
User-Controllable Coherence for High Performance Shared
Memory Multiprocessors ∗

Collin McCurdy and Charles Fischer
Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, WI 53706

{cmccurdy, fischer}@cs.wisc.edu

ABSTRACT
In programming high performance applications, shared
address-space platforms are preferable for fine-grained
computation, while distributed address-space platforms are
more suitable for coarse-grained computation. However,
currently only distributed address-space systems scale
beyond the low hundreds of processors. In this paper
we introduce a hybrid architecture that allows users to
trade off local memory usage for coherence communication,
making possible larger-scale shared memory architectures.
We introduce a programming model and examine possible
implementations of hardware mechanisms, evaluating some
of the trade-offs inherent in each. Preliminary experiments
on an application with particularly fine-grained commu-
nication requirements indicate that effective placement of
directives can reduce coherence communication by more
than a factor of 10 for 64 processors.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—
Hardware/software interfaces; C.1.4 [Computer Sys-
tems Organization]: Processor Architectures—Parallel
Architectures; D.1.3 [Software]: General—Parallel Pro-
gramming

General Terms
Performance, Design, Languages

Keywords
Parallel computation, shared memory architectures,
distributed memory architectures, irregular computation.

∗
This research was supported in part by NSF Grant CCR-0208677.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03,June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

1. INTRODUCTION
Current high-performance multiprocessor platforms may

be broken into two categories: distributed address-space
and shared address-space. For programs running on a
distributed address-space multiprocessor, data visible
on one processing unit is not visible on the remaining
processor units. In contrast, hardware mechanisms in high-
performance shared address-space environments ensure
that all data is in principle visible to all processors. While a
shared address-space can offer programmability advantages
and better performance for fine-grained applications, the
very mechanisms that create those advantages appear to
prevent the machines from scaling to large numbers of
processors.

Programmability. Programming a distributed address-
space machine requires adherence to a model in which
“computation-follows-data” – the data-parallel model –
which necessitates careful user attention to data placement
and movement. Shared address-space machines offer a
model in which “data-follows-computation.”

For coarse-grained application phases – in which non-local
data requirements are easily identified before a large section
of computation – the distinction is not fundamental. How-
ever, the task of parallelizing fine-grained application phases
– in which non-local data dependences can only be identified
for small pieces of computation at a time – is significantly
simplified when data placement does not require user atten-
tion.

Performance. Performance trade-offs break along similar
lines: coarse-grained application phases enjoy better per-
formance on distributed hardware, where all communica-
tion takes place before any computation. Non-local data,
once made local, stays local. On the other hand, hardware
controlled shared address-space machines, based on cache-
coherence protocols, can suffer from the need to fetch “non-
local” data multiple times, due to cache replacements or
writes to shared data.

However, fine-grained application phases are not well-
suited to the communication overheads inherent in a
distributed address-space environment, where all non-local
references must be identified and the data they refer to
requested, packed, sent, received and unpacked. Meanwhile,
fine-grained application phases are exactly the conditions in
which a hardware-based coherence system thrives, providing

data very quickly without the overheads associated with
message-passing, one cache-block at a time.

Ideally, we could use hardware-based shared address-
space platforms to run applications with predominantly
fine-grained computation, and distributed platforms for
predominantly coarse-grained applications. Unfortunately,
the overheads inherent in providing the “data-follows-
computation” model prevent those machines from scaling
beyond tens, or perhaps the low hundreds, of processors.
Meanwhile, distributed address-space machines with tens
of thousands of processors are currently in development.

Hybrid. This work addresses the question: What if we need
to perform fine-grained computation on a large-scale plat-
form? We conjecture that shared and distributed address-
space architectures are actually just endpoints on a spec-
trum, and consider a midpoint: a machine with both address
spaces. We consider changes to the basic shared address-
space architecture that allow users to take advantage of two
address spaces to gain the scalability of distributed architec-
tures while retaining the benefits of the shared address-space
architecture.

In our model there are two kinds of memory: global, which
hardware keeps coherent, and strictly local, which is left in-
coherent. We provide users with a mechanism for specifying,
at a very high level, data that would benefit from localiza-
tion – being moved from global to local memory – offering
the following benefits for memory accesses that have been
localized:

• Faster access to localized data.

• Elimination of redundant protocol traffic.

• Elimination of locking/contention for written shared
data.

We propose modifications to a basic hardware shared mem-
ory coherence protocol that allow the efficient, dynamic
movement of data between local and global address spaces,
without copying.

The remainder of the paper describes these ideas in more
detail. First, in Section 2, we describe a specific application
and its performance on currently available architectures,
making more concrete the motivation for our localization
extensions.

We then discuss how references become localized in Sec-
tion 3. We introduce our programming model, which relies
on compilers to translate high-level user knowledge about
locality into low-level instructions, allowing users to logi-
cally move global data to local memory without physically
moving it.

In Section 4, we describe preliminary experiments that
show that the effective placement of directives in the appli-
cation described in Section 2 can reduce coherence commu-
nication by more than a factor of 10 for 64 processors.

Then, in Section 5, we delve into some architectural de-
tails to demonstrate that the addition of mechanisms to im-
plement the low-level instructions is possible without vast
modifications to existing hardware. We examine several
possible approaches, and evaluate the trade-offs inherent in
each.

Finally, we discuss related work in Section 6, before con-
cluding in Section 7.

2. MOTIVATION
In this section we motivate our hybrid through an analysis

of the programmability and performance of an application
on existing “endpoint” architectures.

First we describe the application: ammp, a molecular sim-
ulation from the SPEC OMP2001 benchmark suite. We
chose to work with this benchmark for two reasons:

1. It has been described as having poor scaling proper-
ties [19], and is notably absent from the large version
of the SPEC OMP2001 benchmark suite.

