
An Evaluation of Computing Paradigms for N-body Simulations on DistributedMemory Ar
hite
tures�Collin M
CurdyDepartment of Computer S
ien
eUniversity of Wis
onsin, Madison
m

urdy�
s.wis
.edu John Mellor-CrummeyDepartment of Computer S
ien
eRi
e Universityjohnm
�
s.ri
e.edu
Abstra
tThe eÆ
ien
y of HPF with respe
t to irregular appli-
ations is still largely unproven. While re
ent workhas shown that a highly irregular hierar
hi
al n-bodyfor
e
al
ulation method
an be implemented in HPF,we have found that the implmentation
ontains ineÆ-
ien
ies whi
h
ause it to run up to a fa
tor of threetimes slower than our hand-
oded, expli
itly parallelimplementation. Our work examines these ineÆ
ien-
ies, determines that most of the extra overhead is dueto a single aspe
t of the
ommuni
ation strategy, anddemonstrates that �xing the
ommuni
ation strategy
an bring the overheads of the HPF appli
ation to within25% of those of the hand-
oded version.1 Introdu
tionHigh Performan
e Fortran (HPF)[7, 10℄ was developedto simplify parallel programming by having
ompilersmanage most of the details of appli
ation paralleliza-tion. However, it is still open to debate whether HPFand its supporting
ompilers will enable users to realizesophisti
ated parallelizations for
omplex problems and�Permission to make digital or hard
opies of part or all of thiswork for personal or
lassroom use is granted without fee providedthat
opies are not made or distributed for pro�t or
ommer
ial ad-vantage and that
opies bear this noti
e and the full
itation on the�rst page. Copyrights for
omponents of this work owned by oth-ers than ACM must be honored. Abstra
ting with
redit is permit-ted. To
opy otherwise, to republish, to post on servers or to redis-tribute to lists, requires prior spe
i�
 permission and/or a fee. Thiswork has been supported by DARPA Contra
t DABT63-92-C-0038and sponsored by DARPA and Rome Laboratory, Air For
e MaterielCommand, USAF, under agreement number F30602-96-1-0159. TheU.S. Government is authorized to reprodu
e and distribute reprintsfor Governmental purposes notwithstanding any
opyright annota-tion thereon. The views and
on
lusions
ontained herein are thoseof the authors and should not be interpreted as representing the oÆ-
ial poli
ies or endorsements, either expressed or implied, of DARPAand Rome Laboratory or the U.S. Government.Pro
eedings of the ACM SIGPLAN Symposium onPrin
iples and Pra
ti
e of Parallel Programming, At-lanta, GA, May 1999.

a
hieve performan
e
omparable to hand-
oded expli
-itly parallel programs.In parti
ular, there is some doubt that irregular ap-pli
ations1
an be implemented eÆ
iently in HPF. Onmessage-passing parallel systems, these appli
ations relyon runtime libraries to identify a

esses to o�-pro
essordata and to
oordinate data movement. To keep theoverhead of this approa
h manageable, a good data dis-tribution and
ommuni
ation aggregation are very im-portant. While HPF generalized array assignments us-ing forall and s
atter statements support irregular datamovement, the appropriateness and eÆ
ien
y of su
h
onstru
ts is still largely unproven for full-s
ale irregu-lar appli
ations.This paper des
ribes a
omparative study of severalimplementations of an irregular appli
ation for n-bodysimulation. All implementations use an adaptive ver-sion of Anderson's method for hierar
hi
al approxima-tion of far-�eld intera
tions [2℄. (Se
tion 2 provides anoverview of this method.) Hierar
hi
al methods for n-body simulation have been of interest to the
ompu-tational s
ien
e
ommunity not only be
ause of theirspeed and a

ura
y, but also be
ause their irregularstru
ture makes eÆ
ient parallelization diÆ
ult. Huand Johnsson developed an HPF implementation of anadaptive hierar
hi
al solver using Anderson's methodthat served as the basis for mu
h of our work [8, 9℄.Their landmark implementation demonstrated that so-phisti
ated algorithms for highly irregular problems
anin fa
t be implemented in HPF. However, a performan
e
omparison of their HPF implementation with a hand-
oded, MPI-based parallel implementation that we de-veloped exposed some
ostly ineÆ
ien
ies in the HPFimplementation that slow it's running time by as mu
has a fa
tor of three.This paper makes several
ontributions:� We des
ribe a sophisti
ated MPI implementationof an adaptive version of Anderson's method whi
h1Irregular appli
ations
ontain referen
es for whi
h a
losed formrepresentation of the data a

essed
annot be
omputed stati
ally.1

integrates proven te
hniques to a
hieve good per-forman
e and s
alability.� We present a
areful measurement and
hara
teri-zation of overhead in Hu and Johnsson's HPF im-plementation relative to our MPI referen
e imple-mentation.� We des
ribe a modi�
ation to Hu and Johnsson's
ommuni
ation strategy that, when integrated intotheir implementation, eliminates more than 75%of the performan
e di�eren
e relative to the MPIimplementation.The rest of the paper is organized as follows. Se
-tion 2 des
ribes hierar
hi
al n-body methods to providea
ontext for understanding
omparisons of HPF andMPI implementations of Anderson's method. Se
tion 3des
ribes our MPI implementation in some detail and
ontrasts it with Hu and Johnsson's HPF implemen-tation both qualitatively and quantitatively. Se
tion 4des
ribes the key sour
e of ineÆ
ien
y in Hu and Johns-son's HPF implementation. Se
tion 5 des
ribes a mod-i�
ation to the HPF approa
h whi
h dramati
ally im-proves performan
e. Se
tion 6 summarizes our resultsand
on
lusions.2 Hierar
hi
al MethodsTo
ompute far-�eld for
es rapidly, hierar
hi
al meth-ods aggregate the e�e
ts from bodies a suÆ
ient dis-tan
e away,
omputing their in
uen
e as part of a group,rather than individually. The prin
ipal data stru
tureused to
onstru
t groupings for these methods in 3D isan o
t-tree. One
onstru
ts an o
t-tree starting with aroot box that
ontains all of the bodies and then re
ur-sively subdividing boxes into 8 boxes of equal size untila stopping
ondition is met.On
e the tree is formed, an upward pass over theboxes in the tree establishes the far-�eld approxima-tions for ea
h box. At the leaves, the approximationfor a box is
omputed from the bodies within; at higherlevels, the approximation for a box is
omputed fromapproximations for boxes it
ontains. The form of theapproximation is appli
ation spe
i�
.Here we des
ribe a progression of three O(n) hier-ar
hi
al methods. First we introdu
e Greengard andRokhlin's fast multipole method (FMM) [5℄. Next, wedes
ribe the adaptive variant of this algorithm. Finally,we des
ribe Anderson's method, whi
h has the samealgorithmi
 stru
ture as the FMM methods, but buta di�erent numeri
al te
hnique for approximating far-�eld for
es.Fast Multipole Method. Rather than
omputing far-�eld for ea
h body individually, as in the O(n logn)Barnes-Hut algorithm [3℄, Greengard and Rokhin's Fast

