
!"#$%&'('%)$*!"+#)+%)$*!"'!),-./"*'
.01*(%#*$!#$*"'1)*',$/#.!)*"%'

!
!
!
"#$%#!"&'()%!*+,!"#-.&+)!/#.0&%%&1+%2!
3,$4*)&1+*5!1.!-#.%1+*5!$%#!16!)(&%!0*)#.&*5!&%!-#.0&))#,!7&)(1$)!6##8!-.19&,#,!%$4(!
$%#2!:;!&%!+1)!0*,#!61.!-.16&)<!=;!&+45$,#%!)(&%!+1)&4#!*+,!*!6$55!4&)*)&1+!)1!)(#!1.&'&+*5!
71.>!1+!)(#!6&.%)!-*'#!16!)(#!41-?<!*+,!@;!,1#%!+1)!&0-5?!A333!#+,1.%#0#+)!16!*+?!
)(&.,B-*.)?!-.1,$4)%!1.!%#.9&4#%C!D$)(1.%!*+,!)(#&.!410-*+&#%!*.#!-#.0&))#,!)1!-1%)!
)(#&.!A333B41-?.&'()#,!0*)#.&*5!1+!)(#&.!17+!E#F!%#.9#.%!7&)(1$)!-#.0&%%&1+8!
-.19&,#,!)(*)!)(#!A333!41-?.&'()!+1)&4#!*+,!*!6$55!4&)*)&1+!)1!)(#!1.&'&+*5!71.>!
--#.!1+!)(#!6&.%)!%4.##+!16!)(#!-1%)#,!41-?C!
!
/#.0&%%&1+!)1!.#-.&+)G.#-$F5&%(!)(&%!0*)#.&*5!61.!4100#.4&*58!*,9#.)&%&+'8!1.!
-.101)&1+*5!-$.-1%#%!1.!61.!4.#*)&+'!+#7!4155#4)&9#!71.>%!61.!.#%*5#!1.!
.#,&%).&F$)&1+!0$%)!F#!1F)*&+#,!6.10!A333!F?!7.&)&+'!)1!)(#!A333!A+)#55#4)$*5!
/.1-#.)?!"&'()%!H66&4#8!IIJ!K1#%!L*+#8!/&%4*)*7*?8!MN!OPPJIBI:I:!1.!-$F%B
-#.0&%%&1+%Q&###C1.'C!R1-?.&'()!S!=OOT!A333C!D55!.&'()%!.#%#.9#,C!
!
DF%).*4)&+'!*+,!L&F.*.?!U%#2!
DF%).*4)&+'!&%!-#.0&))#,!7&)(!4.#,&)!)1!)(#!%1$.4#C!L&F.*.&#%!*.#!-#.0&))#,!)1!
-(1)141-?!61.!-.&9*)#!$%#!16!-*).1+%8!-.19&,#,!)(#!-#.B41-?!6##!&+,&4*)#,!&+!)(#!
41,#!*)!)(#!F1))10!16!)(#!6&.%)!-*'#!&%!-*&,!)(.1$'(!)(#!R1-?.&'()!R5#*.*+4#!R#+)#.8!
===!"1%#711,!V.&9#8!V*+9#.%8!WD!O:T=@C!
!
!
R&)*)&1+2!
R(&.*'!V*9#8!K*+%*+'!X*#8!Y#$+'BN*&!W&+8!Y#?1+'!L##8!"$,156!3&'#+0*++8!Y*0$#5!
W&,>&668!ZR#)$%2!D!Y1$.4#B)1BY1$.4#!R10-&5#.!A+6.*%).$4)$.#!61.!W$5)&41.#%8Z!
!"#$%&'(8!915C!I=8!+1C!:=8!--C!@[BI=8!V#4C!=OOT8!,1&2:OC::OTGWRC=OOTC@PJ!
!
!
\1.!01.#!&+61.0*)&1+8!-5#*%#!9&%&)2!
())-2GG4#)$%C#4+C-$.,$#C#,$!
!
!
R1+)*4)!$%!*)2!
4#)$%Q#4+C-$.,$#C#,$!
!
](#!R#)$%!]#*0!

