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ahieve performane omparable to hand-oded expli-itly parallel programs.In partiular, there is some doubt that irregular ap-pliations1 an be implemented eÆiently in HPF. Onmessage-passing parallel systems, these appliations relyon runtime libraries to identify aesses to o�-proessordata and to oordinate data movement. To keep theoverhead of this approah manageable, a good data dis-tribution and ommuniation aggregation are very im-portant. While HPF generalized array assignments us-ing forall and satter statements support irregular datamovement, the appropriateness and eÆieny of suhonstruts is still largely unproven for full-sale irregu-lar appliations.This paper desribes a omparative study of severalimplementations of an irregular appliation for n-bodysimulation. All implementations use an adaptive ver-sion of Anderson's method for hierarhial approxima-tion of far-�eld interations [2℄. (Setion 2 provides anoverview of this method.) Hierarhial methods for n-body simulation have been of interest to the ompu-tational siene ommunity not only beause of theirspeed and auray, but also beause their irregularstruture makes eÆient parallelization diÆult. Huand Johnsson developed an HPF implementation of anadaptive hierarhial solver using Anderson's methodthat served as the basis for muh of our work [8, 9℄.Their landmark implementation demonstrated that so-phistiated algorithms for highly irregular problems anin fat be implemented in HPF. However, a performaneomparison of their HPF implementation with a hand-oded, MPI-based parallel implementation that we de-veloped exposed some ostly ineÆienies in the HPFimplementation that slow it's running time by as muhas a fator of three.This paper makes several ontributions:� We desribe a sophistiated MPI implementationof an adaptive version of Anderson's method whih1Irregular appliations ontain referenes for whih a losed formrepresentation of the data aessed annot be omputed statially.1



integrates proven tehniques to ahieve good per-formane and salability.� We present a areful measurement and harateri-zation of overhead in Hu and Johnsson's HPF im-plementation relative to our MPI referene imple-mentation.� We desribe a modi�ation to Hu and Johnsson'sommuniation strategy that, when integrated intotheir implementation, eliminates more than 75%of the performane di�erene relative to the MPIimplementation.The rest of the paper is organized as follows. Se-tion 2 desribes hierarhial n-body methods to providea ontext for understanding omparisons of HPF andMPI implementations of Anderson's method. Setion 3desribes our MPI implementation in some detail andontrasts it with Hu and Johnsson's HPF implemen-tation both qualitatively and quantitatively. Setion 4desribes the key soure of ineÆieny in Hu and Johns-son's HPF implementation. Setion 5 desribes a mod-i�ation to the HPF approah whih dramatially im-proves performane. Setion 6 summarizes our resultsand onlusions.2 Hierarhial MethodsTo ompute far-�eld fores rapidly, hierarhial meth-ods aggregate the e�ets from bodies a suÆient dis-tane away, omputing their inuene as part of a group,rather than individually. The prinipal data strutureused to onstrut groupings for these methods in 3D isan ot-tree. One onstruts an ot-tree starting with aroot box that ontains all of the bodies and then reur-sively subdividing boxes into 8 boxes of equal size untila stopping ondition is met.One the tree is formed, an upward pass over theboxes in the tree establishes the far-�eld approxima-tions for eah box. At the leaves, the approximationfor a box is omputed from the bodies within; at higherlevels, the approximation for a box is omputed fromapproximations for boxes it ontains. The form of theapproximation is appliation spei�.Here we desribe a progression of three O(n) hier-arhial methods. First we introdue Greengard andRokhlin's fast multipole method (FMM) [5℄. Next, wedesribe the adaptive variant of this algorithm. Finally,we desribe Anderson's method, whih has the samealgorithmi struture as the FMM methods, but buta di�erent numerial tehnique for approximating far-�eld fores.Fast Multipole Method. Rather than omputing far-�eld for eah body individually, as in the O(n logn)Barnes-Hut algorithm [3℄, Greengard and Rokhin's Fast