Multipole Method [5℄ makes use of the observation thatwhen a box A and a box B are \well-separated", thefar-�eld e�e
t of the bodies in box B on those in boxA, and vi
e-versa,
an be approximated as a single in-tera
tion between the boxes. Su
h intera
tions betweenwell-separated boxes o

ur at all levels of the tree, andthe savings in
omputation enable FMM to
omputefar-�eld for
es in O(n) time. Intera
tions are
omputedin a downward pass over the tree. At ea
h level, inter-a
tions are
omputed between boxes at that level thatare well-separated, and the results,
olle
ted in the formof a \lo
al-�eld potential," are passed down to the nextlevel. At the lowest level, the lo
al-�eld potential for abox is passed down to ea
h body inside and intera
tionsbetween bodies not suÆ
iently separated are
omputed.Adaptive FMM. The FMM algorithm just des
ribedassumes a tree of uniform depth. An adaptive vari-ant avoids unne
essary re�nement by not subdividingany box that
ontains fewer bodies than a spe
i�edthreshhold. The key di�eren
e with respe
t to the non-adaptive algorithm is that the set of boxes with whi
h agiven box will intera
t is not stati
ally known and mustbe
omputed from the shape of the adaptive tree by asomewhat
ompli
ated algorithm. To simplify imple-mentation and maximize
a
he lo
ality, several types ofintera
tion lists for ea
h box are
omputed before theupward pass and a separate
omputation phase is addedbetween the upward and downward passes. There arethree types of intera
tion
omputations and thereforethree lists: boxes in list1 are adja
ent leaf boxes (andtherefore are not suÆ
iently distant from ea
h otherto allow approximation); boxes in list2 are the samesize and well-separated (that is, suÆ
iently distant fromea
h other to allow approximation); �nally, boxes inlist34 are di�erent sized and well-separated from theperspe
tive of one of the boxes but not the other.Anderson's Method. The algorithmi
 stru
ture of An-derson's method [2℄ is the same as that of FMM. Itskey di�eren
e from FMM is in the way it propagatespotentials. For three-dimensional problems, the
om-putational element of FMM is a multipole expansionlo
ated at the
enter of an abstra
t sphere
ontainingthe
luster of bodies; in
ontrast, Anderson's approxi-mation
omputes potentials at lo
ations on the
ir
um-feren
e of a sphere. Compared to multipole methods,Anderson's method a
hieves the same level of a

ura
ywith fewer levels in the tree.3 Implementation ComparisonIn this se
tion, we �rst des
ribe our hand-
oded imple-mentation of Anderson's method in some detail. Next,we des
ribe highlights of Hu and Johnsson's HPF im-plementation. Finally, we
ompare the performan
e ofthese two implementations for several problem sizes and2

pro
essor
ounts on a Cray T3E. This
omparison showsthat the HPF implementation has some signi�
ant in-eÆ
ien
ies relative to the hand-
oded one.3.1 The Hand-
oded ImplementationThe FMM program in the SPLASH-2 suite from Stan-ford [16℄ was the starting point for development of ourhand-
oded MPI implementation of Anderson's method,though our implementation now bears little resemblan
eto the original. Among the stru
tural
hanges we havemade to the
ode:� We use MPI-based expli
it
ommuni
ation ratherthan shared memory.� We repla
ed the multipole expansions with Ander-son's method for
omputing potentials.� We use a 3D o
tree as the basis for the hierar
hi
alsolver rather than a quadtree.The prin
ipal remaining similarity between the imple-mentations is in the re
ord stru
tures used by the hier-ar
hi
al solver. Below we des
ribe key features of ourMPI implementation.Body Distribution. To distribute bodies among pro-
essors, we �rst
ompute the position of ea
h body alonga Hilbert
urve2, and then sort the bodies a

ording totheir position along the
urve. Sin
e both the Hilbert
urve and the o
ttree re
ursively divide spa
e in halfalong ea
h dimension, all bodies in the same leaf of theo
ttree are
ontiguous after the sort. Next, we partitionthe sorted sequen
e of bodies among the pro
essors byassigning ea
h pro
essor a
ontiguous range. We sele
tthe partition points to ensure that ea
h pro
essor is as-signed all bodies in a subtree of the o
ttree. With thispartitioning, we are able to
onstru
t o
ttrees lo
ally,ex
ept for a brief
ommuni
ation phase in whi
h pro-
essors ex
hange information about shared boxes (boxesat upper levels of the tree whose subboxes lie on morethan one pro
essor) to ensure that the representationof these boxes is globally
onsistent.Constru
tion of Neighbor Lists. A key step in adap-tive hierar
hi
al methods is building the intera
tion listsfor ea
h box, as des
ribed in Se
tion 2. The �ne-grainednature of the
omputation in this phase,
ombined withits large
ommuni
ation requirements,
auses it to be amajor bottlene
k in the parallelized appli
ation if spe-
ial
are is not taken. By transforming the unipro
essorlist
onstru
tion algorithm into a form that enables usto gather non-lo
al data using an eÆ
ient inspe
tor-exe
utor strategy, we are able to dramati
ally redu
ethe impa
t of list
onstru
tion on the parallel runtime.2Hilbert
urves [13℄ are one of a
lass of
ontinuous, non-smooth,\spa
e-�lling
urves" that map a 1-dimensional interval to an N-dimensional volume. Su
h
urves
an be
onstru
ted to pass arbi-trarily
lose to every point in the volume.