COMPUTER 36

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

This state-of-the-art snapshot of automatic paral-
lelization for multicores uses the Cetus tool. Cetus is an
infrastructure for research on multicore compiler optimi-
zations, with an emphasis on automatic parallelization.
We have created a compiler infrastructure that supports
source-to-source transformations, is user-oriented and
easy to handle, and provides the most important par-
allelization passes as well as the underlying enabling
techniques. The infrastructure project follows Polaris,1,2

which was arguably the most advanced research infra-
structure for optimizing compilers on parallel machines.
While Polaris translated Fortran, Cetus targets C programs.
Cetus arose initially from the work of several enthusiastic
graduate students, who continued what they began in a
class project. Recently, we have obtained funding from the
US National Science Foundation to evolve the project into
a community resource.

In our work, we have measured both Cetus and Cetus-
parallelized program characteristics. These results show
a high-quality parallelization infrastructure equally pow-
erful but easier to use than other choices. Cetus can be
compared to Intel’s ICC compiler and the COINS research
compiler. Initially we had also considered infrastructures
such as SUIF (suif.stanford.edu), Open64 (www.open64.
net), Rose (rosecompiler.org), the Gnu C compiler, Pluto
(pluto-compiler.sourceforge.net), and the Portland Group
(PGI) C Compiler. However, parallelization results for these
tools were either unavailable or lacked explanation.

W ith the advent of multicore architec-
tures, automatic parallelization has,
for several reasons, re-emerged as an
important tool technology. While classi-
cal parallel machines served a relatively

small user community, multicores aim to capture a mass
market, which demands user-oriented, high-productivity
programming tools. Further, multicores are replacing
complex superscalar processors, the parallelism of which
was unquestionably exploited by the compiler and under-
lying architecture.

This same model is desirable for the new generation
of CPUs: Automatic parallelization had its successes on
shared-address-space architectures exhibiting small num-
bers of processors, which is the very structure of today’s
multicores.

The Cetus tool provides an infrastruc-

ture for research on multicore compiler

optimizations that emphasizes automatic

parallelization. The compiler infrastruc-

ture, which targets C programs, supports

source-to-source transformations, is user-

oriented and easy to handle, and provides

the most important parallelization passes as

well as the underlying enabling techniques.

Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann, and Samuel Midkiff,

Purdue University

CETUS: A SOURCE-
TO-SOURCE
COMPILER
INFRASTRUCTURE
FOR MULTICORES

37DECEMBER 2009

Symbol table. Cetus’s symbol table functionality pro-
vides information about identifiers and data types. Its
implementation makes direct use of the information
stored in declaration statements in the IR. There is no
separate and redundant symbol table storage.
Annotations. Comments, pragmas, directives, and
other types of auxiliary information about IR ob-
jects can be stored in annotation objects, which
take the form of declarations. An annotation can
be associated with a statement (such as informa-
tion about an OpenMP directive belonging to a for
statement) or could stand independently (such as
a comment line).
Printing. The printing functions have been extended
to allow for flexible rendering of the IR classes.

CETUS ANALYSES AND TRANSFORMATIONS
Automatically instrumenting source programs is a com-

monly used compiler capability. Figure 1 shows a basic
loop instrumenter that inserts timing calls around each
for loop in the given input program. Here we assume that
the function call cetus_tic(id) stores the current time
(get time of day, for example) with the given integer tag,
and cetus_toc(id) computes and stores the time differ-
ence since the last call of cetus_tic(id).

At the end of an application run, basic runtime statis-
tics on the instrumented code sections can be generated
from this information. The Cetus code in Figure 1 assigns a

Developing a dependable
community support system and
reaching out to Cetus users is one
of our goals. Cetus maintains a
community portal at cetus.ecn.
purdue.edu, where the compiler
can be downloaded under an ar-
tistic license. The portal offers a
utility for submitting bug reports
and feature requests, and a Cetus
users’ mailing list to discuss ideas,
new functionality, research topics,
and user concerns. The Cetus
portal further provides documen-
tation for installing and running
the compiler and for writing new
analysis and transformation
passes using the internal program
representation (IR) interface.