2. While only a benchmark, its relevance is increased by
its similarity to the protein folding problem that has
prompted IBM’s Blue Gene [2] petaflop supercomputer
project.

We then describe two parallelizations of the benchmark: first
the SPEC OMP2001 OpenMP shared-memory version, then
a version with the significant modifications necessary to run
on distributed address-space architectures. Finally, we an-
alyze the relative performance of the variants, motivating a
possible midpoint along the address-space spectrum.

2.1 Application: ammp
Ammp is a molecular dynamics simulator found in both

SPEC CPU2000 benchmark suite and the medium version
of the SPEC OMP2001 suite. The OpenMP version per-
forms a molecular dynamics simulation of a protein-inhibitor
complex embedded in water. Computation is dominated by
the loop nest that computes the contribution of non-bonded
forces, demonstrated in [3] to account for more than 96% of
the execution time of the entire benchmark. The loop nest
computes the non-bonded forces that simulated atoms exert
on one another. If no approximation is used, the solution
requires O(n2) computation: for each atom, determine the
force exerted on it by every other atom.

Ammp uses an approximation similar to that used by well
known tree-based solutions like Barnes-Hut [4], in that force
contributions of spatially co-located clusters of atoms a suf-
ficient distance away from the atom under consideration are
lumped together. However, likely because the number of
atoms under consideration tends to be fairly small for molec-
ular dynamic problems, the groupings are made at only a
single level, saving the overhead of creating and maintaining
a tree.

The loop nest takes as input a list of atoms and a list of
nodes, and executes the following algorithm:

foreach atom A
foreach node N

if N contains A or is one of 26 nearest neighbors
foreach atom B in node N

compute forces between A and B
else

compute forces between A and node N

Note the fine-grained nature of the access to atoms in the
“nearest neighbors” part of the computation: as the algo-
rithm is constructed, the atoms that A will interact with are
not known until immediately before the force computation.

The uniprocessor algorithm takes computational advan-
tage of the symmetric nature of force computation: in com-
puting the forces exerted by atom B on atom A, one is do-
ing much of the work necessary to compute forces exerted

by atom A on atom B. The algorithm therefore computes
forces for both A and B at the same time.

Finally, we note that the code makes no attempt to take
advantage of the potential spatial locality of atoms. Clearly,
the atoms with which another atom interacts will be near to
it in space. However, in the program atoms are stored in an
array with no consideration for where they exist in space.
Well-known “linear sorting” techniques – along a Hilbert
curve, for instance, as described in [16] – can significantly
improve locality at minimal cost.

2.2 OpenMP Implementation
The ability to assume rapid, fine-grained access to all data

in the shared address-space significantly simplifies the par-
allelization process for this application.

The SPEC OMP2001 OpenMP implementation par-
allelizes the outer loop, using a simple “omp parallel
for” directive. The directive makes use of the “guided”
scheduling parameter, a work-list solution to computation
partitioning whereby each processor takes N/P atoms,
where N is the number of remaining atoms after the
previous processor has taken its share. This dynamic
partitioning strategy allows for iterations that take varying
amounts of time, providing computation balance at some
cost to locality.

The only additional complication is the placement of locks
around data involved in the computation-saving device for
atom-atom interactions noted above. The locking is neces-
sary because data for atom B is potentially read and up-
dated by multiple processors at the same time. In our ex-
periments, we have found that as the number of proces-
sors increases, redundant computation becomes significantly
more cost-effective than the serialization caused by locking.
The cost difference is evident in the results below, where we
compare the performance of a version from which we have
removed the locks (and added the extra computation) with
the performance of the benchmark version.

2.3 Distributed Implementation
In this section, we describe our distributed memory paral-

lelization, noting how it is hindered by the lack of a shared
address-space.

There are two potential sources of non-local data imme-
diately evident: the node-list and the atom-list. We chose
to take advantage of our knowledge of the problem – and of
the specific input data – and replicated the node-list, which
is small because the number of atoms is small. However,
we distribute the atom-list data (in a simple block distri-
bution) in order to distribute the computation of the outer
loop, leaving the problem of gathering non-local atom data
for atom-atom interactions.

As the algorithm is constructed, this is very fine-grained
proposition: we don’t know what non-local atom will be
required by a processor until it is actually accessed. We can
force the algorithm into a more coarse-grained construction
by breaking it into two parts, separated by a communication
event, as follows:

foreach atom A
foreach node N

if N contains A or is one of 26 nearest neighbors
foreach atom B in node N

add B to A’s gather-list
else

compute forces between A and node N

foreach atom A
gather non-local atoms on A’s gather-list

foreach atom A
foreach atom B on A’s gather list

compute forces between A and B

This approach requires significantly more memory per atom,
to account for its gather list.

Gathering non-local atoms from gather lists requires sev-
eral steps. First, each processor determines which proces-
sors own each atom on each gather list, taking care to en-
sure that an atom that appears on more than one list is
only gathered once. Note that this determination must be
made every time-step, since atoms may change position and,
therefore, node. Next, each processor sends every other
processor the indices of the atoms it requires, while at the
same time servicing requests from every other processor. Fi-
nally, each processor receives from every other processor the
data it requested. Our MPI implementation requires about
100 lines of C-code despite the use of very high-level MPI
collective communication primitives, including one call to
MPI Alltoall and two calls to MPI Alltoallv.

In order to make the number of gathered atoms man-
ageable, we are forced to use the linear sorting technique
described above, to introduce spatial locality into the distri-
bution of atoms across processors.

2.4 Performance and Discussion

2.4.1 Experimental Platforms
We ran our experiments on two different implementations

of the shared memory architecture, the HP Superdome [12]
and the Sun Enterprise 10000 [9], and one distributed mem-
ory architecture, IBM’s Blue Horizon [7]. Below we describe
some of the major defining characteristics of the representa-
tives of each platform that we used to gather data.