(Details of our list
onstru
tion algorithm are des
ribedin [11℄.)Propagation of Potential Information. As noted be-fore, we repli
ate information about shared nodes at theuppermost levels of the tree to all pro
essors and ensurethat all nodes in a subtree below any non-shared nodeare lo
ated on the same pro
essor. This partitioningstrategy avoids
ommuni
ation in the downward passand requires only a single
ommuni
ation step in theupward pass when moving from private nodes to theshared parents.Intera
tion Computation. As in list
onstru
tion, we
ommuni
ate non-lo
al data required in the intera
tion
omputation using a variation on the inspe
tor-exe
utorte
hnique. Computation is divided into 3 parts: list1 in-tera
tions, list2 intera
tions and list34 intera
tions. Toensure load-balan
e, we move data for boxes involved inea
h of the three
omputation phases into a \weighted-blo
k" distribution immediately prior to that phase.This involves looking in the work-list for ea
h box in-volved in the
omputation to determine the amount ofwork it will do, and then minimally redistributing theboxes su
h that ea
h pro
essor will have approximatelythe same total amount of work.3.2 The HPF ImplementationDetails of Hu and Johnsson's implementation of Ander-son's method
an be found in [9℄. Here we provide onlya brief overview of some similarities and di�eren
es be-tween their implementation and our hand-
oded MPIimplementation.� They represent obje
ts using multiple attribute ar-rays rather than a single re
ord stru
ture.� They express
ommuni
ation of non-lo
al data forirregular referen
es using generalized array assign-ments to \gather" the data before
omputation.We dis
uss this in detail in se
tion 4.� They distribute bodies using a spa
e-�lling
urve,though they do not exploit the relationship witho
ttrees to minimize
ommuni
ation during thetree-building phase. Instead they
onstru
t thetree level-by-level, blo
k distributing the data forea
h level. As a result, parent data is not ne
es-sarily on the same pro
essor as
hild data.� They have parallelized the unipro
essor list
re-ation algorithm in a fashion that requires more
ommuni
ation rounds than our approa
h.� As a result of their level-by-level blo
k distributionof boxes, they must
ommuni
ate between ea
hlevel during the upward and downward passes forpropagating potentials.3

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

Number of Processors

O
ve

rh
ea

d
(%

 to
ta

l i
nt

er
ac

tio
n

co
m

pu
ta

tio
n)

HPF
HPF−MPI
MPI

(a) Upward pass
0 20 40 60 80 100 120

0

1

2

3

4

5

6

7

Number of Processors

O
ve

rh
ea

d
(%

 to
ta

l i
nt

er
ac

tio
n

co
m

pu
ta

tio
n) HPF

HPF−MPI
MPI

(b) Downward passFigure 1: Upward and downward pass overhead withrespe
t to total intera
tion
omputation time.� They use a
lever s
heme that allows enables themto approximate a weighted blo
k distribution toload balan
e the intera
tion
omputations.� They have an extra repartitioning phase after list
onstru
tion. This step moves box data into theweighted blo
k distribution des
ribed above.3.3 Performan
e ComparisonHere we
ompare the performan
e of three appli
ationvariants: Hu and Johnsson's HPF implementation (la-beled \HPF" in plots); our hand-
oded MPI implemen-tation (labeled \MPI"); and a variation of the HPFimplementation in whi
h, for some phases of the algo-rithm, Hu and Johnsson have repla
ed HPF
onstru
tswhi
h
ause
ommuni
ation (i.e., foralls,
opy s
atters,et
.) with
alls to spe
ialized MPI routines that theydeveloped (labeled \HPF-MPI"). Not all phases are re-pla
ed; in some
ases (su
h as list
onstru
tion) use ofthe MPI routines would in
rease running time, perhapsbe
ause the routines were optimized for
ourse-grained
ommuni
ation. We
onsider the \HPF-MPI" numbers,where used, to represent lower bounds on the
ommu-

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

Number of Processors

O
ve

rh
ea

d
(%

 to
ta

l i
nt

er
ac

tio
n

co
m

pu
ta

tio
n)

HPF
HPF−MPI
MPI

(a) Make lists
0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

Number of Processors

O
ve

rh
ea

d
(%

 to
ta

l i
nt

er
ac

tio
n

co
m

pu
ta

tio
n)

HPF
HPF−MPI
MPI (b) Tree buildFigure 2: List and tree
onstru
tion overhead with re-spe
t to total intera
tion
omputation time.ni
ation time for the HPF implementation.Experimental setup. All experiments were performedon the Cray T3E-600 at the San Diego Super
omputerCenter, whi
h
onsists of 272 300MHz DEC Alpha 21164pro
essors (128 of whi
h are available at a time to userjobs). Pro
essors ea
h have 128 megabytes of physi-
al memory (no virtual memory), and are
onne
ted bya 3D bi-dire
tional torus inter
onne
t. HPF programswere
ompiled using PGI's PGHPF
ompiler, release2.3-1 for the T3E; all
odes were
ompiled at the -O2optimization level.Methodology. In our experiments, we s
aled problemsize with the number of pro
essors, so a doubling of pro-
essors implies a doubling of bodies simulated. Bodieswere initially distributed a

ording to a Plummer dis-tribution [1℄. Ea
h appli
ation variant was run for asingle timestep on 8, 16, 32, and 64 pro
essors. Thosethat didn't run out of memory were run on 128 pro-
essors. Table 1 presents the absolute time for ea
happli
ation phase for the 64 pro
essor
on�guration ofthe problem. \other" in the table refers to phases in theHPF appli
ation that don't exist in the MPI version.Figures 1{2 show the overhead of the upward pass,4

0 20 40 60 80 100 120
0

50

100

150

200

Number of Processors

O
ve

rh
ea

d
(%

 li
st

1
in

te
ra

ct
io

n
co

m
pu

ta
tio

n)

HPF
HPF−MPI
MPI

(a) List1 0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Number of Processors

O
ve

rh
ea

d
(%

 li
st

2
in

te
ra

ct
io

n
co

m
pu

ta
tio

n)

HPF
HPF−MPI
MPI

(b) List2 0 20 40 60 80 100 120
0

20

40

60

80

100

Number of Processors

O
ve

rh
ea

d
(%

 li
st

34
 in

te
ra

ct
io

n
co

m
pu

ta
tio

n)

HPF
HPF−MPI
MPI

(
) List34Figure 3: List pro
essing overhead as per
entage of list intera
tion
omputation time.phase MPI HPFbuild tree 1.19 5.75make lists 3.45 40.9upward pass 1.39 3.99list1 intera
tions 19.8 59.8list2 intera
tions 24.5 92.7list34 intera
tions 23.0 39.3downward pass 1.43 4.18other 0 5.36TOTAL TIME 77.5 255.Table 1: Absolute times (in se
s.) for 64 pro
s.downward pass, and list
reation, and tree
onstru
-tion. In these �gures, overhead is
omputed as the timespent in these phases as a per
entage of the time spent
omputing intera
tions within the whole program exe-
ution. Figure 3 shows the list
onstru
tion overheadfor list1, list2, and list34 intera
tions. In this �gure,overhead is
omputed as a per
entage of the time to
ompute intera
tions asso
iated with that list. All plotsare relative to the fastest intera
tion
omputation timeof the three implementation variants. In all of these�gures, a horizontal line a
ross the plot represents per-fe
t s
alability sin
e we have s
aled problem size withpro
essor
ount.Dis
ussion. The most signi�
ant di�eren
es in parti-tioning strategy between the HPF and MPI implemen-tations are for the tree
onstru
tion, upward pass, anddownward pass. In these phases, the hand-
oded imple-mentation uses a more eÆ
ient strategy based on repli-
ation of shared nodes in the upper levels of the tree.However, despite these di�eren
es, these phases showthe smallest di�eren
es in performan
e when
omparingthe HPF and MPI implementations. The hand-
odedimplementation always has less overhead; however, thedi�eren
e in overhead is fairly
onsistent as the problemsize gets larger and the number of pro
essors in
reases.For example, this overhead is 3-5% for the upward pass.The remaining phases, whi
h di�er the least in termsof partitioning strategy, have the most signi�
ant dif-feren
es in performan
e when
omparing the HPF and

