An Evaluation of Computing Paradigms for N-body Simulations on Distributed

Memory Architectures®

Collin McCurdy
Department of Computer Science
University of Wisconsin, Madison

cmccurdy@cs.wisc.edu

Abstract

The efficiency of HPF with respect to irregular appli-
cations is still largely unproven. While recent work
has shown that a highly irregular hierarchical n-body
force calculation method can be implemented in HPF,
we have found that the implmentation contains ineffi-
ciencies which cause it to run up to a factor of three
times slower than our hand-coded, explicitly parallel
implementation. Our work examines these inefficien-
cies, determines that most of the extra overhead is due
to a single aspect of the communication strategy, and
demonstrates that fixing the communication strategy
can bring the overheads of the HPF application to within
25% of those of the hand-coded version.

1 Introduction

High Performance Fortran (HPF)[7, 10] was developed
to simplify parallel programming by having compilers
manage most of the details of application paralleliza-
tion. However, it is still open to debate whether HPF
and its supporting compilers will enable users to realize
sophisticated parallelizations for complex problems and

*Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by oth-
ers than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee. This
work has been supported by DARPA Contract DABT63-92-C-0038
and sponsored by DARPA and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-96-1-0159. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing the offi-
cial policies or endorsements, either expressed or implied, of DARPA
and Rome Laboratory or the U.S. Government.

John Mellor-Crummey
Department of Computer Science
Rice University
johnmc@cs.rice.edu

achieve performance comparable to hand-coded explic-
itly parallel programs.

In particular, there is some doubt that irregular ap-
plications® can be implemented efficiently in HPF. On
message-passing parallel systems, these applications rely
on runtime libraries to identify accesses to off-processor
data and to coordinate data movement. To keep the
overhead of this approach manageable, a good data dis-
tribution and communication aggregation are very im-
portant. While HPF generalized array assignments us-
ing forall and scatter statements support irregular data
movement, the appropriateness and efficiency of such
constructs is still largely unproven for full-scale irregu-
lar applications.

This paper describes a comparative study of several
implementations of an irregular application for n-body
simulation. All implementations use an adaptive ver-
sion of Anderson’s method for hierarchical approxima-
tion of far-field interactions [2]. (Section 2 provides an
overview of this method.) Hierarchical methods for n-
body simulation have been of interest to the compu-
tational science community not only because of their
speed and accuracy, but also because their irregular
structure makes efficient parallelization difficult. Hu
and Johnsson developed an HPF implementation of an
adaptive hierarchical solver using Anderson’s method
that served as the basis for much of our work [8, 9].
Their landmark implementation demonstrated that so-
phisticated algorithms for highly irregular problems can
in fact be implemented in HPF. However, a performance
comparison of their HPF implementation with a hand-
coded, MPI-based parallel implementation that we de-
veloped exposed some costly inefficiencies in the HPF
implementation that slow it’s running time by as much
as a factor of three.

This paper makes several contributions:

e We describe a sophisticated MPI implementation
of an adaptive version of Anderson’s method which

Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, At-
lanta, GA, May 1999.

1Irregular applications contain references for which a closed form
representation of the data accessed cannot be computed statically.

integrates proven techniques to achieve good per-
formance and scalability.

e We present a careful measurement and characteri-
zation of overhead in Hu and Johnsson’s HPF im-
plementation relative to our MPI reference imple-
mentation.

e We describe a modification to Hu and Johnsson’s
communication strategy that, when integrated into
their implementation, eliminates more than 75%
of the performance difference relative to the MPI
implementation.

The rest of the paper is organized as follows. Sec-
tion 2 describes hierarchical n-body methods to provide
a context for understanding comparisons of HPF and
MPI implementations of Anderson’s method. Section 3
describes our MPI implementation in some detail and
contrasts it with Hu and Johnsson’s HPF implemen-
tation both qualitatively and quantitatively. Section 4
describes the key source of inefficiency in Hu and Johns-
son’s HPF implementation. Section 5 describes a mod-
ification to the HPF approach which dramatically im-
proves performance. Section 6 summarizes our results
and conclusions.

2 Hierarchical Methods

To compute far-field forces rapidly, hierarchical meth-
ods aggregate the effects from bodies a sufficient dis-
tance away, computing their influence as part of a group,
rather than individually. The principal data structure
used to construct groupings for these methods in 3D is
an oct-tree. One constructs an oct-tree starting with a
root box that contains all of the bodies and then recur-
sively subdividing boxes into 8 boxes of equal size until
a stopping condition is met.

Once the tree is formed, an upward pass over the
boxes in the tree establishes the far-field approxima-
tions for each box. At the leaves, the approximation
for a box is computed from the bodies within; at higher
levels, the approximation for a box is computed from
approximations for boxes it contains. The form of the
approximation is application specific.

Here we describe a progression of three O(n) hier-
archical methods. First we introduce Greengard and
Rokhlin’s fast multipole method (FMM) [5]. Next, we
describe the adaptive variant of this algorithm. Finally,
we describe Anderson’s method, which has the same
algorithmic structure as the FMM methods, but but
a different numerical technique for approximating far-
field forces.