HP Superdome: 64 750Mhz PA-8700 processors. Single
level of data cache, 1.5MB. Very tightly coupled, directory-
based shared memory coherence protocol.

Sun Enterprise 10000: 36 400Mhz UltraSparc processors
available (up to 64 possible). 16KB first level data cache,
4MB external cache. Snoopy broadcast-based shared mem-
ory coherence protocol.

Blue Horizon: 1152 375Mhz IBM Power3 processors, orga-
nized as 144 SMP nodes, each consisting of eight processors,
1.7 teraflops peak performance.

2.4.2 Results
Figure 1 demonstrates the effect of removing locks. With-

out locks, scaling is linear all the way out to 64 processors
on the HP. Figure 2 demonstrates that the increased scal-
ability does not come at the cost of absolute performance.
The figure also shows the performance benefits of “linearly
sorting” atoms, though the HP’s ability to deal nearly as
well with the unsorted atoms is perhaps more telling. Re-

0 16 32 48 64

Processors

0

16

32

48

64
S

pe
ed

up

Ideal
HP
Sun

Lock

0 16 32 48 64

Processors

0

16

32

48

64

S
pe

ed
up

Ideal
HP
Sun

No Lock

Figure 1: Relative performance of ammp with locking (left), and without locking (right), on two shared
address-space implementations, snoopy (Sun) and directory-based (HP).

1 2 4 8 16 32 64

Processors

0

1

10

100

S
ec

on
ds

lock
nolock
lock (sorted)
nolock (sorted)

Figure 2: Absolute performance on shared memory
platform with and without locking, when atoms are
unsorted and sorted.

call that the distributed memory version requires sorting the
atoms in order to get results in a reasonable amount of time.

Figure 3 demonstrates the program scalability problems
of the distributed memory platform. Scaling performance,
while not linear, is respectable to 64 processors but then
levels off until completely dropping at 512 processors. Fig-
ure 4 provides some insight into the reasons for the leveling
and drop-off: it shows the minimum, maximum, and aver-
age time a processor takes to execute each computation and
communication phase. Two problems are evident. First, as
the number of processors increase, load imbalance becomes
an issue. Second, and more crucially, by the time we reach
256 processors, communication begins to dominate compu-
tation. Load balance can be addressed, but doing so would
require even more communication.

We have shown both the difficulty in programming the dis-
tributed address-space platform and the performance bene-
fits that a shared-address space platform offers, particularly
when locking can be avoided. However, inspection of the
difference in the number of available processors speaks vol-
umes about the architectural scalability of each platform.
In the next section we look at how we might increase the
scalability of a shared-address space implementation while
keeping many of its inherent good qualities.

0 128 256 384 512

Processors

0

128

256

384

512

S
pe

ed
up

Ideal
IBM

Figure 3: Scaling of ammp on the distributed plat-
form.

3. LOCALIZATION
We call the act of moving a reference from global mem-

ory to local memory localization. In this section we describe
how references become localized at the program-level. First,
we identify and distinguish between two targets of localiza-
tion. Then we discuss a multi-level programming model, and
present examples showing how the levels interact. We con-
clude the section with a discussion of some of the potential
drawbacks of localization.

3.1 Targets of Localization
The aim of localization is to allow users to remove two

sources of unnecessary overhead inherent in hardware-
controlled shared address-space architectures:

1. Redundant coherence traffic:

(a) Capacity cache misses, i.e. misses that result
when an application’s data set does not fit in
cache.

(b) Invalidate/re-read cycles due to updates to shared
data involved in a reduction (explained below).

2. Serialization due to locking of data involved in a re-
duction.

2 8 32 128 512

Processors

0

10

20
S

ec
on

ds

Atom-Node
Comm
Atom-Atom

m
in

m
ax

avg

Figure 4: Analysis of contributions of computation
and communication components to the runtime on
the distributed platform.

The idea is to allow programmers to identify at a very high
level references that are likely to cause these problems, and
logically move the data to local memory. As we shall see in
Section 5, we do not have to physically move the data but
need only ensure that if it is evicted from the cache, it goes
to local memory.

Clearly, localization can be effective for read-only data
since multiple copies of such data can exist without interfer-
ence. Similarly, data that is written but not shared during
a particular computation can also be localized: since there
is a single copy, there is no interference.

On the other hand, writes by one processor to data that is
subsequently read by another processor would appear to be
unsuitable for localization. However, there is a special case
that occurs when a memory location is used to accumulate
values within a loop – i.e., the value written on one itera-
tion is only read on the next iteration in order to update
it again. In this case, termed a “reduction” computation in
the parallel programming literature, multiple processors can
privately accumulate multiple copies of the value and delay
a final – global – accumulation until the end of the loop.

This special case is often leveraged to parallelize loops that
would otherwise appear to have dependences that prevent
parallelization. Distributed memory parallelizations further
use these opportunities to perform as much computation on
local data as possible before combining results in a reduc-
tion. In shared address-space environments, programmers
typically add locks around such updates to ensure that the
data is not modified by another processor in between the
read and the write phases of the update. However, the ex-
pense of the resulting serialization may lead a programmer
to instead hand-code reductions in privatized memory. In
fact, OpenMP provides a reduction primitive, but only for
scalars.

The above discussion points to two distinct targets for
localization:

1. Read-only and unshared -written data that will likely
be fetched (due to cache misses) multiple times.

2. Shared -written data involved in a reduction computa-
tion.

#pragma omp parallel for, \
local_reduce(x,+), local(y)

for (i = 0; i < N; i++) {
for (j = 0; j < M; j++) {

x = x + y[j];
}

}
(a)

...
ldp r3,y(r4)
ld+ r2,x
add r4,r4,4
add r2,r2,r3
stp r2,x
...

(b)

i j stp ld+ ldp
0 0 local local global
0 1 local local global
0 ... local local global
0 M local local global
1 0 local local local
... ... local local local
N M local local local

(c)

Figure 5: Example demonstrating the programming
model for data localization.