program tinyreal*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)integer INTER(NUM_INTER, NUM_ELTS)CHPF$ distribute (blo
k) :: A, B, CCHPF$ distribute (*,blo
k) :: INTERCHPF$ ON HOME(A(i))do i = 1, NUM_ELTSdo j = 1, NUM_INTERA(i) = B(i) * C(INTER(j,i))enddoenddoend Figure 4: Irregular example program.MPI implementations. The largest di�eren
es are forthe list2 intera
tions (between well-separated boxes).For 64 pro
essors the overhead of the HPF implemen-tation is a fa
tor of 84 greater than that of the hand-
oded implementation. A glan
e at Table 1
on�rmsthat this di�eren
e translates to a substantial di�eren
ein running time: the HPF implementation takes longerto
ompute list2 intera
tions than the hand-
oded ver-sion takes to
omplete an entire timestep
y
le.In the next se
tion we investigate the sour
e of theseperforman
e di�eren
es.4 Performan
e RationaleThe measurements in Se
tion 3.3 show signi�
ant dif-feren
es in performan
e between the MPI and HPF im-plementations of Anderson's method. Here, we analyzethe sour
es of these performan
e di�eren
es.Two important points of
omparison for implemen-tations of irregular appli
ations are 1) how they dis-tribute data (and
omputation load) a
ross pro
essors,and 2) how they satisfy (re
ognize and
ommuni
atefor) referen
es to o�-pro
essor data. In the previousse
tion we noted that performan
e di�eren
es in per-forman
e between the MPI and HPF implementationsdo not seem to
orrespond to di�eren
es in data distri-bution methods. Therefore, here we fo
us our attention5

program tinyreal*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)real*8, allo
atable :: C_LOC(:)integer INTER(NUM_INTER, NUM_ELTS)CHPF$ distribute (blo
k) :: A, B, C, C_LOCCHPF$ distribute (*,blo
k) :: INTER<INSPECT INTER, DETERMINE NON-LOCAL C><ALLOCATE C_LOC, COMMUNICATE C INTO C_LOC><UPDATE INTER>do i = 1, NUM_ELTSdo j = 1, NUM_INTERA(i) = B(i) * C_LOC(INTER(j,i))enddoenddoend Figure 5: Inspe
tor-exe
utor version.on di�eren
es in the methods used to satisfy non-lo
alirregular referen
es.Both implementations use variations on the inspe
-tor exe
utor paradigm to a
quire non-lo
al data neededto satisfy referen
es. We des
ribe this paradigm to pro-vide a
ontext for understanding the variations usedin the HPF and MPI implementations of Anderson'smethod. In the
ourse of this se
tion, it will be
ome
lear that di�eren
es in how inspe
tor-exe
utors areused are responsible for the prin
ipal di�eren
es in per-forman
e of the implementations.4.1 Inspe
tor-Exe
utorsSin
e no
losed form representation of the data a

essedby an irregular referen
e
an be
omputed stati
ally,runtime pro
essing is needed (a) to determine whi
h (ifany) a

esses through an irregular referen
e will a

esso�-pro
essor data, and (b) to
oordinate ne
essary datamovement. The runtime pro
essing for a referen
e
anbe
ostly, espe
ially the
ommuni
ation. For this rea-son, it is advantageous to �rst determine the lo
alityfor all dynami
 instan
es of an irregular referen
e in aloop and then
ommuni
ate for all non-lo
al values ina single step. This strategy is known as the \inspe
tor-exe
utor" paradigm [12, 14℄. The inspe
tor determineswhat non-lo
al data will be a

essed, and the exe
utorperforms the
omputation on lo
al data and lo
alizednon-lo
al data.Figure 4 abstra
ts a typi
al situation in whi
h irreg-ular referen
es arise. Arrays A, B and C are attributesof a single
lass of obje
t, and array INTER des
ribe forea
h obje
t the other obje
ts in its
lass that it will in-tera
t with. The
ode fragment
orresponds to a phasein whi
h ea
h obje
t intera
ts with all the other obje
tson its intera
tion list. The referen
es to C are irregularsin
e they use an indire
tion array as a subs
ript.An inspe
tor for a loop nest should ideally be pla
edat the outermost loop level allowed by data dependen
es.In Figure 4 the inspe
tion phase
ould be pla
ed before

1 forea
h Node n a

essed in Loop l.2 if n is NOT in lo
altree then3 nonlo
al.Insert(n)4 othersNonlo
alIds = Alltoall(nonlo
al.ids)5 found = lo
altree.Sear
h(othersNonlo
alIds)6 myNonlo
als = Alltoall(found)7 lo
altree.Insert(myNonlo
als)8 PROCEED WITH LOOP NEST COMPUTATION...Figure 6: Algorithm for inspe
ting o
ttrees.the outermost loop. The inspe
tor would exe
ute onlyon
e, examining the
ontents of INTER(j,i) and gath-ering all non-lo
al elements of C needed by ea
h pro
es-sor. Resour
e
onstraints may make su
h an inspe
torpla
ement impossible and require that
ommuni
ationbe strip mined to avoid ex
essive spa
e for storing o�-pro
essor values.To ensure that non-lo
al data a

essed multiple timesby a single pro
essor in an inspe
ted loop nest is
om-muni
ated and stored only on
e, a hash table is usedto avoid dupli
ates. In Figure 4, dupli
ate values ofINTER(j,i) for many subs
ript positions
an
ause re-peated a

esses to same non-lo
al element of C by apro
essor. These non-lo
al values need only be gath-ered and stored on
e on that pro
essor. Figure 5 showswhat the sample
ode might look like after transforma-tion to inspe
tor/exe
utor style. The statements within\<>" would be translated to one or more
alls to rou-tines from a library su
h as CHAOS [4℄.To use values
olle
ted by an inspe
tor-based
om-muni
ation, the indire
tion array (INTER in Figure 4)must be updated to re
e
t the lo
ations of the non-lo
al elements of the indexed array (C) before use inthe exe
utor loop. In their standard usage, inspe
tor-exe
utors transform potentially non-lo
al irregular ref-eren
es into de�nitely lo
al, indire
t referen
es. Weshow that while use of the inspe
tor-exe
utor strategyby our hand-
oded MPI implementation works this way,the strategy used in the HPF implementation does not.4.2 Hand-
oded Inspe
tionOur implementation uses a form of inspe
tor-exe
utorsadapted to our
hoi
e of Warren and Salmon \hashed-o
ttrees" [15℄ for the o
ttree data stru
ture of the appli-
ation. Looking up a node in su
h trees uses a uniqueidenti�er (representing the nodes lo
ation in the tree)as a key for a

