capa-

bilities are essential to Cetus; they will 
grow both through our own efforts 
and the Cetus user community’s. Here 
we describe some basic analyses.

Symbolic manipulation. Like its 
predecessor, Polaris,1,2 Cetus provides 
a key feature in its ability to analyze 
the represented program in symbolic 
terms. The ability to manipulate sym-
bolic expressions is essential when 
designing analysis and transforma-
tion algorithms that deal with real 
programs. For example, a data depen-
dence test can easily extract the 
necessary information if array sub-
scripts are normalized with respect to 
the relevant loop indices. Cetus sup-
ports such expression manipulations 
with tools that simplify and normal-
ize symbolic expressions. Figure 3 
shows these tools’ capabilities.

Array section analysis. Array sections describe the 
set of array elements accessed by program statements. 
Compiler passes equipped with array section analysis 
are more accurate than others that use a name-based 
approach. Cetus’s array-section analysis pass performs 
a may-use/may-def analysis of array variables for a 
given input program by computing the value ranges of 
the array subscripts. These array sections are merged 
together if the analysis is applied to code sections with 
multiple statements. The following code example shows 
the result of array section analysis, expressed as a 
pragma annotation, for the given loop:

c = 2; 
N = 100; 
#pragma cetus USE(A[0:100][0:100])  
      DEF(B[1:99][1:99]) 
for (i=1; i<N; i++) {
  for (j=1; j<N; j++) {
    B[c*i -i][j] = (A[i-1][j]+A[i+1] 
      [j]+A[i][j-1]+A[i][j+1])/4; 
  }
}

Data dependence analysis. This analysis provides a 
memory disambiguation technique that seeks to identify 
data references that access the same memory loca-
tion during program execution and that characterizes 

unique integer tag for each loop and inserts the two timing 
calls around the loops. The instrumentLoop() method 
drives this transformation by iterating over the entire 
program in depth-first order, by checking the type of the 
current IR object and invoking the actual insertion method 
insertTimingCalls(). The insertTimingCalls() method 
constructs the two function calls described, accesses the 
compound statement enclosing the current loop, and then 
inserts the two function calls. 

Figure 2b shows the output obtained from Cetus using 
the loop instrumenter for the loop in the input program 
shown in Figure 2a. The instrumenter inserts the begin-
timing function call cetus_tic(loopid) before the start 
of the loop, and an end-timing function call cetus_
toc(loopid) after the loop.

In the case of multiple loops, each loop at every nest 
level would be instrumented with profiling calls with a 
unique loopid for each loop. The Cetus implementation 
described in Figure 1 requires only about 25 lines of Java 
code. The abstractions of the Cetus IR hierarchy for search-
ing, creating, manipulating, and removing IR objects make 
this possible. The user can easily traverse the IR using 
Cetus-provided iterators, including the functionality to 
search objects of specific types such as Loops, Function-
Calls, BinaryExpressions, and others. IR objects provide a 
rich interface for the user to think in terms of source-level 

int foo(void)
{
  int i;
  double t, s, a[100];
  for ( i = 0; i < 50; ++i )
  {
    t = a[i];
    a[i+50] = t + (a[i] + a[i+50])/2.0;
    s = s + 2*a[i];
  }
  return 0;
}

(a) 

int foo()
{
  int i;
  double t, s, a[100];
  cetus_tic(0);
  for (i = 0; i < 50; ++i)
  {
    t = a[i];
    a[(i+50)] = (t + ((a[i] + a [(i+50)])/2.0));
    s = (s + (2*a[i]));
  }
  cetus_toc(0);
  return 0;
}

(b)

Figure 2. (a) Input source code and (b) the output of loop instrumentation; the 
instrumenter inserted the cetus_tic(0) and cetus_toc(0), with an integer tag 
“0” assigned to the loop. 
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vate variable serves as a temporary variable in a loop, one 
that is written first and used later in the loop. Array sections 
provide temporary locations for private array variables. 
These variables do not need to be exposed to the other 
threads at runtime, so the data-dependence analyzer can 
safely assume these variables do not have dependencies.