3.2 Programming Model
We envision a two-level process by which high-level user

knowledge is propagated to hardware. User-level directives
naming data – arrays and scalars – that would benefit from
being localized are translated by the compiler into instruc-
tions that indicate to hardware that individual addresses
should be localized. We describe this process by example
before delving into the instruction-level details.

3.2.1 Example
Figure 5(a) demonstrates the programming model we en-

vision with a simple C-code for-loop. Note the extensions to
the OpenMP “parallel for” directive, indicating the variables
to be localized, as well as the reduction operator. Assuming
y has M elements, every element of y is read N times.

Figure 5(b) provides the assembly code that a compiler
might generate for the reference:

• “ldp” indicates a load from private memory; however,
data from the first load to that address must come
from global memory.

• “ld+” indicates a load from private memory, initialized
to zero in preparation for an additive reduction.

• “stp” indicates a store to private memory.

The table in Figure 5(c) shows the locality state of each
reference as the loops iterate, assuming, for simplicity, a
cache block size of one. The first iteration of the inner loop
initializes a local version of x to 0 on the first “read,” per-
forms the add, and then writes to the local x. Subsequent

#pragma omp parallel for, local_reduce(y,+)
for (i = 0; i < N; i++) {

y[idx[i]] = y[idx[i]] + x[i];
}

(a)

...
ld r3,idx(r5)
ld r4,x(r6)
ld+ r2,y(r3)
addu r2,r2,r4
stp r2,0(r3)
...

(b)

Figure 6: A second example illustrating the poten-
tial of localization.

iterations read and write the local x. Meanwhile, the first it-
eration of the outer loop reads each element of y from global
memory. Subsequent iterations of the outer loop read y from
local memory (assuming a cache miss).

Figure 6(a) and (b) illustrate the power of localization
with a more complicated example, an unstructured array
reduction. Ordinarily a programmer would need to put a
lock around the access to y, to ensure that two processors
do not access the same element of y at the same time. Note
that, because each element of x and idx is read only once
in this fragment, we do not localize either access. If we
knew either was going to be read again, and would likely not
be found in the cache, we would localize it in the pragma
statement.

Unstructured references, subscripted subscripts like those
in Figure 6, are the hallmark of irregular applications. Be-
cause such references are impossible to analyze at compile
time, they complicate parallelization for distributed mem-
ory platforms. Localization is especially well-suited for this
domain of applications.

3.2.2 Instruction-Level Details
We have identified two approaches to the instruction-level

localization depicted in Figures 5(b) and 6(b), each the in-
verse of the other. We call the approaches implicit and
explicit respectively, referring to the manner in which the
programmer uses each to mark the “region of localization”
for an address.

The implicit approach, demonstrated in the examples
above, marks in some way all load and store instructions
that reference data that should be localized. The first in-
stance of a marked load or store to a particular address acts
like a normal load or store, causing any necessary coherence
events to transfer the global data. However, the coherence
mechanism also marks the address as “localized” so that all
future marked loads and stores to that address reference lo-
cal data. A normal load or store to the localized address,
issued by any processor, implicitly ends its localization era.

The second approach, which we call explicit, explicitly
marks the beginning and end of a localization era for a
particular address. A control instruction is placed by the
compiler before the first load or store of the period of local-
ization, signaling any coherence events necessary to transfer
the global data. Another control instruction, to end the lo-

calization, is then placed at some point before the first load
or store to that address after the period of localization. All
loads and stores to that address within the localization era
refer to local memory.

Each approach has its advantages and disadvantages:

Implicit. The biggest advantage of the implicit approach
is that changes to the source code are limited to the region
that needs to be localized. Since any unmodified load or
store returns a localized address to the global state, there
is no need to worry about finding the end of a localization.
Separate compilation of modules is therefore not a problem.

Also, when modifying existing code there is no need to
add instructions; only existing instructions need be modi-
fied. On the other hand, all loads and stores that reference
the address in the localization region must be found.

The most important disadvantage of this approach is that
it would require modifications to the instruction set to add
new flavors of load and store instructions.

Explicit. The explicit approach, in contrast, does not re-
quire instruction set modifications, provided the instruction
set already contains a control instruction for implementa-
tion specific functions, as most do. Additionally, the control
instruction to localize an address only needs to be added
before the first load or store to that address. Breaking the
construct into two parts allows for compiler optimizations
that separate the localization of an address from its first
load or store, perhaps allowing additional time for any nec-
essary communication.

The primary disadvantage of this approach, however, is
that changes are not necessarily limited to the region of
source code that is undergoing transformation. In order to
avoid adding references to an application, the compiler must
find paths to all potential future references and add control
instructions before them.

As we shall see in Section 5, the implicit versus explicit
choice has significant ramifications on the implementation
mechanisms and would likely be influenced by performance
considerations.

3.3 Other Concerns
Finally, we mention two potential drawbacks of our ap-

proach, the first the result of tying our localization approach
to existing coherence protocols, and the second the result of
adding processor-specific local memory.

First, because we are localizing cache blocks rather than
individual data items, care must be taken to avoid “false
localization,” an analogue to the well-known false sharing
problem. For example, suppose a read-only data item x is
collocated in a cache block with another data item involved
in a reduction, y: the first read of y, using “ld+,” would
initialize the entire cache block to zero. A subsequent read
of x would therefore incorrectly yield zero. Compilers are
capable of ensuring the proper data alignments necessary to
avoid such problems, though they must have knowledge of
the block-size in order to do so. This has the potential draw-
back of making the block-size an architectural parameter as
opposed to a micro-architectural parameter.