essing nodes in a hashtable represent-ing the tree. This approa
h simpli�es management ofdistributed trees in two ways. First, the identi�er fora node is the same on all pro
essors. Se
ond, inte-gration of non-lo
al nodes into a lo
al tree is simple:data for non-lo
al nodes is simply added to a pro
es-sor's hashtable.6

program tinyreal*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)real*8 C_INTER(NUM_INTER, NUM_ELTS)integer INTER(NUM_INTER, NUM_ELTS)CHPF$ distribute (blo
k) :: A, B, CCHPF$ distribute (*,blo
k) :: INTER, C_INTERforall (i=1:NUM_INTER,j=1:NUM_ELTS)C_INTER(j,i) = C(INTER(j,i))end foralldo i = 1, NUM_ELTSdo j = 1, NUM_INTERA(i) = B(i) * C_INTER(j,i)enddoenddoendFigure 7: Regularization example
ode.phase redund nodes a

essedbuild tree 1
hildrenmake lists 216
hldrn of
ollgs of prntup/downward pass 1
hildrenlist1 intera
tions 26
olleagueslist2 intera
tions 189 well separated boxeslist34 intera
tions ? (none in full tree)Table 2: Redundan
y fa
tors; worst
ase, full tree.The basi
 algorithm we use to inspe
t loops overnodes in the o
ttree is shown in Figure 6. First, ea
hpro
essor inspe
ts its lo
al portion of the
omputationfor a

esses to non-lo
al nodes and
olle
ts identi�ersfor these nodes into a hashtable. Next, all pro
essors ex-
hange the IDs in their o�-pro
essor hashtables. Third,ea
h pro
essor sear
hes its tree for data requested andthen replies with the ne
essary data if found. Finally,ea
h pro
essor inserts non-lo
al data re
eived into itstree hashtable and the loop
omputation
ontinues with-out further interruption.Note that, though we don't have to update any indi-re
tion array (sin
e the array being indexed is a
tuallya hash table), we still e�e
tively transform potentiallynon-lo
al irregular referen
es into de�nitely lo
al, in-dire
t3 referen
es, as in our earlier des
ription of thestandard inspe
tor-exe
utor paradigm.4.3 Inspe
tion in HPFAs noted earlier, Hu and Johnsson use generalized arrayassignments to gather non-lo
al data in what amountsto a variation of the inspe
tor-exe
utor te
hnique. How-ever there is an important di�eren
e between their te
h-nique and the standard inspe
tor-exe
utor strategy de-s
ribed above: their te
hnique transforms potentiallynon-lo
al irregular referen
es into de�nitely lo
al, regu-lar referen
es.Figure 7 demonstrates the \regularization" of theirregular referen
e in our example program. A new ar-ray C INTER of the same size and dimension of INTER3The indire
tion here is through the hashtable.

is introdu
ed to represent lo
alized values of C. Next,C INTER is assigned the values of C that are referen
edthrough INTER. Be
ause of the way the arrays have beendistributed, any non-lo
al elements of C referen
ed byINTER are impli
itly
ommuni
ated in this step and willsubsequently be lo
al. Finally, the indexed referen
e inthe
omputation loop is repla
ed with a referen
e to thenew array.On the surfa
e, regularization appears to be a simpleand elegant solution for handling irregular referen
es inHPF. However, if the index array is mu
h larger thanthe array(s) it is indexing, this approa
h
an severelyhurt performan
e.For an illustration of the potential impa
t,
onsiderthe list2 intera
tions of Anderson's method (betweenwell-separated boxes). Suppose box B is an interior nodein a full tree; it is then well-separated from 189 otherboxes in a 3D o
t-tree. Ea
h of those boxes is also well-separated from B, so B appears on 189 intera
tion lists.Using the regularization strategy to lo
alize referen
esto B in those lists thus
auses B's data to be
opied 189times, potentially a
ross pro
essor boundaries.There are two ways in whi
h su
h
opying
an hurtperforman
e. First, multiple
opies of B are poten-tially
ommuni
ated to a single pro
essor (if B appearson multiple lists on that pro
essor), thereby in
reasing
ommuni
ation volume and laten
y. Se
ond, whetherB's data is lo
al or nonlo
al, new spa
e must be allo-
ated to store it, resulting in as mu
h as a fa
tor of 189di�eren
e in B's storage requirements (if B is only onlo
al lists).We
laim that the additional storage required forregularization is ultimately responsible for the perfor-man
e di�eren
e between the HPF implementation andits hand-
oded
ounterpart. Although the runtime pro-
essing required to implement inspe
tion should ideallybe pla
ed outside of as many loops as dependen
es willallow, resour
e
onstraints might for
e their pla
ementwithin loops. In several phases of the Hu and Johns-son's HPF implementation, their regularization strat-egy in
reases storage requirements to su
h an extentthat they needed to pla
e their gather/inspe
tion
odewithin some loops with many iterations. In
ontrast,we are able to pla
e these inspe
tors at the outermostlevel in our hand-
oded MPI implementation be
ausewe use a hashtable to eliminate storage redundan
y.As supporting eviden
e for our
laim that this is themain sour
e of overhead in the HPF implementation,we point out the
orrelation between data in Table 2,whi
h shows redundan
y fa
tors for various phases ofthe algorithm, and the results in Figures 1 and 2. Thelargest di�eren
e in overhead between the implemen-tations is in the make-list phase whi
h has the largestredundan
y fa
tor. The build-tree, upward and down-ward passes have little redundan
y and have small dif-7

feren
es in overhead, despite our hand-
oded strategyfor redu
ing
ommuni
ation in these phases des
ribedin se
tion 3.To prove our
laim, in the next se
tion we show thatremoving the redundan
y in the HPF implementationeliminates mu
h of di�eren
e in performan
e betweenthe implementations.5 Synthesis Approa
hTo prove that
ommuni
ation and storage redundan
ydue to regularization is largely responsible for the per-forman
e gap between Hu and Johnsson's HPF
odeand our hand-
oded MPI implementation, we must showthat avoiding this redundan
y would improve perfor-man
e. Unfortunately, regularization is the standardidiom for handling irregular referen
es within the HPFlanguage and there are few alternatives. In the HPFlanguage proper, we have found that programmer -driveninspe
tion of data for lo
ality and redundan
y is diÆ-
ult or impossible be
ause:1. there is no straightforward means of a