Several US and worldwide
research groups already use
Cetus.3-5 In our ongoing work,
we apply the infrastructure for
creating translators that convert
shared-memory programs written
in OpenMP to other models, such as message-passing6 and
CUDA (for graphics processing units).7

CETUS ORGANIZATION AND INTERNAL
REPRESENTATION

Cetus’s IR is implemented in the form of a Java class hier-
archy. A high-level representation provides a syntactic view
of the source program to the pass writer, making it easy
to understand, access, and transform the input program.
For example, the Program class type represents the entire
program that may consist of multiple source files. Each
source file is represented as a Translation Unit. Other base
IR object types are Statement, Declaration, and Expres-
sion. Specific source constructs in the IR are represented
by classes derived from these base classes. For example,
ExpressionStatement represents a Statement that contains
an Expression, and an AssignmentExpression represents an
Expression that assigns the value of the right-hand side to
the left-hand side. There is complete data abstraction, and
pass writers only manipulate the IR through access func-
tions. Important features of the IR include the following:

Traversable objects. All Cetus IR objects are derived
from a base class “Traversable.” This class provides the
functionality to iterate over lists of objects generically.
Iterators. BreadthFirst, DepthFirst, and Flat iterators
are built into the functionality to provide easy tra-
versal and search over the program IR.

class Instrumenter
{
 ...
 public void instrumentLoops(Program p)
 {
 DepthFirstIterator iter = new DepthFirstIterator(p);
 int loop_number = 0;
 while (iter.hasNext()) {
 Object obj = iter.next();
 if (obj instanceof ForLoop)
 insertTimingCalls((ForLoop)obj, loop_number++);
 }
 }

 private void insertTimingCalls(ForLoop loop, int number)
 {
 FunctionCall tic, toc;
 tic = new FunctionCall(new Identifier(“cetus_tic”));
 toc = new FunctionCall(new Identifier(“cetus_toc”));
 tic.addArgument(new IntegerLiteral(number));
 toc.addArgument(new IntegerLiteral(number));
 CompoundStatement parent = (CompoundStatement)loop.getParent();
 parent.addStatementBefore(loop, new ExpressionStatement(tic));
 parent.addStatementAfter(loop, new ExpressionStatement(toc));

 }
 ...
}

Figure 1. Implementation example for basic loop instrumentation. The instrumenter
inserts timing calls around each for loop in the given input program.

COVER FE ATURE

COMPUTER 38

constructs such as “adding argu-
ments” to a FunctionCall or “adding
an additional Statement” to an exist-
ing CompoundStatement in the IR.

Analysis passes
Advanced program analysis capa-

bilities are essential to Cetus; they will
grow both through our own efforts
and the Cetus user community’s. Here
we describe some basic analyses.

Symbolic manipulation. Like its
predecessor, Polaris,1,2 Cetus provides
a key feature in its ability to analyze
the represented program in symbolic
terms. The ability to manipulate sym-
bolic expressions is essential when
designing analysis and transforma-
tion algorithms that deal with real
programs. For example, a data depen-
dence test can easily extract the
necessary information if array sub-
scripts are normalized with respect to
the relevant loop indices. Cetus sup-
ports such expression manipulations
with tools that simplify and normal-
ize symbolic expressions. Figure 3
shows these tools’ capabilities.