Fast Multipole Method. Rather than computing far-
field for each body individually, as in the O(nlogn)
Barnes-Hut algorithm [3], Greengard and Rokhin’s Fast

Multipole Method [5] makes use of the observation that
when a box A and a box B are “well-separated”, the
far-field effect of the bodies in box B on those in box
A, and vice-versa, can be approximated as a single in-
teraction between the bozes. Such interactions between
well-separated boxes occur at all levels of the tree, and
the savings in computation enable FMM to compute
far-field forces in O(n) time. Interactions are computed
in a downward pass over the tree. At each level, inter-
actions are computed between boxes at that level that
are well-separated, and the results, collected in the form
of a “local-field potential,” are passed down to the next
level. At the lowest level, the local-field potential for a
box is passed down to each body inside and interactions
between bodies not sufficiently separated are computed.
Adaptive FMM. The FMM algorithm just described
assumes a tree of uniform depth. An adaptive vari-
ant avoids unnecessary refinement by not subdividing
any box that contains fewer bodies than a specified
threshhold. The key difference with respect to the non-
adaptive algorithm is that the set of boxes with which a
given box will interact is not statically known and must
be computed from the shape of the adaptive tree by a
somewhat complicated algorithm. To simplify imple-
mentation and maximize cache locality, several types of
interaction lists for each box are computed before the
upward pass and a separate computation phase is added
between the upward and downward passes. There are
three types of interaction computations and therefore
three lists: boxes in list! are adjacent leaf boxes (and
therefore are not sufficiently distant from each other
to allow approximation); boxes in list2 are the same
size and well-separated (that is, sufficiently distant from
each other to allow approximation); finally, boxes in
list34 are different sized and well-separated from the
perspective of one of the boxes but not the other.
Anderson’s Methad. The algorithmic structure of An-
derson’s method [2] is the same as that of FMM. Its
key difference from FMM is in the way it propagates
potentials. For three-dimensional problems, the com-
putational element of FMM is a multipole expansion
located at the center of an abstract sphere containing
the cluster of bodies; in contrast, Anderson’s approxi-
mation computes potentials at locations on the circum-
ference of a sphere. Compared to multipole methods,
Anderson’s method achieves the same level of accuracy
with fewer levels in the tree.

3 Implementation Comparison

In this section, we first describe our hand-coded imple-
mentation of Anderson’s method in some detail. Next,
we describe highlights of Hu and Johnsson’s HPF im-
plementation. Finally, we compare the performance of
these two implementations for several problem sizes and

processor counts on a Cray T3E. This comparison shows
that the HPF implementation has some significant in-
efficiencies relative to the hand-coded one.

3.1 The Hand-coded Implementation

The FMM program in the SPLASH-2 suite from Stan-
ford [16] was the starting point for development of our
hand-coded MPI implementation of Anderson’s method,
though our implementation now bears little resemblance
to the original. Among the structural changes we have
made to the code:

e We use MPI-based explicit communication rather
than shared memory.

e We replaced the multipole expansions with Ander-
son’s method for computing potentials.

e We use a 3D octree as the basis for the hierarchical
solver rather than a quadtree.

The principal remaining similarity between the imple-
mentations is in the record structures used by the hier-
archical solver. Below we describe key features of our
MPI implementation.

Body Distribution. To distribute bodies among pro-
cessors, we first compute the position of each body along
a Hilbert curve?, and then sort the bodies according to
their position along the curve. Since both the Hilbert
curve and the octtree recursively divide space in half
along each dimension, all bodies in the same leaf of the
octtree are contiguous after the sort. Next, we partition
the sorted sequence of bodies among the processors by
assigning each processor a contiguous range. We select
the partition points to ensure that each processor is as-
signed all bodies in a subtree of the octtree. With this
partitioning, we are able to construct octtrees locally,
except for a brief communication phase in which pro-
cessors exchange information about shared bozes (boxes
at upper levels of the tree whose subboxes lie on more
than one processor) to ensure that the representation
of these boxes is globally consistent.

Construction of Neighbor Lists. A key step in adap-
tive hierarchical methods is building the interaction lists
for each box, as described in Section 2. The fine-grained
nature of the computation in this phase, combined with
its large communication requirements, causes it to be a
major bottleneck in the parallelized application if spe-
cial care is not taken. By transforming the uniprocessor
list construction algorithm into a form that enables us
to gather non-local data using an efficient inspector-
executor strategy, we are able to dramatically reduce
the impact of list construction on the parallel runtime.

?Hilbert curves [13] are one of a class of continuous, non-smooth,
“space-filling curves” that map a 1-dimensional interval to an N-
dimensional volume. Such curves can be constructed to pass arbi-
trarily close to every point in the volume.

(Details of our list construction algorithm are described
in [11].)

Propagation of Potential Information. As noted be-
fore, we replicate information about shared nodes at the
uppermost levels of the tree to all processors and ensure
that all nodes in a subtree below any non-shared node
are located on the same processor. This partitioning
strategy avoids communication in the downward pass
and requires only a single communication step in the
upward pass when moving from private nodes to the
shared parents.

Interaction Computation. As in list construction, we
communicate non-local data required in the interaction
computation using a variation on the inspector-executor
technique. Computation is divided into 3 parts: list1 in-
teractions, list2 interactions and list34 interactions. To
ensure load-balance, we move data for boxes involved in
each of the three computation phases into a “weighted-
block” distribution immediately prior to that phase.
This involves looking in the work-list for each box in-
volved in the computation to determine the amount of
work it will do, and then minimally redistributing the
boxes such that each processor will have approximately
the same total amount of work.

3.2 The HPF Implementation

Details of Hu and Johnsson’s implementation of Ander-
son’s method can be found in [9]. Here we provide only
a brief overview of some similarities and differences be-
tween their implementation and our hand-coded MPI
implementation.

e They represent objects using multiple attribute ar-
rays rather than a single record structure.

e They express communication of non-local data for
irregular references using generalized array assign-
ments to “gather” the data before computation.
We discuss this in detail in section 4.

e They distribute bodies using a space-filling curve,
though they do not exploit the relationship with
octtrees to minimize communication during the
tree-building phase. Instead they construct the
tree level-by-level, block distributing the data for
each level. As a result, parent data is not neces-
sarily on the same processor as child data.

e They have parallelized the uniprocessor list cre-
ation algorithm in a fashion that requires more
communication rounds than our approach.

e As aresult of their level-by-level block distribution
of boxes, they must communicate between each
level during the upward and downward passes for
propagating potentials.