The second potential drawback is perhaps more a mind-
set adjustment than a problem: because local memory
is physically associated with a processor, localization’s
presence-of-data guarantee (absent from normal caching)
implies pinning a process to the processor it starts on. This

requirement is at odds with one of the perceived advantages
of shared address-space architectures: the ability of the
operating system to schedule processes on different proces-
sors. On the other hand, in high performance situations,
operating system intervention is often seen as a hindrance.

In the OpenMP paradigm it might be sufficient to require
that “omp parallel” regions be pinned to the processors they
begin on, though it must be kept in mind that localized re-
duction data might potentially need to stay in local memory
beyond the scope of a parallel region.

4. PRELIMINARY EVALUATION
Here we describe experiments we performed to estimate

how many coherence events localization could potentially
remove, and at what cost in terms of memory usage. Ex-
periments consist of simulations of the same portion of the
same application, ammp, described in Section 2.

We have chosen to limit our experiments to a single full-
scale application in order to demonstrate the full impact
that our technique can have on performance at the applica-
tion level. However, as we pointed out in the discussion of
Figure 6, the technique potentially has much wider applica-
bility, especially in the irregular application domain.

We present results for three versions of the application.
The first two we have already seen: lock is the SPEC
OMP2001 version, and nolock is the version we modified
to remove locks, at the expense of extra computation.

The third version, called local, makes extensive use of
our localization mechanism. While the instructions were
hand-modified, we believe that a compiler could have inter-
preted properly placed directives to achieve the same result.
This version retains the computation-saving device of the
lock version, but we have replaced all references enclosed
by locks with local reductions, and have localized almost
every other signal-causing reference. All three versions have
an additional “use” loop nest to ensure that all signals due to
globalization of variables that are targets of local reductions
in local are properly accounted for.

Next, we describe the experimental platform before dis-
cussing some results of our experiments.

4.1 Experimental Platform
We performed experiments on a modified version of the

Simplescalar “sim-cache” simulator [6], a uniprocessor cache
simulator that interprets MIPS-like binaries.

We added functionality to the basic simulator in order to
model the caches of a shared memory multiprocessor, includ-
ing the cache-coherence events defined by the MSI protocol.
Like the simulator described in [21], our simulator assumes
that every instruction, including memory operations, takes
one unit of time to execute. Coherence events and their ef-
fects are instantaneous. In addition, we added instructions
facilitating multiprocessor synchronization – i.e., locks and
barriers – to the instruction set.

Finally, we added support for our localization and global-
ization instructions, modifying the cache-coherence protocol
as described in Section 5. We chose the implicit method of
localization, which has some ramifications for our results, as
explained below.

We only simulated the data cache and we modeled its
parameters on those of the HP PA-8700 processors, found
in the Superdome: each processor has a single level of cache,
1.5 MB, four-way set associative, with a 64 byte cache block

size. Finally, the page size is 4KB, implying 64 cache blocks
per page.

4.2 Discussion
We break our discussion into two parts, first describing

results pertaining to coherence events and then results per-
taining to memory requirements.

Coherence Events. The first set of results we are inter-
ested in is the number of coherence events that we are able
to avoid by localizing all possible references.

The left side of Figure 7 shows the total number of co-
herence events generated by each application variant when
the atoms are not sorted to increase locality (as described in
Section 2). The right side of the figure shows the same when
atoms are sorted to increase locality. The results are qualita-
tively the same, though the increased locality substantially
decreases the total number of signals.

We show results for power-of-two machine sizes from 2 to
64 processors, with three bars for each machine size describ-
ing the event count of the three variants of the program.
The total size of the bar is equal to the total number of
events generated by that variant, while colored portions of
the bar show the distribution of the types of signals gen-
erated. While “BusRead” and “BusReadX” signals derive
from the unmodified MSI protocol, “BusLocal” is a new sig-
nal required by our modifications, as described in Section 5.
Note that the “BusUpdate” signal, another new addition, is
not counted as it always coincides with a BusRead or Bus-
ReadX event, and is thus already accounted for.

As expected, the lock version generates many more sig-
nals than either of the other two. Writes to data protected
by the lock invalidate the data in other caches, causing them
to generate signals upon re-reading the data, and so on. The
more caches, the worse the problem gets.

The nolock version is interesting in that the total number
of signals, almost exclusively BusReads, does not vary much
as the number of processors grows. Due to the read-only
nature of the data, adding processors does not translate into
additional signals. The number of signals correlates very
strongly with the total number of cache misses, which also
does not vary much with the number of processors.

Finally, the local version generates a very small number
of signals, nearly all BusLocals, though the total number
grows as processors are added. As with nolock, the num-
ber of cache misses remains nearly constant, but not every
cache miss causes a signal. The reason for the growth in the
number of signals is somewhat subtle. Suppose two atoms
A and B, both residing on processor P, each interact with
atom C. C must be localized, but only once. Now suppose
that doubling the processors means that A and B end up on
different processors, P and Q respectively. Now C must be
localized twice, once for P and once for Q.

The above reasoning implies that even fewer total signals
would be generated by the local version if no signal were
necessary to indicate the beginning of localization for an ad-
dress, and no references needed to be added to the program
by the compiler. That situation would favor the explicit
approach for localizing instructions, described in Section 5.

Memory Usage. The second set of results gets at the cost
of localization in terms of local memory usage. The left
side of Figure 8 shows the maximum local memory usage
for any single processor when the atoms are not sorted, and

1 8 64

Processors

0

50

100

150
T

ot
al

 S
ig

na
ls

 (
m

ill
io

ns
)

BusRead
BusReadx
BusLocal

lock
nolock

local

Unsorted

1 8 64

Processors

0

50

100

150

T
ot

al
 S

ig
na

ls
 (

m
ill

io
ns

)

BusRead
BusReadx
BusLocal

lock
nolock

local

Sorted

Figure 7: Total coherence events generated by all processors for the three application variants: lock, nolock,
and local. For each variant the total signal count is broken further into classes: BusRead, BusReadX, and
BusLocal.