Array section analysis. Array sections describe the
set of array elements accessed by program statements.
Compiler passes equipped with array section analysis
are more accurate than others that use a name-based
approach. Cetus’s array-section analysis pass performs
a may-use/may-def analysis of array variables for a
given input program by computing the value ranges of
the array subscripts. These array sections are merged
together if the analysis is applied to code sections with
multiple statements. The following code example shows
the result of array section analysis, expressed as a
pragma annotation, for the given loop:

c = 2;
N = 100;
#pragma cetus USE(A[0:100][0:100])
 DEF(B[1:99][1:99])
for (i=1; i<N; i++) {
 for (j=1; j<N; j++) {
 B[c*i -i][j] = (A[i-1][j]+A[i+1]
 [j]+A[i][j-1]+A[i][j+1])/4;
 }
}

Data dependence analysis. This analysis provides a
memory disambiguation technique that seeks to identify
data references that access the same memory loca-
tion during program execution and that characterizes

unique integer tag for each loop and inserts the two timing
calls around the loops. The instrumentLoop() method
drives this transformation by iterating over the entire
program in depth-first order, by checking the type of the
current IR object and invoking the actual insertion method
insertTimingCalls(). The insertTimingCalls() method
constructs the two function calls described, accesses the
compound statement enclosing the current loop, and then
inserts the two function calls.

Figure 2b shows the output obtained from Cetus using
the loop instrumenter for the loop in the input program
shown in Figure 2a. The instrumenter inserts the begin-
timing function call cetus_tic(loopid) before the start
of the loop, and an end-timing function call cetus_
toc(loopid) after the loop.

In the case of multiple loops, each loop at every nest
level would be instrumented with profiling calls with a
unique loopid for each loop. The Cetus implementation
described in Figure 1 requires only about 25 lines of Java
code. The abstractions of the Cetus IR hierarchy for search-
ing, creating, manipulating, and removing IR objects make
this possible. The user can easily traverse the IR using
Cetus-provided iterators, including the functionality to
search objects of specific types such as Loops, Function-
Calls, BinaryExpressions, and others. IR objects provide a
rich interface for the user to think in terms of source-level

int foo(void)
{
 int i;
 double t, s, a[100];
 for (i = 0; i < 50; ++i)
 {
 t = a[i];
 a[i+50] = t + (a[i] + a[i+50])/2.0;
 s = s + 2*a[i];
 }
 return 0;
}

(a)

int foo()
{
 int i;
 double t, s, a[100];
 cetus_tic(0);
 for (i = 0; i < 50; ++i)
 {
 t = a[i];
 a[(i+50)] = (t + ((a[i] + a [(i+50)])/2.0));
 s = (s + (2*a[i]));
 }
 cetus_toc(0);
 return 0;
}

(b)

Figure 2. (a) Input source code and (b) the output of loop instrumentation; the
instrumenter inserted the cetus_tic(0) and cetus_toc(0), with an integer tag
“0” assigned to the loop.

39DECEMBER 2009

vate variable serves as a temporary variable in a loop, one
that is written first and used later in the loop. Array sections
provide temporary locations for private array variables.
These variables do not need to be exposed to the other
threads at runtime, so the data-dependence analyzer can
safely assume these variables do not have dependencies.

We implemented a simple but effective array privatizer in
Cetus, which can handle array sections containing symbolic
terms. The array privatizer traverses a loop nest from the
innermost to the outermost loop while collecting defined
(written), used, and upward-exposed (used but not defined
since the loop entry) array sections or scalar variables.

Next, the array privatizer identifies private variables
by checking if there are no upward-exposed uses for the
variables. The privatizer’s accuracy improves when using
a symbolic analysis technique such as range analysis to
perform array section operations. For example, the priva-
tizer always seeks to compute large must-defined sections
to minimize upward-exposed uses, and the intersection of
the two must-defined sections, [1 : m] [1 : n], results in
[1 : n] rather than [1 : min(m, n)] if the expression
comparison tool can decide n ≤ m.

Reduction variable recognition. Reduction operations,
used in many computational applications, commonly take
the form of rv = rv + expr. Recognizing such opera-
tions is key to successfully autoparallelizing many loops.
A data-dependence analyzer will report a dependence on
a reduction operation unless marked as a reduction opera-
tion. The Cetus reduction variable analyzer detects additive
reduction variables that satisfy the following criteria:

the loop contains one or several assignment expres-
sions of the form rv = rv + expr, where rv is either
a scalar variable or an array access, and expr is typi-
cally a real-valued, loop-variant expression; and
rv appears nowhere else in the loop.