~

i

ol
T

IS
T

|

Overhead (% total interaction computation)

Overhead (% total interaction computation)
=

o

20 40 60 80 100 120
Number of Processors

o

(a) Upward pass

~

&—A HPF
©0—© HPF-MPI| |
—a MPI

o
T

ol
T

IS
T

w
T

| B/E/E—E//f]

N

Overhead (% total interaction computation)
=

o

20 40 60 80 100 120
Number of Processors

o

(b) Downward pass

Figure 1: Upward and downward pass overhead with
respect to total interaction computation time.

e They use a clever scheme that allows enables them
to approximate a weighted block distribution to
load balance the interaction computations.

e They have an extra repartitioning phase after list
construction. This step moves box data into the
weighted block distribution described above.

3.3 Performance Comparison

Here we compare the performance of three application
variants: Hu and Johnsson’s HPF implementation (la-
beled “HPF” in plots); our hand-coded MPI implemen-
tation (labeled “MPI”); and a variation of the HPF
implementation in which, for some phases of the algo-
rithm, Hu and Johnsson have replaced HPF constructs
which cause communication (i.e., foralls, copy_scatters,
etc.) with calls to specialized MPI routines that they
developed (labeled “HPF-MPI”). Not all phases are re-
placed; in some cases (such as list construction) use of
the MPI routines would increase running time, perhaps
because the routines were optimized for course-grained
communication. We consider the “HPF-MPI” numbers,
where used, to represent lower bounds on the commu-

~
o

<}
o
T

a1
o
T

IS
=)

w
o
T

N
o
T

o

|

20 40 60 80 100 120
Number of Processors

o

(a) Make_lists

[
I

[N
N
T

[
o
T

e}
T

o
T

IS
T

N
T

Overhead (% total interaction computation)

o

20 40 60 80 100 120
Number of Processors

o

(b) Tree build

Figure 2: List and tree construction overhead with re-
spect to total interaction computation time.

nication time for the HPF implementation.
Experimental setup. All experiments were performed
on the Cray T3E-600 at the San Diego Supercomputer
Center, which consists of 272 300MHz DEC Alpha 21164
processors (128 of which are available at a time to user
jobs). Processors each have 128 megabytes of physi-
cal memory (no virtual memory), and are connected by
a 3D bi-directional torus interconnect. HPF programs
were compiled using PGI's PGHPF compiler, release
2.3-1 for the T3E; all codes were compiled at the -O2
optimization level.
Methodology. In our experiments, we scaled problem
size with the number of processors, so a doubling of pro-
cessors implies a doubling of bodies simulated. Bodies
were initially distributed according to a Plummer dis-
tribution [1]. Each application variant was run for a
single timestep on 8, 16, 32, and 64 processors. Those
that didn’t run out of memory were run on 128 pro-
cessors. Table 1 presents the absolute time for each
application phase for the 64 processor configuration of
the problem. “other” in the table refers to phases in the
HPF application that don’t exist in the MPI version.
Figures 1 2 show the overhead of the upward pass,

350

i
15
=}

N
=3
=}

1!

Overhead (% listl interaction computation)
(5] ’8
o o

Overhead (% list2 interaction computation)

501

G 300 A///A
2501

G‘e/e‘o

©
=)

-}
=}

IN
S

@/@/@/@

N
=)

Overhead (% list34 interaction computation)

B

G ; n N n — 0
0 20 40 60 80 100 120 0 20 40
Number of Processors

o

(a) Listl

Number of Processors

(b) List2

o

80 100 120 0 20 4 60 80 100 120
Number of Processors

(c) List34

Figure 3: List processing overhead as percentage of list interaction computation time.

phase MPI HPF
build tree 1.19 5.75
make lists 3.45 40.9
upward pass 1.39 3.99

list1 interactions 19.8 59.8
list2 interactions 24.5 92.7
list34 interactions 23.0 39.3
downward pass 1.43 4.18
other 0 5.36
TOTAL_TIME 77.5 255.

Table 1: Absolute times (in secs.) for 64 procs.

downward pass, and list creation, and tree construc-
tion. In these figures, overhead is computed as the time
spent in these phases as a percentage of the time spent
computing interactions within the whole program exe-
cution. Figure 3 shows the list construction overhead
for list1, list2, and list34 interactions. In this figure,
overhead is computed as a percentage of the time to
compute interactions associated with that list. All plots
are relative to the fastest interaction computation time
of the three implementation variants. In all of these
figures, a horizontal line across the plot represents per-
fect scalability since we have scaled problem size with
processor count.
Discussion. The most significant differences in parti-
tioning strategy between the HPF and MPI implemen-
tations are for the tree construction, upward pass, and
downward pass. In these phases, the hand-coded imple-
mentation uses a more efficient strategy based on repli-
cation of shared nodes in the upper levels of the tree.
However, despite these differences, these phases show
the smallest differences in performance when comparing
the HPF and MPI implementations. The hand-coded
implementation always has less overhead; however, the
difference in overhead is fairly consistent as the problem
size gets larger and the number of processors increases.
For example, this overhead is 3-5% for the upward pass.
The remaining phases, which differ the least in terms
of partitioning strategy, have the most significant dif-
ferences in performance when comparing the HPF and

program tiny
real*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)
integer INTER(NUM_INTER, NUM_ELTS)

CHPF$ distribute (block) :: A, B, C

CHPF$ distribute (*,block) :: INTER

CHPF$ ON HOME(A(i))
do i =1, NUM_ELTS
do j = 1, NUM_INTER
A(i) = B(i) * C(INTER(j,i))
enddo
enddo
end

Figure 4: Irregular example program.