Multipole Method [5℄ makes use of the observation thatwhen a box A and a box B are \well-separated", thefar-�eld e�et of the bodies in box B on those in boxA, and vie-versa, an be approximated as a single in-teration between the boxes. Suh interations betweenwell-separated boxes our at all levels of the tree, andthe savings in omputation enable FMM to omputefar-�eld fores in O(n) time. Interations are omputedin a downward pass over the tree. At eah level, inter-ations are omputed between boxes at that level thatare well-separated, and the results, olleted in the formof a \loal-�eld potential," are passed down to the nextlevel. At the lowest level, the loal-�eld potential for abox is passed down to eah body inside and interationsbetween bodies not suÆiently separated are omputed.Adaptive FMM. The FMM algorithm just desribedassumes a tree of uniform depth. An adaptive vari-ant avoids unneessary re�nement by not subdividingany box that ontains fewer bodies than a spei�edthreshhold. The key di�erene with respet to the non-adaptive algorithm is that the set of boxes with whih agiven box will interat is not statially known and mustbe omputed from the shape of the adaptive tree by asomewhat ompliated algorithm. To simplify imple-mentation and maximize ahe loality, several types ofinteration lists for eah box are omputed before theupward pass and a separate omputation phase is addedbetween the upward and downward passes. There arethree types of interation omputations and thereforethree lists: boxes in list1 are adjaent leaf boxes (andtherefore are not suÆiently distant from eah otherto allow approximation); boxes in list2 are the samesize and well-separated (that is, suÆiently distant fromeah other to allow approximation); �nally, boxes inlist34 are di�erent sized and well-separated from theperspetive of one of the boxes but not the other.Anderson's Method. The algorithmi struture of An-derson's method [2℄ is the same as that of FMM. Itskey di�erene from FMM is in the way it propagatespotentials. For three-dimensional problems, the om-putational element of FMM is a multipole expansionloated at the enter of an abstrat sphere ontainingthe luster of bodies; in ontrast, Anderson's approxi-mation omputes potentials at loations on the irum-ferene of a sphere. Compared to multipole methods,Anderson's method ahieves the same level of auraywith fewer levels in the tree.3 Implementation ComparisonIn this setion, we �rst desribe our hand-oded imple-mentation of Anderson's method in some detail. Next,we desribe highlights of Hu and Johnsson's HPF im-plementation. Finally, we ompare the performane ofthese two implementations for several problem sizes and2



proessor ounts on a Cray T3E. This omparison showsthat the HPF implementation has some signi�ant in-eÆienies relative to the hand-oded one.3.1 The Hand-oded ImplementationThe FMM program in the SPLASH-2 suite from Stan-ford [16℄ was the starting point for development of ourhand-oded MPI implementation of Anderson's method,though our implementation now bears little resemblaneto the original. Among the strutural hanges we havemade to the ode:� We use MPI-based expliit ommuniation ratherthan shared memory.� We replaed the multipole expansions with Ander-son's method for omputing potentials.� We use a 3D otree as the basis for the hierarhialsolver rather than a quadtree.The prinipal remaining similarity between the imple-mentations is in the reord strutures used by the hier-arhial solver. Below we desribe key features of ourMPI implementation.Body Distribution. To distribute bodies among pro-essors, we �rst ompute the position of eah body alonga Hilbert urve2, and then sort the bodies aording totheir position along the urve. Sine both the Hilberturve and the ottree reursively divide spae in halfalong eah dimension, all bodies in the same leaf of theottree are ontiguous after the sort. Next, we partitionthe sorted sequene of bodies among the proessors byassigning eah proessor a ontiguous range. We seletthe partition points to ensure that eah proessor is as-signed all bodies in a subtree of the ottree. With thispartitioning, we are able to onstrut ottrees loally,exept for a brief ommuniation phase in whih pro-essors exhange information about shared boxes (boxesat upper levels of the tree whose subboxes lie on morethan one proessor) to ensure that the representationof these boxes is globally onsistent.Constrution of Neighbor Lists. A key step in adap-tive hierarhial methods is building the interation listsfor eah box, as desribed in Setion 2. The �ne-grainednature of the omputation in this phase, ombined withits large ommuniation requirements, auses it to be amajor bottlenek in the parallelized appliation if spe-ial are is not taken. By transforming the uniproessorlist onstrution algorithm into a form that enables usto gather non-loal data using an eÆient inspetor-exeutor strategy, we are able to dramatially reduethe impat of list onstrution on the parallel runtime.2Hilbert urves [13℄ are one of a lass of ontinuous, non-smooth,\spae-�lling urves" that map a 1-dimensional interval to an N-dimensional volume. Suh urves an be onstruted to pass arbi-trarily lose to every point in the volume.