Induction variable substitution. The third parallelization
transformation technique is induction variable recogni-
tion and substitution. An induction statement has a form,
iv = iv + expr, similar to a reduction statement, and must
be replaced by another form that does not induce data
dependence. If the right-hand side in the preceding form
can be expressed as a closed-form expression that does

dependencies between those references. Array data-
dependence analysis involves the process of analyzing
array subscripts to disprove that two computations
access the same elements of an array. In a loop, these
subscripts are usually functions of the loop index vari-
ables. Data-dependence tests try to find integer solutions
to systems of equations, defined under loop and direc-
tion vector constraints, to analyze the dependencies
between array accesses.

Cetus implements an array data-dependence ana-
lyzer. An information-collection wrapper interfaces
with the IR to collect array access-related and loop-
related information. It currently handles all canonical
loops of the form for(i = lb; i < ub; i + = inc).
We use advanced symbolic range analysis to simplify
loop-related information and array subscripts to obtain
simple affine expressions that can be evaluated for de-
pendence. The wrapper feeds into a data-dependence
test framework that currently uses the Banerjee-Wolfe
inequalities to return direction vector information for
the dependencies.8,9 Other tests are under development.

All dependencies identified within a loop nest are ap-
pended to the Program data-dependence graph, which
is attached to the Program IR. This information then
becomes available to all Cetus analysis and transfor-
mation passes through appropriate interface routines.

Range analysis. This technique computes inte-
ger variables’ value ranges at each program point and
returns a map from each statement to a set of value
ranges valid before each statement. This repository of
ranges, together with utility functions, provides other
passes with knowledge about symbolic terms, including
the bounds of variables and expressions, and determines
through symbolic comparison if one expression is seman-
tically greater than another. For example, our range
analysis framework can conclude that v1 + v2 ≥ v3
at a program point that has a set of value ranges {v1 = [0,
10], v2 = v1 -5, v3 = -5}, since the value range of the
expression v1 + v2 is [-5, 5]. We use this range analysis
framework in many applications—including array section
analysis, array privatization, induction variable substitution,
and data-dependence analysis—to improve their accuracy.

Parallelizing transformation passes
The basic parallelizing transformation techniques Cetus

currently implements are privatization, reduction variable
recognition, and induction variable substitution. These are
the techniques found to be most important for automati-
cally parallelizing compilers.10,11 In ongoing work, we are
developing techniques that can enhance these transfor-
mations further, including interprocedural analysis and
advanced alias analysis.

Privatization. Identifying private variables in a loop is an
important step automatic parallelizers must perform. A pri-

Figure 3. Cetus symbolic expression tools. The ability to
manipulate symbolic expressions is essential when designing
analysis and transformation algorithms that deal with real
programs.

1 + 2*a + 4 - a 5 + a (folding)
a*(b + c) a*b + a*c (distribution)
(a*2) / (8*c) a / (4*c) (division)
(1 - a) < (b + 2) (1 + a + b) > 0 (normalization)
a && 0 && b 0 (short-circuit evaluation)

COVER FE ATURE

COMPUTER 40

of an unsupported usage of both the K&R C and ANSI C
formats for function declarations). Automatic paralleliza-
tion, as implemented using the transformations previously
described, successfully generates OpenMP parallel code
for all C programs in the SPEC OMP 2001 and NAS Parallel
Benchmark suites.

Although Cetus represents a high-quality parallelizer,
its IR implementation consists of only 17,000 lines of Java
code, while the parallelization passes, including analyses
and transformations, consist of only about 5,000 lines of
Java code. Cetus, in total, consists of about 45,000 lines of
Java code, including the IR and the parallelization frame-
work. These metrics underline the advantage of Cetus as a
compact and easy-to-use infrastructure. It can handle real
applications and conveniently facilitates the creation of new
analysis and transformation passes. Table 1 describes the
performance of Cetus as an autoparallelization framework.