MPI implementations. The largest differences are for
the list2 interactions (between well-separated boxes).
For 64 processors the overhead of the HPF implemen-
tation is a factor of 84 greater than that of the hand-
coded implementation. A glance at Table 1 confirms
that this difference translates to a substantial difference
in running time: the HPF implementation takes longer
to compute list2 interactions than the hand-coded ver-
sion takes to complete an entire timestep cycle.

In the next section we investigate the source of these
performance differences.

4 Performance Rationale

The measurements in Section 3.3 show significant dif-
ferences in performance between the MPI and HPF im-
plementations of Anderson’s method. Here, we analyze
the sources of these performance differences.

Two important points of comparison for implemen-
tations of irregular applications are 1) how they dis-
tribute data (and computation load) across processors,
and 2) how they satisfy (recognize and communicate
for) references to off-processor data. In the previous
section we noted that performance differences in per-
formance between the MPI and HPF implementations
do not seem to correspond to differences in data distri-
bution methods. Therefore, here we focus our attention

program tiny
real*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)
real*8, allocatable :: C_LOC(:)
integer INTER(NUM_INTER, NUM_ELTS)
CHPF$ distribute (block) :: A, B, C, C_LOC
CHPF$ distribute (*,block) :: INTER

<INSPECT INTER, DETERMINE NON-LOCAL C>
<ALLOCATE C_LOC, COMMUNICATE C INTO C_LOC>
<UPDATE INTER>

do i = 1, NUM_ELTS
do j = 1, NUM_INTER
A(i) = B(i) * C_LOC(INTER(j,i))
enddo
enddo
end

Figure 5: Inspector-executor version.

on differences in the methods used to satisfy non-local
irregular references.

Both implementations use variations on the inspec-
tor executor paradigm to acquire non-local data needed
to satisfy references. We describe this paradigm to pro-
vide a context for understanding the variations used
in the HPF and MPI implementations of Anderson’s
method. In the course of this section, it will become
clear that differences in how inspector-executors are
used are responsible for the principal differences in per-
formance of the implementations.

4.1 Inspector-Executors

Since no closed form representation of the data accessed
by an irregular reference can be computed statically,
runtime processing is needed (a) to determine which (if
any) accesses through an irregular reference will access
off-processor data, and (b) to coordinate necessary data
movement. The runtime processing for a reference can
be costly, especially the communication. For this rea-
son, it is advantageous to first determine the locality
for all dynamic instances of an irregular reference in a
loop and then communicate for all non-local values in
a single step. This strategy is known as the “inspector-
executor” paradigm [12, 14]. The inspector determines
what non-local data will be accessed, and the ezxzecutor
performs the computation on local data and localized
non-local data.

Figure 4 abstracts a typical situation in which irreg-
ular references arise. Arrays A, B and C are attributes
of a single class of object, and array INTER describe for
each object the other objects in its class that it will in-
teract with. The code fragment corresponds to a phase
in which each object interacts with all the other objects
on its interaction list. The references to C are irregular
since they use an indirection array as a subscript.

An inspector for a loop nest should ideally be placed
at the outermost loop level allowed by data dependences.
In Figure 4 the inspection phase could be placed before

foreach Node n accessed in Loop 1.
if n is NOT in localtree then
nonlocal INSERT (n)
othersNonlocallds = ALLTOALL(nonlocal.ids)
found = localtree.SEARCH(othersNonlocallds)
myNonlocals = ALLTOALL(found)
localtree.INSERT (myNonlocals)

PROCEED WITH LOOP NEST COMPUTATION...

00 N O O s W N =

Figure 6: Algorithm for inspecting octtrees.

the outermost loop. The inspector would execute only
once, examining the contents of INTER(j,i) and gath-
ering all non-local elements of C needed by each proces-
sor. Resource constraints may make such an inspector
placement impossible and require that communication
be strip mined to avoid excessive space for storing off-
processor values.

To ensure that non-local data accessed multiple times
by a single processor in an inspected loop nest is com-
municated and stored only once, a hash table is used
to avoid duplicates. In Figure 4, duplicate values of
INTER(j, i) for many subscript positions can cause re-
peated accesses to same non-local element of C by a
processor. These non-local values need only be gath-
ered and stored once on that processor. Figure 5 shows
what the sample code might look like after transforma-
tion to inspector/executor style. The statements within
“<>” would be translated to one or more calls to rou-
tines from a library such as CHAOS [4].

To use values collected by an inspector-based com-
munication, the indirection array (INTER in Figure 4)
must be updated to reflect the locations of the non-
local elements of the indexed array (C) before use in
the executor loop. In their standard usage, inspector-
executors transform potentially non-local irregular ref-
erences into definitely local, indirect references. We
show that while use of the inspector-executor strategy
by our hand-coded MPI implementation works this way,
the strategy used in the HPF implementation does not.

