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Why Worry About GPU Utilization?

e Supercomputing resources are limited

— XSEDE requests regularly exceed availability and Keeneland
remains 70-80% utilized (including downtime)

e Users on Keeneland are charged per GPU hour, not
by CPU hours, so effective GPU usage is key
— 1 wall-time hour =3 SUs = 16 SUs on a CPU-centric system

e For administrators, GPU utilization provides a good
indicator of how accelerated applications are
being used

Better GPU utilization translates to more available time for all
users as well as reduced queuing times!
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Keeneland Background

e Five-year, Track 2D NSF grant awarded in
August 2009

— Led by Georgia Tech (GT) in collaboration with
NICS, UT, and ORNL

e Two Systems: KIDS and KFS

— Keeneland Initial Delivery System in 2010
e 120 HP SL390 nodes for application prototyping
and initial experiments

— Keeneland Full-Scale System in 2012

e 264 HP SL250 nodes for production experiments
using GPUs

e Each System has 3 M2090 NVIDIA GPUs
per node
— KIDS: 2x Intel Westmere CPUs, QDR IB
— KFS: 2x Sandy Bridge CPUs, FDR IB
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Keeneland - Full Scale System

‘ Keeneland Full Scale (KFS) system installed in ‘

October 2012

LS

e 264 HP SL250 G8 nodes in 11 compute racks

® 792 M2090 GPUs contribute to aggregate system peak of
~615TF

e Over 200 users, 150 projects using KFS
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J.S. Vetter, R. Glassbrook et al., “Keeneland: Bringing heterogeneous GPU computing to the computational science community,” IEEE
Computing in Science and Engineering, 13(5):90-5, 2011, http://dx.doi.org/10.1109/MCSE.2011.83.
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Keeneland Users and Applications

e Two classes of users on Keeneland

e Heavy usage by chemistry, biosciences, and
material sciences research

e Two types of support for these users

Power Users and Developers: Experienced with

accelerator-based programming and parallel codes;
Many of these prototyped new GPU-based apps
using KIDS

Production and Scientific Users: Typically use or

Applications by

Scientific Area (KFS)
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slightly modify existing accelerated software and
packages to satisfy experimental requirements

m Astronomical Sciences

® Chemical, Thermal Systems
% Chemistry

M Materials Research

® Mathematical Sciences

NICS provides general user support

® Molecular and Cellular Bioscience

GT focuses on advanced application support

¥ Physics
(AAS), also sometimes referred to as Extended |
Collaborative Support Service (ECSS) 7% = Other
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Challenges for Effective GPU Utilization

e Keeneland’s node design
creates programming Gl PCle x8
challenges i, PCle x16

InfiniBand

— Asymmetric number of
accelerators

— PCl Express bus limits  (Gial LR PCle x16
host to device ~ RAM
performance

— QPI link between nodes limits GPU-specific optimizations like
GPUDirect

e GPUDirect Peer to Peer limited to GPUs 1 and 2
e GPUDirect RDMA performance is best with GPU 0 (Kepler-class GPUs)
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Measuring GPU Utilization

e Builds on NICS tools which correlate job numbers
with GPU utilization across multiple nodes
— described at XSEDE "12

e NVIDIA’s Management Library (NVML) is used to
pull usage snapshots every 5 minutes

— Can be integrated with monitoring toolsets like Ganglia

o Monthly reports are used tO . ac22 GPU Utilization last hour
assist users with low GPU

utilization 0

200

Percent

15:40 16: 08 16: 20
O gpud B gpul W opuz W gpu3

T. Samuel, S. McNally, J. Wynkoop, “An Analysis of GPU Ultilization Trends on the Keeneland Initial Delivery System,” XSEDE 2012

Image from httﬁ)s //[developer.nvidia.com/ganglia-monitoring-system
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AAS for Improved GPU Utilization

e 3 application scenarios we recently assisted with
— HOOMD
— NAMD
— MILC

e |n addition, AAS has helped to develop and debug
scalable applications for GPU systems
— BEAST/BEAGLE
— SDSC Earthquake code

— G. Lopez, Brownian Dynamic Simulations with
Hydrodynamic Interactions on GPUs, XSEDE ‘14
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AAS for Improved GPU Utilization

e 3 applications we recently assisted with

% KFS Workload by Number of GPUs Used
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HOOMD

e |n Spring 2013, a spike in 1 GPU jobs was traced to
users of a single-GPU version of HOOMD-Blue

— Conversations With % KFS Workload by Number of GPUs Used
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HOOMD Results

HOOMD-Blue Strong Scaling on KIDS
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number of GPUs

e Strong scaling for HOOMD standard benchmarks shows that 3
GPU jobs provide double the performance on one node

e Performance scaling depends on problem size
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NAMD

e Stats indicated that one user was running a large
number of 1 GPU jobs from Nov. — Dec. 2013

e This user was using

. . % KFS Workload by Number of GPUs Used
efficiency feedback ..
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NAMD Results

NAMD Performance and Moab Efficiency on KIDS
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e Moab efficiency is based on CPU core utilization but is still “beta” for GPUs

e The best performance results from letting Charm++ allocate 10 CPU cores
(on KIDS) and all GPUs!