Runtime consists mainly of parallelization time, of
which the dependence analyzer consumes a major por-
tion. BT performs relatively poorly in terms of throughput
because of a significant number of loops that are both large
and deeply nested. These properties add complexity for the
dependence analyzer. IS achieves high throughput because
of many singly nested loops that undergo dependence test-
ing. Cetus’s performance remains relatively consistent for
the remaining benchmarks.

Although Cetus requires a longer compilation time than
the industrial compiler, this time is offset by—and partly
the result of—the programmability Cetus offers. Cetus’s
memory usage is driven primarily by the complexity of
loops analyzed for dependence testing, in terms of their
nesting levels and the total number of array accesses they
contain. While the memory footprint is well within the
resource limits of current computer systems, it could be
improved through a more efficient implementation of de-
pendence information storage, especially with regard to the
data-dependence graph.

not contain iv, the dependence in the preceding statement
will be removed.

Cetus has an induction variable recognition and substi-
tution pass that can detect and substitute variables such as
iv when expr is either loop-invariant or another induction
variable. This pass visits every statement in a loop nest and
symbolically computes the increments of induction vari-
ables at each statement following entry to the loop nest.
It then adds the increments to every use of the induction
variables while removing the induction statements.

We also use symbolic analysis to avoid possibly unsafe
transformation because of symbolic loop bounds. For ex-
ample, the following transformation is not safe, because
the increment of the variable k after the inner loop is not
2*n + 2*i*n when n < 0:

k = 0; k = 0;
for (i=0; i<m; i++) { for (i=0; i<m; i++)
{ {
 for (j=0; j<n; j++) { for (j=0; j<n; j++)
 { {
 k += 2; => ...
 ... }
 } a[k+2*n+2*i*n] = ...;
 a[k] = ...; }
}

EVALUATION
We take two approaches to evaluating Cetus: presenting

characteristics of Cetus itself, and discussing automatic
parallelization’s state of the art while comparing Cetus
with two other parallelizers.

Cetus characteristics
Cetus provides the preceding analyses and transforma-

tions, as well as a highly programmable IR, with the goal
of improving usability, productivity, and extensibility for
the community of Cetus users. The compiler successfully
translates and validates 13 out of 14 SPEC CPU2006 bench-
marks (456.hmmer currently does not validate because

Table 1. Statistics on loop parallelization with Cetus running on HotSpot VM and 2.33 GHz Xeon.

Benchmarks Lines Memory usage (Mbytes) Runtime (secs) Throughput (lines/sec)

BT 3,766 142 65.13 58

CG 985 103 4.52 218

EP 326 80 1.96 166

FT 1,319 108 7.12 185

IS 766 78 1.77 433

LU 3,666 144 31.87 115

MG 1,366 99 8.80 155

SP 3,110 145 22.34 139

equake 1,590 105 6.98 228

art 1,977 92 5.06 391

ammp 13,501 196 51.85 260

41DECEMBER 2009

5 do not show direct speedups obtained on actual paral-
lel machines, they provide insights into the compilers’
abilities to achieve automatic parallelization. Important
architectural features that determine the ultimate multi-
core performance include the memory hierarchy and the
ability to provide fast synchronization.

In ongoing work, we are implementing state-of-the-art
locality enhancement techniques such as tiling, as well as
techniques to move compile-time decisions into runtime.
In addition, we expect the infrastructure to grow through
community contributions such as techniques dealing with
memory access and synchronization cost. Cetus provides
the community with a good starting point for research into
these and other important issues.

Automatic parallelization
Cetus enables automatic parallelization

by using data dependence analysis with the
Banerjee-Wolfe inequalities, array and scalar
privatization, reduction-variable recognition,
and induction-variable substitution. Several
compilers implement automatic parallel-
ization using different analysis techniques,
including a variety of dependence analyzers
and loop-transformation techniques such as
loop distribution and loop interchange.8,9 We
sought to compare Cetus’s performance with
compilers that provide enough parallelization
information to merit a fair comparison. The
Intel C Compiler (icc) provides source-level
information related to parallelism detection,
which let us gather comparison data. COINS
(www.coins-project.org/international) is an
infrastructure similar to Cetus; coded in Java,
it provides source-to-source translation along
with automatic parallelization.