4.2 Hand-coded Inspection

Our implementation uses a form of inspector-executors
adapted to our choice of Warren and Salmon “hashed-
octtrees” [15] for the octtree data structure of the appli-
cation. Looking up a node in such trees uses a unique
identifier (representing the nodes location in the tree)
as a key for accessing nodes in a hashtable represent-
ing the tree. This approach simplifies management of
distributed trees in two ways. First, the identifier for
a node is the same on all processors. Second, inte-
gration of non-local nodes into a local tree is simple:
data for non-local nodes is simply added to a proces-
sor’s hashtable.

program tiny
real*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)
real*8 C_INTER(NUM_INTER, NUM_ELTS)
integer INTER(NUM_INTER, NUM_ELTS)
CHPF$ distribute (block) :: A, B, C
CHPF$ distribute (*,block) :: INTER, C_INTER

forall (i=1:NUM_INTER, j=1:NUM_ELTS)
C_INTER(j,i) = C(INTER(j,i))
end forall

do i = 1, NUM_ELTS
do j = 1, NUM_INTER
A(i) = B(i) * C_INTER(j,i)
enddo
enddo
end

Figure 7: Regularization example code.

phase redund nodes accessed
build tree 1 children
make lists 216 chldrn of collgs of prnt
up/downward pass 1 children
list1 interactions 26 colleagues
list2 interactions 189 well separated boxes
list34 interactions ? (none in full tree)

Table 2: Redundancy factors; worst case, full tree.

The basic algorithm we use to inspect loops over
nodes in the octtree is shown in Figure 6. First, each
processor inspects its local portion of the computation
for accesses to non-local nodes and collects identifiers
for these nodes into a hashtable. Next, all processors ex-
change the IDs in their off-processor hashtables. Third,
each processor searches its tree for data requested and
then replies with the necessary data if found. Finally,
each processor inserts non-local data received into its
tree hashtable and the loop computation continues with-
out further interruption.

Note that, though we don’t have to update any indi-
rection array (since the array being indexed is actually
a hash table), we still effectively transform potentially
non-local irregular references into definitely local, in-
direct® references, as in our earlier description of the
standard inspector-executor paradigm.

4.3 Inspection in HPF

As noted earlier, Hu and Johnsson use generalized array
assignments to gather non-local data in what amounts
to a variation of the inspector-executor technique. How-
ever there is an important difference between their tech-
nique and the standard inspector-executor strategy de-
scribed above: their technique transforms potentially
non-local irregular references into definitely local, regu-
lar references.

Figure 7 demonstrates the “regularization” of the
irregular reference in our example program. A new ar-
ray C_INTER of the same size and dimension of INTER

3The indirection here is through the hashtable.

is introduced to represent localized values of C. Next,
C_INTER is assigned the values of C that are referenced
through INTER. Because of the way the arrays have been
distributed, any non-local elements of C referenced by
INTER are implicitly communicated in this step and will
subsequently be local. Finally, the indexed reference in
the computation loop is replaced with a reference to the
new array.

On the surface, regularization appears to be a simple
and elegant solution for handling irregular references in
HPF. However, if the index array is much larger than
the array(s) it is indexing, this approach can severely
hurt performance.

For an illustration of the potential impact, consider
the list2 interactions of Anderson’s method (between
well-separated boxes). Suppose box B is an interior node
in a full tree; it is then well-separated from 189 other
boxes in a 3D oct-tree. Each of those boxes is also well-
separated from B, so B appears on 189 interaction lists.
Using the regularization strategy to localize references
to B in those lists thus causes B’s data to be copied 189
times, potentially across processor boundaries.

There are two ways in which such copying can hurt
performance. First, multiple copies of B are poten-
tially communicated to a single processor (if B appears
on multiple lists on that processor), thereby increasing
communication volume and latency. Second, whether
B’s data is local or nonlocal, new space must be allo-
cated to store it, resulting in as much as a factor of 189
difference in B’s storage requirements (if B is only on
local lists).

We claim that the additional storage required for
regularization is ultimately responsible for the perfor-
mance difference between the HPF implementation and
its hand-coded counterpart. Although the runtime pro-
cessing required to implement inspection should ideally
be placed outside of as many loops as dependences will
allow, resource constraints might force their placement
within loops. In several phases of the Hu and Johns-
son’s HPF implementation, their regularization strat-
egy increases storage requirements to such an extent
that they needed to place their gather/inspection code
within some loops with many iterations. In contrast,
we are able to place these inspectors at the outermost
level in our hand-coded MPI implementation because
we use a hashtable to eliminate storage redundancy.

As supporting evidence for our claim that this is the
main source of overhead in the HPF implementation,
we point out the correlation between data in Table 2,
which shows redundancy factors for various phases of
the algorithm, and the results in Figures 1 and 2. The
largest difference in overhead between the implemen-
tations is in the make-list phase which has the largest
redundancy factor. The build-tree, upward and down-
ward passes have little redundancy and have small dif-

ferences in overhead, despite our hand-coded strategy
for reducing communication in these phases described
in section 3.

To prove our claim, in the next section we show that
removing the redundancy in the HPF implementation
eliminates much of difference in performance between
the implementations.

5 Synthesis Approach

To prove that communication and storage redundancy
due to regularization is largely responsible for the per-
formance gap between Hu and Johnsson’s HPF code
and our hand-coded MPI implementation, we must show
that avoiding this redundancy would improve perfor-
mance. Unfortunately, regularization is the standard
idiom for handling irregular references within the HPF
language and there are few alternatives. In the HPF
language proper, we have found that programmer-driven
inspection of data for locality and redundancy is diffi-
cult or impossible because:

1. there is no straightforward means of accessing data
owned by a particular processor, and

2. there is no notion of arrays local to a processor.

Going back to our example from Section 4, we are un-
able to efficiently express the hashing of the indirection
array INTER in HPF global code.

So, barring sophisticated compiler support for cre-
ating efficient inspectors automatically such as that de-
scribed by von Hanxleden [6], we know of no method
for a programmer to circumvent the redundancy inher-
ent in the regularization strategy entirely within the
HPF language. We have found, however, that a mod-
est use of HPF “extrinsic procedures” [7, 10] enables us
to avoid the redundancy while retaining the benefits of
the high-level HPF model for the rest of the applica-
tion. Here, we introduce our strategy by demonstrating
its use on the simple program from Section 4, show how
we have applied it to the Hu and Johnsson’s HPF im-
plementation, and present measurements of the revised
application.