— Provided speedups of ~4.25x on KIDS and more on KFS
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MILC (MIMD Lattice Computation)

e A MILC user with a 2-GPU experimental setup was
responsible for % of all charged SUs in March 2014

e This user was
uncertain as to % KFS Workload by Number of GPUs Used
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MILC — 2 GPUs vs. 3 GPUs

) 2 GPU SU 3 GPU SU

Experimental Parameters Num. Nodes |3 GPU Speedup % > >
— Used Used
-ks_measure application . )5 13 c 38 178

-Compiled with SciDAC-2 ' ' '

and QUDA 0.5.0 2 6.26 5.87 5.50
-400 iterations 4 736 9.46 3.76
8 -8.39 10.00 10.84
24/16 -23.91 19.56 24.24

e 2 node, 3 GPU jobs are most efficient in terms of SU usage
e 4 node jobs provide the best completion time/SU tradeoff

e Communication costs for the 319 GPU make 2 GPU jobs more appealing
at higher node counts
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MILC — A New Problem

InfiniBand

e What if our input data set is divisible by 3 instead of 2?
— Forinstance, a 32x32x32 lattice can be divided by 2 GPUs but not 3

e What if we schedule multiple applications within the same job?
— The CUDA-enabled MILC library, QUDA, doesn’t support this
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MILC Co-scheduling of Applications (1)

InfiniBand InfiniBand

App 1, 400 iterations App 2, 400 iterations

e Submit two separate jobs that each use 2 GPUs
— Finishes quickly.. but doesn’t use GPUs or SUs effectively
— May experience more queuing delay on a busy system

»
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MILC Co-scheduling of Applications (2)

InfiniBand

App 2, 400 iterations

e Submit 1 job with an application pinned to each CPU socket
— Use numact! within the job to pin applications to sockets, expose GPUs

— Makes good use of GPUs.. but the app on 1 GPU takes almost twice as
long to finish!
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MILC Co-scheduling of Applications (3)

InfiniBand

| App 1, 300 iterations

 App 1,300 torations
App 2, 500 iterations

e Submit 1 job with asymmetric, pinned applications

— Neither application limits runtime and utilization remains high
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MILC Co-scheduling of Applications (3)

InfiniBand InfiniBand

App 1, 300 iterations

App 2, 500 iterations

App 2, 300 iterations

App 1, 500 iterations

e Submit 1 job with asymmetric, pinned applications

— Neither application limits runtime and utilization remains high

— Application imbalance can be mitigated by swapping numbers of
iterations and CPU socket
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MILC Updated Job Script

How do we implement this?
1. qsub launch_combined _job.pbs
2. launch_combined _job.pbs
1. Generate two MPI rankfiles, one for each application
2. Launch two scripts to pin and run each application:
/multi_gpu_exec.sh SNUM_ITERO SRANKFILEO SSKT
/multi_gpu_exec.sh SNUM_ITER1 SRANKFILE1 SSKT
3. multi_gpu_exec.sh

1. Pin application to a socket and expose GPUs connected to a specific
socket. For example, for SKT=1:

numact/ --membind=1 --physcpubind=1,3,5,7,9,11
cudavisible="CUDA_VISIBLE DEVICES=1,2"
2.  Run application across multiple, pinned sockets using MPI

mpirun -x SCUDAVISIBLE --rankfile SRANKFILEL ... ks_measure
OAK
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MILC Co-scheduled Results

Experimental Parameters
-ks_measure application
with 32x32x32 input lattice
-Compiled with SciDAC-2
and QUDA 0.5.0

-800 iterations across 2
applications

Num. Nodes Test Type Time (Hrs) Experiments / SU GPU Utilization (%)
1 2 GPU 33.22 481.69 55.67
2 2GPU 16.39 488.13 52.33
1 Coscheduled 27.13 589.82 62.00
2 Coscheduled 16.53 483.91 63.67
1 Asymmetric 21.16 756.12 74.33
2 Asymmetric 13.03 614.19 82.00

e Asymmetric mapping of applications optimizes
across walltime, SUs used, and GPU utilization
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Revisiting GPU Utilization

e Small amounts of AAS for the biggest users can
dramatically improve GPU utilization

— Less than 5 different cases resulted in improvement of 3 GPU
utilization to 91%

% KFS Workload by Number of GPUs Used
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Support for Application Development

e SDSC Earthquake Code, AWP-ODC

— During KIDS phase, the Keeneland AAS team helped to debug an
undocumented CUDA synchronization bug

— Final version of this code achieved ideal weak scaling on Keeneland
and also on Titan using 952 GPUs

— More infoin Zhou, J., et al., Multi-GPU Implementation of a 3D
Finite Difference Time Domain Earthquake Code on Heterogeneous
Supercomputers, Procedia Computer Science, 18 (2013)

e BEAST/BEAGLE

— Markov chain Monte Carlo method used to infer likely evolutionary
trees for nucleotides, amino acids, and codons

— More info in Horton, M., “BEAST/BEAGLE Phylogenetics Software”,
GTC 2014
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BEAST/BEAGLE

BEAST/BEAGLE Matrix

Effective Sample Size

BEAST/BEAGLE Strong Scaling on KFS . .
Exponentiation Weak Scaling
: 100 £ ‘ ' e
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Number of GPUs

e Keeneland AAS consulted on the development of a scalable MPI
implementation as well as a custom CUDA kernel for matrix exponentiation

— Both optimizations led to good strong scaling across almost the GPUs in KFS!
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Lessons Learned

e Administrators

— GPU utilization can be an indicator of how users interact with the system and
can be used to find any potential problems

— Maximizing usage of the system takes intervention
e But a small amount can go a long way

— Different interaction strategies are needed for power users and normal
scientific users

e AAS/ECSS can be a key component in assisting scientific users

e Users

— SUs aren’t unlimited! Using them wisely is important and optimizing for a
system’s accelerators can make a big impact.

— Don’t believe all the system-level statistics without checking them against
other key metrics (e.g., walltime or steps/sec.)

— Don’t be afraid to ask for assistance with your application/package!
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Questions?

For more information, go to
http://keeneland.gatech.edu

Jeffrey Vetter, Project Director Jeff Young, Keeneland AAS
vetter@gatech.edu jyoung9@gatech.edu
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