essing dataowned by a parti
ular pro
essor, and2. there is no notion of arrays lo
al to a pro
essor.Going ba
k to our example from Se
tion 4, we are un-able to eÆ
iently express the hashing of the indire
tionarray INTER in HPF global
ode.So, barring sophisti
ated
ompiler support for
re-ating eÆ
ient inspe
tors automati
ally su
h as that de-s
ribed by von Hanxleden [6℄, we know of no methodfor a programmer to
ir
umvent the redundan
y inher-ent in the regularization strategy entirely within theHPF language. We have found, however, that a mod-est use of HPF \extrinsi
 pro
edures" [7, 10℄ enables usto avoid the redundan
y while retaining the bene�ts ofthe high-level HPF model for the rest of the appli
a-tion. Here, we introdu
e our strategy by demonstratingits use on the simple program from Se
tion 4, show howwe have applied it to the Hu and Johnsson's HPF im-plementation, and present measurements of the revisedappli
ation.5.1 General MethodologyHPF extrinsi
 pro
edures enable HPF programs to
all
ode not written in stri
t data-parallel style and allowthe
alled
ode to operate on distributed arrays de�nedin the HPF program. HPF LOCAL extrinsi
 pro
e-dures, in parti
ular, have at their disposal several in-trinsi
 fun
tions that are unavailable at the global level.For example, the intrinsi
 fun
tion size
an be usedwithin an HPF LOCAL extrinsi
 to determine the lo
alextent of a dimension of a distributed array passed as

program tinyreal*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)integer INTER(NUM_INTER, NUM_ELTS)CHPF$ distribute (blo
k) :: A, B, CCHPF$ distribute (*,blo
k) :: INTERreal*8 C_LOC(MAX_LOC*number_of_pro
essors())integer map(MAX_LOC*number_of_pro
essors())CHPF$ distribute (blo
k) :: C_LOC, mapmap = 0
all hash(map, INTER)forall (i=1:MAX_LOC*number_of_pro
essors(), map(i).ne.0)C_LOC(i) = C(map(i))end forall
all
ompute(A, B, C_LOC, INTER)end Figure 8: Transformed main program.extrinsi
 (hpf_lo
al)subroutine hash(map, INTER)integer map(:), INTER(:,:)integer table(NUM_ELTS), sum, itable = 0do i = 1,size(INTER,2)do j = 1, NUM_INTERtable(INTER(j,i)) = 1enddoenddosum = 0do i = 1, NUM_ELTSif (table(i) .eq. 1) thensum = sum + 1table(i) = summap(sum) = iendifenddodo i = 1,size(INTER,2)do j = 1, NUM_INTERINTER(j,i) = table(INTER(j,i))enddoenddoend subroutineFigure 9: Simple hashing pro
edure.an argument. Be
ause extrinsi
 pro
edures enable pro-
essors to perform di�erent operations in parallel (asopposed to identi
al operations on di�erent parts of thesame array) their use is frowned upon by data-parallelpurists.We are interested solely in the ability extrinsi
 pro-
edures give us to de�ne lo
al arrays and manipulatelo
al se
tions of distributed arrays. We use this
apabil-ity �rst to lo
ally
olle
t a ve
tor of unique indi
es thatwill be used to indire
tly a

ess a distributed array andthen later to perform a
ommuni
ation-free
omputa-tion with lo
alized data. Figures 8{9 demonstrate howwe use these pro
edures to eÆ
iently lo
alize the irreg-ularly indexed array in the example program shown inFigure 4.Figure 9 implements hash, an HPF LOCAL pro
e-dure to perform the hashing that we are unable to ex-press in the the HPF language proper. We de
lare anarray table to be the global size of the indexed array8

C and then loop over the lo
al portion of the index ar-ray INTER to determine the elements of C that will beneeded lo
ally. The se
ond loop
olle
ts the index po-sitions of C that will be needed lo
ally into lo
al slotsin the array map. (Figure 8 shows how the array map islater used to gather values of the indire
tly indexed ar-ray C.) Finally, the third loop nest in Figure 9 updatesINTER with the indi
es that lo
alized values will haveafter they are gathered.The transformed main program in Figure 8 de
larestwo new arrays: the mapping array map des
ribed aboveand the array C LOC into whi
h elements of C will begathered.4 After
alling the hash pro
edure to
omputemap, a forall loop a
tually gathers the non-lo
al valuesneeded by ea
h pro
essor. Finally, the
omputation isperformed using the lo
alized data.We are for
ed to pa
kage the
omputation loop intoanother extrinsi
 pro
edure due to what we per
eiveto be a limitation of HPF: although we have ensuredthat the values of C that will be indire
tly referen
edby INTER will be lo
al in C LOC, there is no way for usto indi
ate this to the
ompiler. (The HPF \indepen-dent" dire
tive asserts only that there are no depen-den
es in a loop, not that no
ommuni
ation is ne
-essary.) The
ompute pro
edure performs the
ompu-tation loop using the lo
alized data now available inC LOC. In
ompute, C LOC is indire
tly indexed with theINTER array, whi
h was rewritten by the hash pro
e-dure. We do not show the
ode for the
ompute ex-trinsi
 pro
edure as it is nearly identi
al to the originalprogram.5.2 Appli
ationWe applied our inspe
tion strategy using HPF LOCALto the phases of Hu and Johnsson's HPF implementa-tion where the performan
e measurements of Se
tion 3.3indi
ated that they were needed most: list
onstru
tion,and intera
tion
omputation. Here we provide resultsfrom experiments on the transformed
ode. The over-head measurements in the plots follow the presentationstrategy outlined in se
tion 3.3. We show results forHPF, HPF-MPI, and MPI as before. In addition, weintrodu
e HPFLOC, and HPFLOC-MPI variants basedon our use of HPF LOCAL to eliminate
ommuni
ationand storage redundan
y.Figures 10{11 demonstrate the su

ess of our te
h-nique applied to the HPF implementation, and substan-tiate our
laim that the performan
e gap between theHPF and MPI implementations was due to the storageand
ommuni
ation redundan
y arising through regu-larization. When
omparing the original HPF version4For brevity, in the main program we have omitted \interfa
e"blo
ks for the hash and
ompute extrinsi
 pro
edures. These state-ments are ne
essary so the
ompiler
an
orre
tly pass global data tolo
al pro
edures.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

Number of Processors

O
ve

rh
ea

d
(%

 to
ta

l i
nt

er
ac

tio
n

co
m

pu
ta

tio
n)