5.1 General Methodology

HPF extrinsic procedures enable HPF programs to call
code not written in strict data-parallel style and allow
the called code to operate on distributed arrays defined
in the HPF program. HPF_LOCAL extrinsic proce-
dures, in particular, have at their disposal several in-
trinsic functions that are unavailable at the global level.
For example, the intrinsic function size can be used
within an HPF_LOCAL extrinsic to determine the local
extent of a dimension of a distributed array passed as

program tiny
real*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)
integer INTER(NUM_INTER, NUM_ELTS)
CHPF$ distribute (block) :: A, B, C
CHPF$ distribute (*,block) :: INTER
real*8 C_LOC(MAX_LOC*number_of_processors())
integer map(MAX_LOC*number_of_processors())
CHPF$ distribute (block) :: C_LOC, map

map = 0
call hash(map, INTER)

forall (i=1:MAX_LOC*number_of_processors(), map(i).ne.0)
C_LOC(i) = C(map(i))
end forall

call compute(A, B, C_LOC, INTER)
end

Figure 8: Transformed main program.

extrinsic (hpf_local)
subroutine hash(map, INTER)
integer map(:), INTER(:,:)
integer table (NUM_ELTS), sum, i

table = 0
do i = 1,size(INTER,2)
do j = 1, NUM_INTER
table (INTER(j,i)) = 1
enddo
enddo
sum = 0
do i = 1, NUM_ELTS
if (table(i) .eq. 1) then
sum = sum + 1
table (i) sum
map(sum) = i
endif
enddo
do i = 1,size(INTER,2)
do j = 1, NUM_INTER
INTER(j,i) = table(INTER(j,i))
enddo
enddo
end subroutine

Figure 9: Simple hashing procedure.

an argument. Because extrinsic procedures enable pro-
cessors to perform different operations in parallel (as
opposed to identical operations on different parts of the
same array) their use is frowned upon by data-parallel
purists.

We are interested solely in the ability extrinsic pro-
cedures give us to define local arrays and manipulate
local sections of distributed arrays. We use this capabil-
ity first to locally collect a vector of unique indices that
will be used to indirectly access a distributed array and
then later to perform a communication-free computa-
tion with localized data. Figures 8-9 demonstrate how
we use these procedures to efficiently localize the irreg-
ularly indexed array in the example program shown in
Figure 4.

Figure 9 implements hash, an HPF_LOCAL proce-
dure to perform the hashing that we are unable to ex-
press in the the HPF language proper. We declare an
array table to be the global size of the indexed array

C and then loop over the local portion of the index ar-
ray INTER to determine the elements of C that will be
needed locally. The second loop collects the index po-
sitions of C that will be needed locally into local slots
in the array map. (Figure 8 shows how the array map is
later used to gather values of the indirectly indexed ar-
ray C.) Finally, the third loop nest in Figure 9 updates
INTER with the indices that localized values will have
after they are gathered.

The transformed main program in Figure 8 declares
two new arrays: the mapping array map described above
and the array C_LOC into which elements of C will be
gathered.* After calling the hash procedure to compute
map, a forall loop actually gathers the non-local values
needed by each processor. Finally, the computation is
performed using the localized data.

We are forced to package the computation loop into
another extrinsic procedure due to what we perceive
to be a limitation of HPF: although we have ensured
that the values of C that will be indirectly referenced
by INTER will be local in C_LOC, there is no way for us
to indicate this to the compiler. (The HPF “indepen-
dent” directive asserts only that there are no depen-
dences in a loop, not that no communication is nec-
essary.) The compute procedure performs the compu-
tation loop using the localized data now available in
C_LOC. In compute, C_LOC is indirectly indexed with the
INTER array, which was rewritten by the hash proce-
dure. We do not show the code for the compute ex-
trinsic procedure as it is nearly identical to the original
program.

5.2 Application

We applied our inspection strategy using HPF_LOCAL
to the phases of Hu and Johnsson’s HPF implementa-
tion where the performance measurements of Section 3.3
indicated that they were needed most: list construction,
and interaction computation. Here we provide results
from experiments on the transformed code. The over-
head measurements in the plots follow the presentation
strategy outlined in section 3.3. We show results for
HPF, HPF-MPI, and MPI as before. In addition, we
introduce HPFLOC, and HPFLOC-MPI variants based
on our use of HPF_LOCAL to eliminate communication
and storage redundancy.

Figures 10-11 demonstrate the success of our tech-
nique applied to the HPF implementation, and substan-
tiate our claim that the performance gap between the
HPF and MPI implementations was due to the storage
and communication redundancy arising through regu-
larization. When comparing the original HPF version

4For brevity, in the main program we have omitted “interface”
blocks for the hash and compute extrinsic procedures. These state-
ments are necessary so the compiler can correctly pass global data to
local procedures.

~
o

A—A HPE
HPF-MPI
6— HPFLOC
—+ HPFLOC-MP
MPI

]

I

IN) w IS
o o o
: :

Overhead (% total interaction computation)
=
o

20 40 60 80 100 120
Number of Processors

o

o

(a) List creation

200
A—A HPF
G—© HPF-MPI
150} &—= HPFLOC]
*—+# HPFLOC-MP|
0—a MPI

1001

oo M

0 20 40 60 80 100 120
Number of Processors

Overhead (% listl interaction computation)

(b) List1

Figure 10: List creation and listl interaction times as
percentage of interactions.

versus HPFLOC on each of the graphs, the reductions
are dramatic. For example, Figure 11(a) shows that
overhead in list creation is reduced by roughly a fac-
tor of 10 by using an HPF_LOCAL inspector. When
using this strategy with Hu and Johnsson’s MPI-based
collective communication rather than the PGHPF de-
fault communication, Figures 10 11 show that overhead
drops by an additional factor of two or more.