We implemented a simple but effective array privatizer in 
Cetus, which can handle array sections containing symbolic 
terms. The array privatizer traverses a loop nest from the 
innermost to the outermost loop while collecting defined 
(written), used, and upward-exposed (used but not defined 
since the loop entry) array sections or scalar variables.

Next, the array privatizer identifies private variables 
by checking if there are no upward-exposed uses for the 
variables. The privatizer’s accuracy improves when using 
a symbolic analysis technique such as range analysis to 
perform array section operations. For example, the priva-
tizer always seeks to compute large must-defined sections 
to minimize upward-exposed uses, and the intersection of 
the two must-defined sections, [1 : m]  [1 : n], results in 
[1 : n] rather than [1 : min(m, n)] if the expression 
comparison tool can decide n ≤ m.

Reduction variable recognition. Reduction operations, 
used in many computational applications, commonly take 
the form of rv = rv + expr. Recognizing such opera-
tions is key to successfully autoparallelizing many loops. 
A data-dependence analyzer will report a dependence on 
a reduction operation unless marked as a reduction opera-
tion. The Cetus reduction variable analyzer detects additive 
reduction variables that satisfy the following criteria:

the loop contains one or several assignment expres-
sions of the form rv = rv + expr, where rv is either 
a scalar variable or an array access, and expr is typi-
cally a real-valued, loop-variant expression; and 
rv appears nowhere else in the loop. 

Induction variable substitution. The third parallelization 
transformation technique is induction variable recogni-
tion and substitution. An induction statement has a form,  
iv = iv + expr, similar to a reduction statement, and must 
be replaced by another form that does not induce data 
dependence. If the right-hand side in the preceding form 
can be expressed as a closed-form expression that does 

dependencies between those references. Array data-
dependence analysis involves the process of analyzing 
array subscripts to disprove that two computations 
access the same elements of an array. In a loop, these 
subscripts are usually functions of the loop index vari-
ables. Data-dependence tests try to find integer solutions 
to systems of equations, defined under loop and direc-
tion vector constraints, to analyze the dependencies 
between array accesses. 

Cetus implements an array data-dependence ana-
lyzer. An information-collection wrapper interfaces 
with the IR to collect array access-related and loop-
related information. It currently handles all canonical 
loops of the form for(i = lb; i < ub; i + = inc). 
We use advanced symbolic range analysis to simplify 
loop-related information and array subscripts to obtain 
simple affine expressions that can be evaluated for de-
pendence. The wrapper feeds into a data-dependence 
test framework that currently uses the Banerjee-Wolfe 
inequalities to return direction vector information for 
the dependencies.8,9 Other tests are under development. 

All dependencies identified within a loop nest are ap-
pended to the Program data-dependence graph, which 
is attached to the Program IR. This information then 
becomes available to all Cetus analysis and transfor-
mation passes through appropriate interface routines. 

Range analysis. This technique computes inte-
ger variables’ value ranges at each program point and 
returns a map from each statement to a set of value 
ranges valid before each statement. This repository of 
ranges, together with utility functions, provides other 
passes with knowledge about symbolic terms, including 
the bounds of variables and expressions, and determines 
through symbolic comparison if one expression is seman-
tically greater than another. For example, our range 
analysis framework can conclude that v1 + v2 ≥ v3 
at a program point that has a set of value ranges {v1 = [0, 
10], v2 = v1 -5, v3 = -5}, since the value range of the 
expression v1 + v2 is [-5, 5]. We use this range analysis 
framework in many applications—including array section 
analysis, array privatization, induction variable substitution, 
and data-dependence analysis—to improve their accuracy. 

Parallelizing transformation passes 
The basic parallelizing transformation techniques Cetus 

currently implements are privatization, reduction variable 
recognition, and induction variable substitution. These are 
the techniques found to be most important for automati-
cally parallelizing compilers.10,11 In ongoing work, we are 
developing techniques that can enhance these transfor-
mations further, including interprocedural analysis and 
advanced alias analysis. 

Privatization. Identifying private variables in a loop is an 
important step automatic parallelizers must perform. A pri-

Figure 3. Cetus symbolic expression tools. The ability to 
manipulate symbolic expressions is essential when designing 
analysis and transformation algorithms that deal with real 
programs.