HPF
HPF−MPI
HPFLOC
HPFLOC−MPI
MPI

(a) List
reation
0 20 40 60 80 100 120

0

50

100

150

200

Number of Processors

O
ve

rh
ea

d
(%

 li
st

1
in

te
ra

ct
io

n
co

m
pu

ta
tio

n)

HPF
HPF−MPI
HPFLOC
HPFLOC−MPI
MPI

(b) List1Figure 10: List
reation and list1 intera
tion times asper
entage of intera
tions.versus HPFLOC on ea
h of the graphs, the redu
tionsare dramati
. For example, Figure 11(a) shows thatoverhead in list
reation is redu
ed by roughly a fa
-tor of 10 by using an HPF LOCAL inspe
tor. Whenusing this strategy with Hu and Johnsson's MPI-based
olle
tive
ommuni
ation rather than the PGHPF de-fault
ommuni
ation, Figures 10{11 show that overheaddrops by an additional fa
tor of two or more.Only the list34 intera
tions seem to give the HPFLOCversion some trouble. We attribute this to the fa
t thatwe are for
ed to use a rather ineÆ
ient
ommuni
a-tion method to move the boxes into the weighted-blo
kdistribution. Spe
i�
ally, be
ause of the way data islaid out and the formulation of the fun
tion whi
h de-termines the new distribution, we are for
ed to use as
atter
opy rather than a forall to move the data;unfortunately s
atter
opy does not provide a goodway to move multi-dimensional data. One is for
ed touse a very general te
hnique by whi
h it is possible todes
ribe the new position of every single element in thearray; in this
ase, we simply want all elements of a rowto follow the �rst element.9

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Number of Processors

O
ve

rh
ea

d
(%

 li
st

2
in

te
ra

ct
io

n
co

m
pu

ta
tio

n)
HPF
HPF−MPI
HPFLOC
HPFLOC−MPI
MPI

(a) List2
0 20 40 60 80 100 120

0

20

40

60

80

100

Number of Processors

O
ve

rh
ea

d
(%

 li
st

34
 in

te
ra

ct
io

n
co

m
pu

ta
tio

n)

HPF
HPF−MPI
HPFLOC
HPFLOC−MPI
MPI

(b) List34Figure 11: List2 and list34 times as per
entage of inter-a
tions.6 Summary and Con
lusionsWe have des
ribed and evaluated two sophisti
ated par-allel implementations of an adaptive, hierar
hi
al solverwhi
h uses Anderson's method for
al
ulating intera
-tions in n-body systems: our expli
itly-parallel MPI im-plementation and Hu and Johnsson's data-parallel HPFimplementation. Our measurements of these implemen-tations demonstrated that there were signi�
ant per-forman
e di�eren
es between the hand-
oded MPI andthe HPF implementations. After
onsiderable analysisof the performan
e and the implementation strategies,we hypothesized that the primary sour
e of ineÆ
ien
yin the HPF implementation was redundant
ommuni-
ation that was ne
essary to initialize redundant stor-age that is used for regularizing indire
t referen
es. Wedemonstrated that when this redundan
y is eliminatedin just two phases of the HPF implementation, withthe aid of HPF LOCAL semanti
s, the performan
e ofthe otherwise un
hanged HPF implementation
loselyapproa
hes that of the hand-
oded version.Figure 12 demonstrates just how
lose: from the plotwe
an see that on 64 pro
essors, while the original HPF

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

Number of Processors

O
ve

rh
ea

d
(%

 to
ta

l i
nt

er
ac

tio
n

co
m

pu
ta

tio
n)

HPF
HPF−MPI
HPFLOC
HPFLOC−MPI
MPI

Figure 12: Total time as % of intera
tion
omputation.phase MPI HPFLOC-MPIBUILD TREE 1.19 4.08MAKE LISTS 3.45 2.37UPWRD PASS 1.39 3.33LIST1 INTR 19.8 25.2LIST2 INTR 24.5 26.0LST34 INTR 23.0 23.6DNWRD PASS 1.43 4.22OTHER 0 5.48TOTAL TIME 77.5 96.9Table 3: Absolute times (in se
s.) for 64 pro
s.implementation in
urs nearly 300% more overhead thanthe hand-
oded version, our implementation redu
es thegap to just 50%. If we a

ept the assertion that
ol-le
tive
ommuni
ation support in the PGI HPF
om-piler
ould be improved to approa
h the eÆ
ien
y of thespe
ialized
ommuni
ation routines written by Hu andJohnsson (used by the HPF-MPI and HPFLOC-MPIversions) then there is a fairly
onsistent gap of about25% left between the performan
e of the hand-
odedMPI implementation and the revised HPF implementa-tion.Two questions remain. First, what a

ounts for theremaining performan
e gap and
an it be bridged? Se
-ond, what are the impli
ations of this work for irregular
omputation and HPF?Remaining Gap. From Table 3 it's
lear that almostall of the remaining di�eren
e in running times be-tween the two implementations
an be attributed tothe phases of the algorithm that we did not
hange.The one ex
eption would appear to be the List1 inter-a
tions, for whi
h there is still be a substantial gap of�ve se
onds. However, four se
onds of this gap are dueto a small di�eren
e in the
omputational algorithm:all the HPF versions have a test in an innermost loopwhi
h we avoided in the MPI implementation. (We a
-
ounted for su
h di�eren
es in our de�nition of over-head, so they don't a�e
t the overhead measurementsshown in our plots.) If we adjust for the List1 algo-rithmi
 ineÆ
ien
y, we �nd that the phases of the HPF10

implementation that we didn't
hange a

ount for 86%of the remaining performan
e gap while the phases we
hanged a

ount for only 14% of the remaining gap.There are several fa
tors whi
h
ontribute to the re-maining 14% performan
e gap in the appli
ation phaseswe modi�ed to use the HPF LOCAL-based inspe
tionstrategy. First, we have taken great pains in the MPIimplementation to ensure that no
ommuni
ation ofdata \holes" takes pla
e, whereas the HPF implemen-tation
annot. For example, when
ommuni
ating theparti
les asso
iated with a leaf box, we
ommuni
ateand store exa
tly the number of parti
les asso
iatedwith that box, while the HPF implementation
ommu-ni
ates and stores the maximum number of parti
lesper box for every box. Se
ond, our use of stru
turesto group data in the MPI implementation results in asingle
ommuni
ation per obje
t whereas the HPF im-plementation's use of attribute arrays results in multiple
ommuni
ations per obje
t, whi
h in
reases
ommuni-
ation overhead.These same fa
tors, of
ourse, also
ontribute to theperforman
e gap for the phases that we did not modify.There are two
omponents to the remaining di�eren
ein the unmodi�ed phases: the extra partitioning phaserequired in the HPF appli
ation, and the algorithmi
phases (upward and downward passes, tree build). We�rst note that the extra partitioning phase was not im-proved by the use of Hu and Johnsson's MPI routines,primarily be
ause it uses more
ompli
ated
ommuni
a-tion
onstru
ts su
h as s
an redu
tions that they
hosenot to implement in MPI. The time for this phase
ouldpotentially be lower if the PGI runtime library
ommu-ni
ation routines
an be improved.After a