1 8 64

Processors

0

50

100

M
ax

im
um

 M
B

Pages
Blocks

Unsorted

1 8 64

Processors

0

50

100

M
ax

im
um

 M
B

Pages
Blocks

Sorted

Figure 8: Maximum local memory usage of any one processor.

the right side of Figure 8 shows the usage when atoms are
sorted for locality. For each processor count, two results
are shown, the first describing the bytes required for a page-
based configuration of local memory, and the second showing
the requirement for a block-based configuration.

The unsorted application variant requires about 50MB
worth of pages per processor as opposed to a little over
15MB worth of blocks (at 64 processors). Also favoring a
block-based solution to local memory storage is that, while
the number of pages per processor increases as processors are
added, the number of blocks per processor decreases. On the
other hand, recall that there are 64 blocks per page in this
implementation, so a page-based solution requires substan-
tially fewer searchable entries than a block-based solution.

As we would expect, memory requirements are much re-
duced when the data is sorted to increase spatial locality.
Both the number of pages and the number of blocks di-
minish as the number of processors increases, though the
rate of decrease is faster for blocks. The ratio of pages to
blocks, while increasing, still favors a page-based solution if
the number of searchable entries is a deciding factor.

We describe potential realizations of these memory orga-
nizations in Section 5.2.

5. IMPLEMENTATION
In Section 3, we introduced instructions that logically

move data between local and global memory with the
promise that data need not be physically moved. In this
section, we describe possible implementations of these
instructions in hardware, dividing the discussion into three
parts. First we describe our modifications to a basic cache-
coherence protocol. Then we consider the organization of
the local memory that contains localized data. Finally, we
examine the hardware required to perform reductions.

5.1 Coherence Protocol Modifications
By tying our implementation to an existing coherence pro-

tocol, we are able to use existing mechanisms to fetch data
at a very fine granularity. However, changes to the protocol
are necessary to ensure that localized data evicted from the
cache does not have to be refetched from global memory.
The basic implementation idea is this: mark localized ad-
dresses in the cache; if the data is evicted, store it in local
memory so that future references will not generate protocol
traffic.

We now describe, at a high level, modifications to the
“MSI” cache-coherence protocol [10] to realize this goal.
Lower level details, including state diagrams, can be found

in [15]. In order to simplify our discussion, we assume
snoopy broadcast cache-coherence, though we believe our
ideas extend equally well to directory-based protocols.

The basic MSI protocol remains intact: the global states
in which a cache block can be – “Modified,” “Shared,” and
“Invalid” – and the transitions between the states are ex-
actly the same. To this base, we add three new states, es-
sentially mirrors of the original states, but for localized data.
We call them “Local Modified,” “Local Shared,” and “Lo-
cal Invalid.” The transitions between the new states closely
mirror the transitions between the old states.

The transitions between new and old states represent
transitions between local memory and global memory, and
result from the execution of the instructions described in
Section 3. The exact nature of these transitions depends on
the choice of localization approach – i.e., implicit versus
explicit – so here we divide our discussion between the
two.

Implicit. Recall that in the implicit approach an anno-
tation on a load or store instruction indicates that the in-
struction should reference local memory, and a normal load
or store, issued by any processor, moves the data back to
global memory. So in this model, transitions from “global”
MSI states to “local” MSI states are determined by the first
annotated load or store to an address, and the transition
back is prompted by a normal load or store issued by any
processor.

While a processor needs only to inspect the instruction
it is executing to determine whether to look for data in lo-
cal or global memory, it also must be aware of other pro-
cessors’ requests, in case one requires a transition back to
global memory. This requirement implies that local memory
must be snooped on every “BusRead” and “BusReadX” sig-
nal. This in turn implies that any localization information
kept must be available to the snooping device, and that ev-
ery snoop must determine whether data has been localized
before responding. So this approach has the potential for
making every snoop response a little slower.

The approach also requires two new signals. The first, call
it “BusLocal,” is necessary to indicate to other processors
that a given address is being localized and therefore should
be invalidated. The invalidation is necessary to ensure that
other processors generate a signal – i.e., don’t find data in
their cache – if they issue a normal load or store to the
address. A simple BusReadX would not work because other
processors may have already localized the address, and be
listening for that signal to end its localization.

The second signal, called “BusUpdate,” is necessary to
indicate that flushed data should be combined, in a reduc-
tion, with data from memory, rather than simply replacing
memory. We describe the reduction mechanism further in
Section 5.3.

Under the implicit approach, a localization cycle looks like
this:

1. Processor executes annotated reference.

2. Coherence mechanism sends a BusLocal signal, and
localizes address. Coherence mechanism continues to
snoop signals for that address, even after a possible
eviction of the block to local memory.

3. Cache ends localization after a normal load or store,
or a BusRead or BusReadX signal, initiating a flush if

the data has been modified and asserting BusUpdate
if the data is part of a reduction.

Explicit. Recall that the explicit approach calls for explicit
control instructions that mark the beginning and end of a
localization era. In this approach, the control instructions
would initiate transitions from “global” MSI states to “lo-
cal” states and back again.

Since localization information is not conveyed through in-
struction choice, whether to look for data in local or global
memory must be determined via external information, i.e.,
every cache miss results in a table lookup to determine
whether the data has been localized. Further, since the co-
herence mechanism must know that data is not local by the
time it is ready to generate a signal, this approach has the
potential to slow down every miss. On the other hand, the
local memory is also potentially significantly speeding up the
response to misses. Provided important references are local-
ized, this gain would more than balance out the slow-down
for references that are not localized.

Furthermore, in this approach snooping of local memory
is not necessary, provided we add a signal to the protocol –
call it “BusGlobal.” The processor that executes the control
instruction that ends the localization for an address issues
this signal to convey that information to the remaining pro-
cessors.