(Details of our list onstrution algorithm are desribedin [11℄.)Propagation of Potential Information. As noted be-fore, we repliate information about shared nodes at theuppermost levels of the tree to all proessors and ensurethat all nodes in a subtree below any non-shared nodeare loated on the same proessor. This partitioningstrategy avoids ommuniation in the downward passand requires only a single ommuniation step in theupward pass when moving from private nodes to theshared parents.Interation Computation. As in list onstrution, weommuniate non-loal data required in the interationomputation using a variation on the inspetor-exeutortehnique. Computation is divided into 3 parts: list1 in-terations, list2 interations and list34 interations. Toensure load-balane, we move data for boxes involved ineah of the three omputation phases into a \weighted-blok" distribution immediately prior to that phase.This involves looking in the work-list for eah box in-volved in the omputation to determine the amount ofwork it will do, and then minimally redistributing theboxes suh that eah proessor will have approximatelythe same total amount of work.3.2 The HPF ImplementationDetails of Hu and Johnsson's implementation of Ander-son's method an be found in [9℄. Here we provide onlya brief overview of some similarities and di�erenes be-tween their implementation and our hand-oded MPIimplementation.� They represent objets using multiple attribute ar-rays rather than a single reord struture.� They express ommuniation of non-loal data forirregular referenes using generalized array assign-ments to \gather" the data before omputation.We disuss this in detail in setion 4.� They distribute bodies using a spae-�lling urve,though they do not exploit the relationship withottrees to minimize ommuniation during thetree-building phase. Instead they onstrut thetree level-by-level, blok distributing the data foreah level. As a result, parent data is not nees-sarily on the same proessor as hild data.� They have parallelized the uniproessor list re-ation algorithm in a fashion that requires moreommuniation rounds than our approah.� As a result of their level-by-level blok distributionof boxes, they must ommuniate between eahlevel during the upward and downward passes forpropagating potentials.3
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(a) Upward pass
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(b) Downward passFigure 1: Upward and downward pass overhead withrespet to total interation omputation time.� They use a lever sheme that allows enables themto approximate a weighted blok distribution toload balane the interation omputations.� They have an extra repartitioning phase after listonstrution. This step moves box data into theweighted blok distribution desribed above.3.3 Performane ComparisonHere we ompare the performane of three appliationvariants: Hu and Johnsson's HPF implementation (la-beled \HPF" in plots); our hand-oded MPI implemen-tation (labeled \MPI"); and a variation of the HPFimplementation in whih, for some phases of the algo-rithm, Hu and Johnsson have replaed HPF onstrutswhih ause ommuniation (i.e., foralls, opy satters,et.) with alls to speialized MPI routines that theydeveloped (labeled \HPF-MPI"). Not all phases are re-plaed; in some ases (suh as list onstrution) use ofthe MPI routines would inrease running time, perhapsbeause the routines were optimized for ourse-grainedommuniation. We onsider the \HPF-MPI" numbers,where used, to represent lower bounds on the ommu-
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(a) Make lists
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MPI    (b) Tree buildFigure 2: List and tree onstrution overhead with re-spet to total interation omputation time.niation time for the HPF implementation.Experimental setup. All experiments were performedon the Cray T3E-600 at the San Diego SuperomputerCenter, whih onsists of 272 300MHz DEC Alpha 21164proessors (128 of whih are available at a time to userjobs). Proessors eah have 128 megabytes of physi-al memory (no virtual memory), and are onneted bya 3D bi-diretional torus interonnet. HPF programswere ompiled using PGI's PGHPF ompiler, release2.3-1 for the T3E; all odes were ompiled at the -O2optimization level.Methodology. In our experiments, we saled problemsize with the number of proessors, so a doubling of pro-essors implies a doubling of bodies simulated. Bodieswere initially distributed aording to a Plummer dis-tribution [1℄. Eah appliation variant was run for asingle timestep on 8, 16, 32, and 64 proessors. Thosethat didn't run out of memory were run on 128 pro-essors. Table 1 presents the absolute time for eahappliation phase for the 64 proessor on�guration ofthe problem. \other" in the table refers to phases in theHPF appliation that don't exist in the MPI version.Figures 1{2 show the overhead of the upward pass,4