ounting for the fa
tors dis
ussed above, weattribute the rest of the performan
e di�eren
es to dif-feren
es in partitioning strategies used by the HPF andMPI implementations. As des
ribed in Se
tion 3 themain feature that distinguishes the partitioning strat-egy we used in MPI from that used in HPF is the notionof pro
essors sharing boxes in the upper levels of thetree. Given the restri
tions on user knowledge of pro
es-sor/data relationships imposed by the HPF language,it is not
lear how one
ould implement this strategyin HPF. Perhaps instead of a single array representingboxes, one
ould split them into two sets: those ownedby a single pro
essor in a distributed array and thoseowned by all pro
essors in a separate repli
ated array.Whether a
ompiler
ould eÆ
iently
oordinate datamotion between the two sets as we have in our imple-mentation, is not obvious.Impli
ations. We have shown that if arbitrary irreg-ular appli
ations are to be implemented with high ef-�
ien
y in data-parallel languages su
h as HPF, thenspe
ial
are must be taken to avoid redundan
y in the
ommuni
ation and storage of non-lo
al data. We be-

lieve that this work therefore has impli
ations for twogroups:1. Vendors of HPF
ompilers need to provide bet-ter support for automati
ally generating appro-priate inspe
tor-exe
utor
ode for irregular refer-en
es. Te
hniques des
ribed by von Hanxleden [6℄in his dissertation would suÆ
e for the
ases we en-
ountered, though extensions to these te
hniquesmay be needed for more
omplex
ases, su
h asthose involving multiple levels of indire
tion. With-out
ompiler-synthesized inspe
tors and exe
utors,we know of no way to eliminate the
ommuni
ationredundan
y that results from regularization with-out dropping into HPF LOCAL extrinsi
s. At-tempts to a
hieve the desired e�e
t by not using aforall loop for regularization of irregular referen
epatterns
aused the PGI HPF
ompiler to employrun-time resolution with whi
h no speedup is pos-sible.2. Until better inspe
tor-exe
utor support be
omeswidely available in HPF
ompilers, HPF appli
a-tion developers would do well to follow our exam-ple and use HPF LOCAL extrinsi
 pro
edures toimplement inspe
tor-exe
utor style handling for ir-regular referen
es in
ases where storage and
om-muni
ation redundan
y prove signi�
ant.7 A
knowledgementsWe thank Yu \Charlie" Hu and Lennart Johnsson forgiving us unrestri
ted a

ess to their HPF n-body ap-pli
ation. We thank the National Partnership for Ad-van
ed Computational Infrastru
ture at the Universityof California, San Diego for a

ess to their Cray T3E,and TCCIS at the University of Houston for a

ess totheir IBM SP2.Referen
es[1℄ S. Aarseth, M. Henon, and R. Wielen. Astronomyand Astrophysi
s, 37, 1994. Referen
e for Plummerdistributions for N-body problems.[2℄ C. R. Anderson. An implementation of the fastmultipole method without multipoles. SIAM J.S
i. Stat. Comput, 13(4):923{947, July 1992.[3℄ J. Barnes and P. Hut. A hierar
hi
al o(n logn)for
e
al
ulation algorithm. Nature, 324:446{449,1986.[4℄ R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang.Communi
ation optimizations for irregular s
ien-ti�

omputations on distributed memory ar
hite
-tures. Journal of Parallel and Distributed Comput-ing, 22(3):462{479, Sept. 1994.11

[5℄ L. Greengard and V. Rokhlin. A fast algorithm forparti
le simulations. J. Comput. Physi
s, 73:325{348, 1987.[6℄ R. v. Hanxleden. Compiler Support for Ma
hine-Independent Parallelization of Irregular Problems.PhD thesis, Dept. of Computer S
ien
e, Ri
e Uni-versity, De
. 1994. Available as CRPC-TR94494-Sfrom the Center for Resear
h on Parallel Compu-tation, Ri
e University.[7℄ High Performan
e Fortran Forum. High Perfor-man
e Fortran language spe
i�
ation. S
ienti�
Programming, 2(1-2):1{170, 1993.[8℄ Y. C. Hu and S. L. Johnsson. Implementingo(n) n-body algorithms eÆ
iently in data-parallellanguages. S
ienti�
 Programming, 5(4):337{364,1996.[9℄ Y. C. Hu, S. L. Johnsson, and S.-H. Teng. HighPerforman
e Fortran for highly irregular problems.In Pro
eedings of the Sixth ACM SIGPLAN Sym-posium on Prin
iples and Pra
ti
e of Parallel Pro-gramming, pages 13{24, Las Vegas, NV, June 1997.[10℄ C. Koelbel, D. Loveman, R. S
hreiber, G. Steele,Jr., and M. Zosel. The High Performan
e FortranHandbook. The MIT Press, Cambridge, MA, 1994.[11℄ C. M
Curdy. EÆ
ient te
hniques for n-body simu-lation on distributed memory ar
hite
tures. Mas-ter's thesis, Dept. of Computer S
ien
e, Ri
e Uni-versity, 1999. Forth
oming.[12℄ P. Mehrotra and J. Van Rosendale. Compiling highlevel
onstru
ts to distributed memory ar
hite
-tures. In Pro
eedings of the 4th Conferen
e on Hy-per
ube Con
urrent Computers and Appli
ations,Monterey, CA, Mar. 1989.[13℄ H. Sagan. Spa
e-Filling Curves. Springer-Verlag,New York, NY, 1994.[14℄ J. Saltz, K. Crowley, R. Mir
handaney, andH. Berryman. Run-time s
heduling and exe
utionof loops on message passing ma
hines. Journal ofParallel and Distributed Computing, 8(4):303{312,Apr. 1990.[15℄ M. Warren and J. Salmon. A parallel hashed-o
ttree n-body algorithm. In Pro
eedings of Su-per
omputing '93, Portland, OR, Nov. 1993.[16℄ S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, andA. Gupta. The SPLASH-2 programs: Chara
-terization and methodologi
al
onsiderations. InPro
eedings of the 22th International Symposiumon Computer Ar
hite
ture, pages 24{36, SantaMargherita Ligure, Italy, June 1995. 12