Only the list34 interactions seem to give the HPFLOC
version some trouble. We attribute this to the fact that
we are forced to use a rather inefficient communica-
tion method to move the boxes into the weighted-block
distribution. Specifically, because of the way data is
laid out and the formulation of the function which de-
termines the new distribution, we are forced to use a
scatter_copy rather than a forall to move the data;
unfortunately scatter_copy does not provide a good
way to move multi-dimensional data. One is forced to
use a very general technique by which it is possible to
describe the new position of every single element in the
array; in this case, we simply want all elements of a row
to follow the first element.

w
a
o

=

8

g 300 A—A HPE

E G—O HPF-MPI

£ &— HPFLOC

32501 *—* HPFLOC-MP| 1

c 0—a MPI

8

S 200t

g

£

& 150

k]

§lOO

el

©

2 Gf—er”/Aaggg____;gge

5 S0r

>

o ﬁju Lay a)
0 oo o 1) L
0 20 40 60 80 100 120

Number of Processors
(a) List2

_.100 ;

s

= A—A HPF

5 G—6 HPF-MPI

g 8o o—= HPFLOC

S ¥—% HPFLOC-MP

e G—a MPI

8

g 60

8

£

<

@ 40F

2

N

k=

& 20r X

<

g

o) =t H1
0 n
0 20 40 60 80 100 120

Number of Processors
(b) List34

Figure 11: List2 and list34 times as percentage of inter-
actions.

6 Summary and Conclusions

We have described and evaluated two sophisticated par-
allel implementations of an adaptive, hierarchical solver
which uses Anderson’s method for calculating interac-
tions in n-body systems: our explicitly-parallel MPT im-
plementation and Hu and Johnsson’s data-parallel HPF
implementation. Our measurements of these implemen-
tations demonstrated that there were significant per-
formance differences between the hand-coded MPI and
the HPF implementations. After considerable analysis
of the performance and the implementation strategies,
we hypothesized that the primary source of inefficiency
in the HPF implementation was redundant communi-
cation that was necessary to initialize redundant stor-
age that is used for regularizing indirect references. We
demonstrated that when this redundancy is eliminated
in just two phases of the HPF implementation, with
the aid of HPF_LOCAL semantics, the performance of
the otherwise unchanged HPF implementation closely
approaches that of the hand-coded version.

Figure 12 demonstrates just how close: from the plot
we can see that on 64 processors, while the original HPF

10

N

a

o
T

450 ‘ ‘ ‘ ‘
400} A—A HPE
G—© HPF-MPI
350l 6—6 HPFLOC i
—+ HPFLOC-MP
0—-& MPI
300}

Overhead (% total interaction computation)
= = N
o (o o
o o o
L \\ L

ol
o
T

o

0 20 40 60 80 100 120
Number of Processors

Figure 12: Total time as % of interaction computation.

phase MPI | HPFLOG-MPI
BUILD.TREE | 1.19 2.08
MAKE_LISTS | 3.45 2.37
UPWRD_PASS | 1.39 3.33
LISTILINTR | 19.8 25.2
LIST2_.INTR | 24.5 26.0
LST34.INTR | 23.0 23.6
DNWRD._PASS | 1.43 4.22
OTHER 0 5.48
TOTAL_TIME | 775 96.9

Table 3: Absolute times (in secs.) for 64 procs.

implementation incurs nearly 300% more overhead than
the hand-coded version, our implementation reduces the
gap to just 50%. If we accept the assertion that col-
lective communication support in the PGI HPF com-
piler could be improved to approach the efficiency of the
specialized communication routines written by Hu and
Johnsson (used by the HPF-MPI and HPFLOC-MPI
versions) then there is a fairly consistent gap of about
25% left between the performance of the hand-coded
MPI implementation and the revised HPF implementa-
tion.

Two questions remain. First, what accounts for the
remaining performance gap and can it be bridged? Sec-
ond, what are the implications of this work for irregular
computation and HPF?

Remaining Gap. From Table 3 it’s clear that almost
all of the remaining difference in running times be-
tween the two implementations can be attributed to
the phases of the algorithm that we did not change.
The one exception would appear to be the List1 inter-
actions, for which there is still be a substantial gap of
five seconds. However, four seconds of this gap are due
to a small difference in the computational algorithm:
all the HPF versions have a test in an innermost loop
which we avoided in the MPI implementation. (We ac-
counted for such differences in our definition of over-
head, so they don’t affect the overhead measurements
shown in our plots.) If we adjust for the Listl algo-
rithmic inefficiency, we find that the phases of the HPF

implementation that we didn’t change account for 86%
of the remaining performance gap while the phases we
changed account for only 14% of the remaining gap.

There are several factors which contribute to the re-
maining 14% performance gap in the application phases
we modified to use the HPF_LOCAL-based inspection
strategy. First, we have taken great pains in the MPI
implementation to ensure that no communication of
data “holes” takes place, whereas the HPF implemen-
tation cannot. For example, when communicating the
particles associated with a leaf box, we communicate
and store exactly the number of particles associated
with that box, while the HPF implementation commu-
nicates and stores the maximum number of particles
per box for every box. Second, our use of structures
to group data in the MPI implementation results in a
single communication per object whereas the HPF im-
plementation’s use of attribute arrays results in multiple
communications per object, which increases communi-
cation overhead.