Comparing the number of parallelized
loops between Cetus, icc, and COINS, as
shown in Figure 4, reveals that Cetus per-
forms close to or better than icc on 7 of 11
benchmarks, and better than COINS on 10
benchmarks. In the five benchmarks where
Cetus performs poorly, the deficit in number
of parallel loops ranges from 10 to 40 percent.

In LU’s case, Cetus generates fewer
parallel loops because it exploits more
outer-level parallelism, while icc parallel-
izes inner loops without parallelizing these
outer loops, thus increasing the number of
parallel loops but decreasing parallel-loop
granularity. Effectively, compared to icc
Cetus is closer to hand-parallelized code. In
the case of ammp, Cetus performs poorly,
mainly because of the function calls within
the loops and the absence of interproce-
dural analyses within our current framework. These
results emphasize the Cetus framework’s scope as we
achieve close to state-of-the- art parallelization using four
parallelizing transformations that span a significantly
small number of code lines compared to other compiler
infrastructures.10

The automatically parallelized loops with Cetus actu-
ally cover a substantial part of the sequential execution
time as shown in Figure 5. This metric translates to the
theoretical speedup of an application on an ideal paral-
lel machine without parallel execution overhead. Cetus
detects important parallel loops or their inner-loop paral-
lelism in CG, IS, SP, and art, but fails to parallelize such
loops in EP, equake, and ammp. While the results in Figure

>2.0
1.5

1.0

0.5

0
BT CG EP FT IS LU MG SP equake art ammp

Number of outer parallel loops (Intel=1.0)

NAS Parallel Benchmarks SPEC OMPM 2001

3.0 2.0 2.33

59 16 6 2 7 70 8 97 19 3 28 loops

COINS
Intel
Cetus

Nu
mb

er
of

loo
ps

Figure 4. Compiler comparison. Cetus is as powerful as other automatic
parallelizers in terms of detection of parallel loops.

100

80

60

40

20

0
BT CG EP FT IS LU MG SP equake art ammp

Coverage of parallelized loops

NAS Parallel Benchmarks SPEC OMPM 2001

Hand
Auto

Pe
rce

nt
ag

e o
f c

ov
era

ge

Figure 5. Parallel coverage. While these results do not show the direct
speedups obtained on actual parallel machines, they provide insights into
the compilers’ abilities to achieve automatic parallelization.

COVER FE ATURE

COMPUTER 42

Parallel Programming (PPoPP 09), ACM Press, Feb. 2009,
pp. 101-110.

 8. R. Allen and K. Kennedy, Optimizing Compilers for Modern
Architectures, Morgan Kaufmann, 2002.

 9. M. Wolfe, Optimizing Supercompilers for Supercomputers,
MIT Press, 1989.

 10. R. Eigenmann, J. Hoeflinger, and D. Padua, “On the Au-
tomatic Parallelization of the Perfect Benchmarks,” IEEE
Trans. Parallel Distributed Systems, vol. 9, no. 1, 1998, pp.
5-23.

 11. H. Bae et al., “Automatic Parallelization with Cetus,” tech.
report ECE-HPCLab-08202, Purdue Univ., School of Elec-
trical and Computer Engineering, High-Performance
Computing Laboratory, 2008.

Chirag Dave is a PhD student in the School of Electrical and
Computer Engineering at Purdue University. His research
interests include parallel programming, automatic perfor-
mance tuning, and optimizing compilers. Dave received a
BEng in communications and electronic engineering from
the University of Leicester, UK. Contact him at cdave@
purdue.edu.

Hansang Bae is a PhD student in the School of Electri-
cal and Computer Engineering at Purdue University. His
research interests include optimizing compilers, program
analysis, and high-performance computing. Bae received
an MS in electrical and computer engineering from Purdue
University. Contact him at baeh@purdue.edu.