1 + 2*a + 4 - a   5 + a  (folding)
a*(b + c)   a*b + a*c  (distribution)
(a*2) / (8*c)   a / (4*c)  (division)
(1 - a) < (b + 2)  (1 + a + b) > 0 (normalization)
a && 0 && b   0  (short-circuit evaluation)
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of an unsupported usage of both the K&R C and ANSI C 
formats for function declarations). Automatic paralleliza-
tion, as implemented using the transformations previously 
described, successfully generates OpenMP parallel code 
for all C programs in the SPEC OMP 2001 and NAS Parallel 
Benchmark suites.

Although Cetus represents a high-quality parallelizer, 
its IR implementation consists of only 17,000 lines of Java 
code, while the parallelization passes, including analyses 
and transformations, consist of only about 5,000 lines of 
Java code. Cetus, in total, consists of about 45,000 lines of 
Java code, including the IR and the parallelization frame-
work. These metrics underline the advantage of Cetus as a 
compact and easy-to-use infrastructure. It can handle real 
applications and conveniently facilitates the creation of new 
analysis and transformation passes. Table 1 describes the 
performance of Cetus as an autoparallelization framework.

Runtime consists mainly of parallelization time, of 
which the dependence analyzer consumes a major por-
tion. BT performs relatively poorly in terms of throughput 
because of a significant number of loops that are both large 
and deeply nested. These properties add complexity for the 
dependence analyzer. IS achieves high throughput because 
of many singly nested loops that undergo dependence test-
ing. Cetus’s performance remains relatively consistent for 
the remaining benchmarks.

Although Cetus requires a longer compilation time than 
the industrial compiler, this time is offset by—and partly 
the result of—the programmability Cetus offers. Cetus’s 
memory usage is driven primarily by the complexity of 
loops analyzed for dependence testing, in terms of their 
nesting levels and the total number of array accesses they 
contain. While the memory footprint is well within the 
resource limits of current computer systems, it could be 
improved through a more efficient implementation of de-
pendence information storage, especially with regard to the 
data-dependence graph.

not contain iv, the dependence in the preceding statement 
will be removed.

Cetus has an induction variable recognition and substi-
tution pass that can detect and substitute variables such as 
iv when expr is either loop-invariant or another induction 
variable. This pass visits every statement in a loop nest and 
symbolically computes the increments of induction vari-
ables at each statement following entry to the loop nest. 
It then adds the increments to every use of the induction 
variables while removing the induction statements.

We also use symbolic analysis to avoid possibly unsafe 
transformation because of symbolic loop bounds. For ex-
ample, the following transformation is not safe, because 
the increment of the variable k after the inner loop is not 
2*n + 2*i*n when n < 0:

 
k = 0;                    k = 0;
for (i=0; i<m; i++) {     for (i=0; i<m; i++) 
{                        {
 for (j=0; j<n; j++) {     for (j=0; j<n; j++)  
 {                        {
  k += 2;              =>   ...
  ...                      }
 }                        a[k+2*n+2*i*n] = ...;
 a[k] = ...;              }
}

EVALUATION
We take two approaches to evaluating Cetus: presenting 

characteristics of Cetus itself, and discussing automatic 
parallelization’s state of the art while comparing Cetus 
with two other parallelizers.

Cetus characteristics
Cetus provides the preceding analyses and transforma-

tions, as well as a highly programmable IR, with the goal 
of improving usability, productivity, and extensibility for 
the community of Cetus users. The compiler successfully 
translates and validates 13 out of 14 SPEC CPU2006 bench-
marks (456.hmmer currently does not validate because 

Table 1. Statistics on loop parallelization with Cetus running on HotSpot VM and 2.33 GHz Xeon.

Benchmarks Lines  Memory usage (Mbytes)  Runtime (secs) Throughput (lines/sec)

BT 3,766 142 65.13 58

CG 985 103 4.52 218

EP 326 80 1.96 166

FT 1,319 108 7.12 185

IS 766 78 1.77 433

LU 3,666 144 31.87 115

MG 1,366 99 8.80 155

SP 3,110 145 22.34 139

equake 1,590 105 6.98 228

art 1,977 92 5.06 391

ammp 13,501 196 51.85 260
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5 do not show direct speedups obtained on actual paral-
lel machines, they provide insights into the compilers’ 
abilities to achieve automatic parallelization. Important 
architectural features that determine the ultimate multi-
core performance include the memory hierarchy and the 
ability to provide fast synchronization.