These same factors, of course, also contribute to the
performance gap for the phases that we did not modify.
There are two components to the remaining difference
in the unmodified phases: the extra partitioning phase
required in the HPF application, and the algorithmic
phases (upward and downward passes, tree build). We
first note that the extra partitioning phase was not im-
proved by the use of Hu and Johnsson’s MPI routines,
primarily because it uses more complicated communica-
tion constructs such as scan reductions that they chose
not to implement in MPI. The time for this phase could
potentially be lower if the PGI runtime library commu-
nication routines can be improved.

After accounting for the factors discussed above, we
attribute the rest of the performance differences to dif-
ferences in partitioning strategies used by the HPF and
MPI implementations. As described in Section 3 the
main feature that distinguishes the partitioning strat-
egy we used in MPI from that used in HPF is the notion
of processors sharing boxes in the upper levels of the
tree. Given the restrictions on user knowledge of proces-
sor/data relationships imposed by the HPF language,
it is not clear how one could implement this strategy
in HPF. Perhaps instead of a single array representing
boxes, one could split them into two sets: those owned
by a single processor in a distributed array and those
owned by all processors in a separate replicated array.
Whether a compiler could efficiently coordinate data
motion between the two sets as we have in our imple-
mentation, is not obvious.

Implications. We have shown that if arbitrary irreg-
ular applications are to be implemented with high ef-
ficiency in data-parallel languages such as HPF, then
special care must be taken to avoid redundancy in the
communication and storage of non-local data. We be-

11

lieve that this work therefore has implications for two
groups:

1. Vendors of HPF compilers need to provide bet-
ter support for automatically generating appro-
priate inspector-executor code for irregular refer-
ences. Techniques described by von Hanxleden [6]
in his dissertation would suffice for the cases we en-
countered, though extensions to these techniques
may be needed for more complex cases, such as
those involving multiple levels of indirection. With-
out compiler-synthesized inspectors and executors,
we know of no way to eliminate the communication
redundancy that results from regularization with-
out dropping into HPF_LOCAL extrinsics. At-
tempts to achieve the desired effect by not using a
forall loop for regularization of irregular reference
patterns caused the PGI HPF compiler to employ
run-time resolution with which no speedup is pos-
sible.

2. Until better inspector-executor support becomes
widely available in HPF compilers, HPF applica-
tion developers would do well to follow our exam-
ple and use HPF_LOCAL extrinsic procedures to
implement inspector-executor style handling for ir-
regular references in cases where storage and com-
munication redundancy prove significant.

7 Acknowledgements

We thank Yu “Charlie” Hu and Lennart Johnsson for
giving us unrestricted access to their HPF n-body ap-
plication. We thank the National Partnership for Ad-
vanced Computational Infrastructure at the University
of California, San Diego for access to their Cray T3E,
and TCCIS at the University of Houston for access to
their IBM SP2.

References

[1] S. Aarseth, M. Henon, and R. Wielen. Astronomy
and Astrophysics, 37,1994, Reference for Plummer
distributions for N-body problems.

C. R. Anderson. An implementation of the fast
multipole method without multipoles. SIAM J.
Sci. Stat. Comput, 13(4):923-947, July 1992.

J. Barnes and P. Hut. A hierarchical o(nlogn)
force calculation algorithm. Nature, 324:446—449,
1986.

R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang.
Communication optimizations for irregular scien-
tific computations on distributed memory architec-
tures. Journal of Parallel and Distributed Comput-
ing, 22(3):462 479, Sept. 1994.

2]

[5]

[6]

[13]

[14]

[15]

[16]

L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. J. Comput. Physics, 73:325—
348, 1987.

R. v. Hanxleden. Compiler Support for Machine-
Independent Parallelization of Irreqular Problems.
PhD thesis, Dept. of Computer Science, Rice Uni-
versity, Dec. 1994. Available as CRPC-TR94494-S
from the Center for Research on Parallel Compu-
tation, Rice University.

High Performance Fortran Forum. High Perfor-
mance Fortran language specification. Scientific
Programming, 2(1-2):1 170, 1993.

Y. C. Hu and S. L. Johnsson. Implementing
o(n) n-body algorithms efficiently in data-parallel
languages. Scientific Programming, 5(4):337 364,
1996.

Y. C. Hu, S. L. Johnsson, and S.-H. Teng. High
Performance Fortran for highly irregular problems.
In Proceedings of the Sixth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Pro-
gramming, pages 13 24, Las Vegas, NV, June 1997.

C. Koelbel, D. Loveman, R. Schreiber, G. Steele,
Jr., and M. Zosel. The High Performance Fortran
Handbook. The MIT Press, Cambridge, MA, 1994.

C. McCurdy. Efficient techniques for n-body simu-
lation on distributed memory architectures. Mas-
ter’s thesis, Dept. of Computer Science, Rice Uni-
versity, 1999. Forthcoming.

P. Mehrotra and J. Van Rosendale. Compiling high
level constructs to distributed memory architec-
tures. In Proceedings of the 4th Conference on Hy-
percube Concurrent Computers and Applications,
Monterey, CA, Mar. 1989.

H. Sagan. Space-Filling Curves. Springer-Verlag,
New York, NY, 1994.

J. Saltz, K. Crowley, R. Mirchandaney, and
H. Berryman. Run-time scheduling and execution
of loops on message passing machines. Journal of
Parallel and Distributed Computing, 8(4):303 312,
Apr. 1990.

M. Warren and J. Salmon. A parallel hashed-
octtree n-body algorithm. In Proceedings of Su-
percomputing '93, Portland, OR, Nov. 1993.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Charac-
terization and methodological considerations. In
Proceedings of the 22th International Symposium
on Computer Architecture, pages 24-36, Santa
Margherita Ligure, Italy, June 1995.

12