Seung-Jai Min formerly at Purdue University, where he
received a PhD in electrical and computer engineering,
is a postdoctoral researcher in the Future Technologies
Group at Lawrence Berkeley National Laboratory. His
research interests include optimizing compilers, parallel
programming, and high-performance computing. Min
received a PhD in electrical and computer engineering
from Purdue University. Contact him at sjmin@lbl.gov.

Seyong Lee is a PhD student in the School of Electrical and
Computer Engineering at Purdue University. His research
interests include parallel programming and performance
optimization in heterogeneous computing environments,
program analysis, and optimizing compilers. Lee received
an MS in electrical and computer engineering from Purdue
University. Contact him at lee222@purdue.edu.

Rudolf Eigenmann is a professor in the School of Elec-
trical and Computer Engineering at Purdue University.
His research interests include optimizing compilers,
programming models for parallel computing, and cyber-
infrastructures. Eigenmann received a PhD in electrical
engineering/computer science from ETH Zurich, Switzer-
land. Contact him at eigenman@purdue.edu.

Samuel Midkiff is a professor in the School of Electri-
cal and Computer Engineering at Purdue University. His
research interests include abstractions for parallelism, de-
bugging of parallel programs, and memory models. Midkiff
received a PhD in computer science from the University of
Illinois at Urbana-Champaign. Contact him at smidkiff@
purdue.edu.

To increase our user community, we are exploring the
Cetus organization and IR interface; the analyses, trans-
formations, and results of the infrastructure itself; and the
characteristics of Cetus-parallelized programs. Cetus is
being used and extended in ways beyond those described
here. Notably, in ongoing work we are adding passes for
improved alias and data-dependence analysis as well as
additional parallelizing transformations. Other projects
are extending Cetus to related languages, such as C++ and
Java, as well as dialects such as C for GPUs.

C etus has grown from a simple, student-
designed source-to-source translator into
a robust system supported by the National
Science Foundation as a community infra-
structure. Cetus is a high-quality, easy-to-use

tool ready for the user community. Via the Community
Portal at cetus.ecn.purdue.edu, we can respond to user
requests and incorporate community-developed modules.
Through these mechanisms, we expect Cetus to become a
research infrastructure widely applicable to source-level
optimizations and transformations for both multicore and
large-scale parallel programs.

Acknowledgment
This work was supported, in part, by the National Science
Foundation under grants Nos. 0751153-CNS, 0707931-CNS,
0833115-CCF, and 0916817-CCF.

References
 1. W. Blume et al., “Parallel Programming with Polaris,” Com-

puter, Dec. 1996, pp. 78-82.
 2. S.-J. Min et al., “Portable Compilers for OpenMP,” OpenMP

Shared-Memory Parallel Programming, LNCS 2104,
Springer Verlag, 2001, pp. 11-19.

 3. L. Fei and S.P. Midkiff, “Artemis: Practical Runtime Moni-
toring of Applications for Execution Anomalies,” Proc.
2006 ACM SIGPLAN Conf. Programming Language Design
and Implementation (PLDI 06), ACM Press, 2006, pp. 84-95.

 4. W. Baek et al., “The Open Transactional Application
Programming Interface,” Proc. 16th Int’l Conf. Parallel Ar-
chitecture and Compilation Techniques (PACT 07), IEEE CS
Press, 2007, pp. 376-387.

 5. R. Asenjo et al., “Parallelizing Irregular C Codes Assisted
by Interprocedural Shape Analysis,” Proc. 22nd IEEE Int’l
Parallel and Distributed Processing Symp. (IPDPS 08), IEEE
Press, 2008, pp. 1-12.

 6. A. Basumallik and R. Eigenmann, “Optimizing Irregu-
lar Shared-Memory Applications for Distributed-Memory
Systems,” Proc. 11th ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming (PPoPP 06), ACM Press,
2006, pp. 119-128.

 7. S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU:
A Compiler Framework for Automatic Translation and
Optimization,” Proc. ACM Symp. Principles and Practice of