In ongoing work, we are implementing state-of-the-art 
locality enhancement techniques such as tiling, as well as 
techniques to move compile-time decisions into runtime. 
In addition, we expect the infrastructure to grow through 
community contributions such as techniques dealing with 
memory access and synchronization cost. Cetus provides 
the community with a good starting point for research into 
these and other important issues.

Automatic parallelization
Cetus enables automatic parallelization 

by using data dependence analysis with the 
Banerjee-Wolfe inequalities, array and scalar 
privatization, reduction-variable recognition, 
and induction-variable substitution. Several 
compilers implement automatic parallel-
ization using different analysis techniques, 
including a variety of dependence analyzers 
and loop-transformation techniques such as 
loop distribution and loop interchange.8,9 We 
sought to compare Cetus’s performance with 
compilers that provide enough parallelization 
information to merit a fair comparison. The 
Intel C Compiler (icc) provides source-level 
information related to parallelism detection, 
which let us gather comparison data. COINS 
(www.coins-project.org/international) is an 
infrastructure similar to Cetus; coded in Java, 
it provides source-to-source translation along 
with automatic parallelization.

Comparing the number of parallelized 
loops between Cetus, icc, and COINS, as 
shown in Figure 4, reveals that Cetus per-
forms close to or better than icc on 7 of 11 
benchmarks, and better than COINS on 10 
benchmarks. In the five benchmarks where 
Cetus performs poorly, the deficit in number 
of parallel loops ranges from 10 to 40 percent.

In LU’s case, Cetus generates fewer 
parallel loops because it exploits more 
outer-level parallelism, while icc parallel-
izes inner loops without parallelizing these 
outer loops, thus increasing the number of 
parallel loops but decreasing parallel-loop 
granularity. Effectively, compared to icc 
Cetus is closer to hand-parallelized code. In 
the case of ammp, Cetus performs poorly, 
mainly because of the function calls within 
the loops and the absence of interproce-
dural analyses within our current framework. These 
results emphasize the Cetus framework’s scope as we 
achieve close to state-of-the- art parallelization using four 
parallelizing transformations that span a significantly 
small number of code lines compared to other compiler 
infrastructures.10 

The automatically parallelized loops with Cetus actu-
ally cover a substantial part of the sequential execution 
time as shown in Figure 5. This metric translates to the 
theoretical speedup of an application on an ideal paral-
lel machine without parallel execution overhead. Cetus 
detects important parallel loops or their inner-loop paral-
lelism in CG, IS, SP, and art, but fails to parallelize such 
loops in EP, equake, and ammp. While the results in Figure 
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Figure 4. Compiler comparison. Cetus is as powerful as other automatic 
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speedups obtained on actual parallel machines, they provide insights into 
the compilers’ abilities to achieve automatic parallelization.
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To increase our user community, we are exploring the 
Cetus organization and IR interface; the analyses, trans-
formations, and results of the infrastructure itself; and the 
characteristics of Cetus-parallelized programs. Cetus is 
being used and extended in ways beyond those described 
here. Notably, in ongoing work we are adding passes for 
improved alias and data-dependence analysis as well as 
additional parallelizing transformations. Other projects 
are extending Cetus to related languages, such as C++ and 
Java, as well as dialects such as C for GPUs.

C etus has grown from a simple, student-
designed source-to-source translator into 
a robust system supported by the National 
Science Foundation as a community infra-
structure. Cetus is a high-quality, easy-to-use 

tool ready for the user community. Via the Community 
Portal at cetus.ecn.purdue.edu, we can respond to user 
requests and incorporate community-developed modules. 
Through these mechanisms, we expect Cetus to become a 
research infrastructure widely applicable to source-level 
optimizations and transformations for both multicore and 
large-scale parallel programs. 
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