The explicit approach also needs the BusUpdate signal
mentioned in the discussion for the implicit approach, to
indicate that an address is involved in a reduction.

A localization cycle in this approach looks like this:

1. Processor executes explicit start instruction.

2. Coherence mechanism generates a signal if necessary
(only if the line is not present on a read), and marks
the block local.

3. Coherence mechanism ignores signals for that address
until explicit stop instruction, or BusGlobal signal, ini-
tiating a flush if the data has been modified and as-
serting BusUpdate if the data is part of a reduction.

As we have noted in Section 4, the lack of a signal to
indicate the beginning of a localization could result in the
overall generation of fewer signals under this approach, pro-
vided extra references need not be added to the code simply
to ensure that a localization region ends.

5.2 Local Memory
As we have seen above, the organization of local memory

can have a significant effect on the performance of the co-
herence protocol changes we have proposed. In particular, if
the local memory must be snooped on every transaction, the
organization must be able to provide negative search result
information quickly. We explore three potential organiza-
tions below:

Per-cache-block storage. In this organization, local data
would be stored as it is in a hardware cache, on a per-
cache-line basis. However, the need to guarantee the pres-
ence of localized data appears to require fully associative
lookup properties that are prohibitively expensive to imple-
ment for large memories. Recent work on software-managed
caches [11] proposes improving the scalability of fully asso-
ciative memory structures via a hashing scheme. However,

while such a scheme might provide good performance for
the average case, a fundamental drawback for our purposes
could be the lack of a reasonable maximum time bound for
negative search results. Another drawback is that it puts a
limit on the amount of local memory.

Per-page storage, virtual memory. In this organization,
local memory is organized as if it were the memory of a
uniprocessor, with page table, translation lookaside buffer
(TLB) and software management of page faults. Every page
in the virtual address-space then potentially maps to two
physical pages: a page in the global physical address-space
and a page in the local physical address-space. Where the
page actually resides for a given processor is determined by
locality information kept in the local page table entry, and
therefore is cached in a local TLB.

One benefit of this approach is that it provides unlim-
ited virtual local memory. Another is that, provided the
localized data exhibits good locality, it can result in a factor
of pagesize/blocksize fewer total tags to search, since we
would be searching for pages rather than blocks.

The main drawback to this organization is again the lack
of an upper-bound guarantee for negative search results,
given the potential for TLB misses and software replace-
ments during the search.

Per-page storage, fixed memory. A possible compro-
mise organization is a fixed amount of storage organized
into pages. Again, if the localized data exhibits good
locality, then this organization results in a factor of
pagesize/blocksize fewer total tags to search than the
per-cache-block storage scheme. Perhaps, again depending
on the amount of storage required, these tags could be
stored in a fully-associative structure.

We have analyzed memory usage results for one appli-
cation in Section 4. To arrive at the optimal memory or-
ganization for a particular implementation, similar analysis
of data for a representative set of applications is required,
while taking into account constraints (such as memory size)
imposed by the implementation.

5.3 Reductions
Finally, the hardware we envision to perform the reduc-

tions looks something like the Tree Module in IBM’s Blue
Gene/L system, described in [1]. In that implementation an
entire network is devoted to a combining tree, and reduc-
tions occur in logic located in that network’s per-processor
interface.

Our implementation has similar logic, located in the co-
herence interface. As the result of the BusUpdate signal
described above in Section 5.1, the requesting processor re-
ceives multiple responses, one from memory, and one from
all processors that have updates. The requesting proces-
sor’s network interface is responsible for combining results
and delivering them to the processor. Details such as how
the reduction operator and operand-size are conveyed are
still under investigation.

We note that responses are in the form of blocks of data,
so care must be taken to ensure that all data in the block
should actually be involved in the reduction. As mentioned
earlier, we believe that compilers can handle these alignment
issues based on the user-directives described in Section 3.

6. RELATED WORK
A great deal of work has been done on distributed shared

memory systems, with different approaches focusing on
different weaknesses of snoopy broadcast-based shared
memory systems. Hardware-controlled, usually cache-line
based, approaches attack scalability concerns by replacing
the broadcast-based snoopy cache coherence protocol with
point-to-point message-based directory protocols. (Unfor-
tunately, as we noted in the introduction, these systems lose
the “data-follows-computation” characteristic the larger
they get.) At the other extreme, software-controlled sys-
tems, generally page-based, attempt to give programmers
the benefits of a shared address space without the high
cost. Hybrid systems add minimal hardware in an attempt
to decrease the cost of hardware controlled systems while
improving on the performance of purely software-controlled
systems.

While the notion of “local” memory is an integral fea-
ture of distributed shared memory systems, in general the
local memories are only considered as components of the ag-
gregate global address space. Another feature of our work
that immediately distinguishes it is its applicability to both
snoopy- and directory-based coherence protocols.

Of particular relevance to our efforts is work on hybrid
systems done by the Wisconsin Wind Tunnel project. Coop-
erative Shared Memory [13] describes user-level “check-in”
and “check-out” directives similar in spirit to the explicit
model we described in Section 3. Aside from the hardware
targeted, there are two major distinctions between our di-
rectives and their directives: first, in their system the pro-
cessor that issues a check-out must be the same processor
that checks it in. Second, there is no directive to describe
and implement reductions.

Later work on the Tempest [18] system proposed user-
programmable software coherence protocols on top of local
memory. While in this system protocols could be pro-
grammed on a per-application basis to perform reductions,
gone was the notion of user-level coherence directives.
Loosely Coherent Memory [14] proposes mechanisms that
a compiler could invoke that, in conjunction with the
programmable coherence protocols provided by Tempest,
could be used to perform reductions. Separate work done at
Illinois proposes hardware to perform such compiler-found
reductions in cache, as opposed to local memory [22].

Our approach, so far as we know, is the first to propose
user-control of hardware-based cache-coherence protocols to
take advantage of local memory.

More recent related work stems from attempts in the
OpenMP community to extend the standard with specific
support for distributed shared memory platforms. For
example, [5] describes HPF-like extensions to partition
data and computation, while other work advocates runtime
page migration [17]. One sub-branch of particular relevance
to our work advocates privatization of memory references
in software [20, 8]. That work suffers in comparison to
ours in its need to explicitly copy data from global to
private memory. Also, while it is clear that their approach
would apply well to coarse-grained applications, it does not
appear to apply equally well to fine-grained applications.
For example, in applications like ammp it is not clear
what data should be copied into private memory until it is
actually needed.

7. CONCLUSION
We have introduced a hybrid address-space architecture

that, in tandem with a high-level programming model, com-
bines the scalability of a distributed address-space architec-
tures with the programmability and superior fine-grained
performance of shared address-space architectures.

We motivated our approach through an analysis of a spe-
cific application and its performance on currently available
address-space architectures. We then described a program-
ming model that allows users to, at a very high level, logi-
cally move global data to local memory without physically
moving it, and we provided potential hardware implementa-
tions that do not require substantial changes to an existing
cache-coherence protocol. Our initial experiments showed
that effective placement of these directives in an application
reduces coherence communication by more than a factor of
10 for 64 processors.

Although our experiments were limited to a single appli-
cation, we believe our technique is well-suited for irregular
applications in general. The lack of knowledge available for
these applications maps well to the limited knowledge re-
quired in order to perform localization.

As future work we plan to look more closely at the appli-
cability of our ideas to this class of applications as a whole.
Additionally, while we believe we have shown that imple-
mentation is possible in principle, future work will focus
on the implementation details, and estimate actual perfor-
mance with analytic models and a timing simulator.

8. ACKNOWLEDGEMENTS
The authors wish to thank the San Diego Supercomputer

Center and the Computing Center at the University of Ken-
tucky for allowing generous access to their computation re-
sources. We also thank James Goodman, Mary Vernon,
and Melissa Tedrowe for their support, and David Wood for
pointing out further related work.

9. REFERENCES
[1] N. Adiga et al. An Overview of the Blue Gene/L

Supercomputer. In Proc. 2002 ACM/IEEE Conf.
Supercomputing, 2002.

[2] F. Allen et al. Blue Gene: A vision for protein science
using a petaflop computer. IBM Systems Journal,
2001.

[3] V. Aslot and R. Eigenmann. Performance
Characteristics of the SPEC OMP2001 Benchmarks.
In Proc. European Workshop on OpenMP
(EWOMP’2001), 2001.

[4] J. Barnes and P. Hut. A Hierarchical O(N log N)
Force Calculation Algorithm. Nature, 1986.

[5] J. Bircsak et al. Extending OpenMP For NUMA
Machines. In Proc. 2000 ACM/IEEE Conf.
Supercomputing, 2000.

[6] D. Burger and T. Austin. The SimpleScalar Tool Set,
Ver 2.0. Technical report, University of
Winsconsin-Madison, 1997.

[7] S. D. S. Center. Blue Horizon.
http://www.sdsc.edu/Resources/bluehorizon.html.

[8] B. Chapman, A. Patil, and A. Prabhakar.
Performance Oriented Programming for NUMA
Architectures. In Proc. Int’l Workshop on OpenMP
Applications and Tools (WOMPAT 2001), 2001.

[9] A. Charlesworth. Starfire: Extending the SMP
Envelope. IEEE Micro, 1998.

[10] D. Culler and J. Singh. Parallel Computer
Architecture A Hardware/Software Approach. Morgan
Kaufman, 1999.

[11] E. G. Hallnor and S. K. Reinhardt. A Fully
Associative Software-Managed Cache Design. In Proc.
27th Annual Int’l Symp. on Computer Architecture,
2000.

[12] Hewlett-Packard Company. Meet the HP Superdome
Servers, 2002.

[13] J. R. Larus, S. Chandra, and D. A. Wood. CICO: A
Shared-Memory Programming Performance Model. In
Portability and Performance for Parallel Processors.
John Wiley & Sons, Ltd., 1994.

[14] J. R. Larus, B. Richards, and G. Viswanathan. LCM:
Memory System Support for Parallel Language
Implementation. In Proc. Sixth Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems, 1994.

[15] C. McCurdy and C. Fischer. Details of
Cache-coherence Protocol Modifications for Hybrid
Shared Memory. http://www.cs.wisc.edu/
~cmccurdy/hybid.ps, 2002.

[16] C. McCurdy and J. Mellor-Crummey. An Evaluation
of Computing Paradigms for N-body Simulations on
Distributed Memory Architectures. In Proc. Seventh
Symp. on Principles and Practice of Parallel
Programming, 1999.

[17] D. Nikolopoulos et al. Is Data Distribution Necessary
in OpenMP. In Proc. 2000 ACM/IEEE Conf.
Supercomputing, 2000.

[18] S. K. Reinhardt, J. R. Larus, and D. A. Wood.
Typhoon and Tempest: User-Level Shared Memory.
In Proc. 21st Int’l Symp. on Computer Architecture,
1994.

[19] H. Saito et al. Large System Performance of SPEC
OMP2001 Benchmarks. In Proc. WOMPEI2002, the
Workshop on OpenMP: Experiences and
Implementations, 2002.

[20] A. J. Wallcraft. SPMD OpenMP vs MPI for Ocean
Models. In Proc. First European Workshop on
OpenMP (EWOMP 1999), 1999.

[21] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 Programs:
Characterization and Methedological Considerations.
In Proc. 22nd Annual Int. Symp. on Computer
Architecture, 1995.

[22] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware
for Speculative Reduction Parallelization and
Optimization in DSM Multiprocessors. In Proc. 1st
Workshop on Parallel Computing for Irregular
Applications, 1999.