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() List34Figure 3: List proessing overhead as perentage of list interation omputation time.phase MPI HPFbuild tree 1.19 5.75make lists 3.45 40.9upward pass 1.39 3.99list1 interations 19.8 59.8list2 interations 24.5 92.7list34 interations 23.0 39.3downward pass 1.43 4.18other 0 5.36TOTAL TIME 77.5 255.Table 1: Absolute times (in ses.) for 64 pros.downward pass, and list reation, and tree onstru-tion. In these �gures, overhead is omputed as the timespent in these phases as a perentage of the time spentomputing interations within the whole program exe-ution. Figure 3 shows the list onstrution overheadfor list1, list2, and list34 interations. In this �gure,overhead is omputed as a perentage of the time toompute interations assoiated with that list. All plotsare relative to the fastest interation omputation timeof the three implementation variants. In all of these�gures, a horizontal line aross the plot represents per-fet salability sine we have saled problem size withproessor ount.Disussion. The most signi�ant di�erenes in parti-tioning strategy between the HPF and MPI implemen-tations are for the tree onstrution, upward pass, anddownward pass. In these phases, the hand-oded imple-mentation uses a more eÆient strategy based on repli-ation of shared nodes in the upper levels of the tree.However, despite these di�erenes, these phases showthe smallest di�erenes in performane when omparingthe HPF and MPI implementations. The hand-odedimplementation always has less overhead; however, thedi�erene in overhead is fairly onsistent as the problemsize gets larger and the number of proessors inreases.For example, this overhead is 3-5% for the upward pass.The remaining phases, whih di�er the least in termsof partitioning strategy, have the most signi�ant dif-ferenes in performane when omparing the HPF and

program tinyreal*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)integer INTER(NUM_INTER, NUM_ELTS)CHPF$ distribute (blok) :: A, B, CCHPF$ distribute (*,blok) :: INTERCHPF$ ON HOME(A(i))do i = 1, NUM_ELTSdo j = 1, NUM_INTERA(i) = B(i) * C(INTER(j,i))enddoenddoend Figure 4: Irregular example program.MPI implementations. The largest di�erenes are forthe list2 interations (between well-separated boxes).For 64 proessors the overhead of the HPF implemen-tation is a fator of 84 greater than that of the hand-oded implementation. A glane at Table 1 on�rmsthat this di�erene translates to a substantial di�erenein running time: the HPF implementation takes longerto ompute list2 interations than the hand-oded ver-sion takes to omplete an entire timestep yle.In the next setion we investigate the soure of theseperformane di�erenes.4 Performane RationaleThe measurements in Setion 3.3 show signi�ant dif-ferenes in performane between the MPI and HPF im-plementations of Anderson's method. Here, we analyzethe soures of these performane di�erenes.Two important points of omparison for implemen-tations of irregular appliations are 1) how they dis-tribute data (and omputation load) aross proessors,and 2) how they satisfy (reognize and ommuniatefor) referenes to o�-proessor data. In the previoussetion we noted that performane di�erenes in per-formane between the MPI and HPF implementationsdo not seem to orrespond to di�erenes in data distri-bution methods. Therefore, here we fous our attention5



program tinyreal*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)real*8, alloatable :: C_LOC(:)integer INTER(NUM_INTER, NUM_ELTS)CHPF$ distribute (blok) :: A, B, C, C_LOCCHPF$ distribute (*,blok) :: INTER<INSPECT INTER, DETERMINE NON-LOCAL C><ALLOCATE C_LOC, COMMUNICATE C INTO C_LOC><UPDATE INTER>do i = 1, NUM_ELTSdo j = 1, NUM_INTERA(i) = B(i) * C_LOC(INTER(j,i))enddoenddoend Figure 5: Inspetor-exeutor version.on di�erenes in the methods used to satisfy non-loalirregular referenes.Both implementations use variations on the inspe-tor exeutor paradigm to aquire non-loal data neededto satisfy referenes. We desribe this paradigm to pro-vide a ontext for understanding the variations usedin the HPF and MPI implementations of Anderson'smethod. In the ourse of this setion, it will beomelear that di�erenes in how inspetor-exeutors areused are responsible for the prinipal di�erenes in per-formane of the implementations.4.1 Inspetor-ExeutorsSine no losed form representation of the data aessedby an irregular referene an be omputed statially,runtime proessing is needed (a) to determine whih (ifany) aesses through an irregular referene will aesso�-proessor data, and (b) to oordinate neessary datamovement. The runtime proessing for a referene anbe ostly, espeially the ommuniation. For this rea-son, it is advantageous to �rst determine the loalityfor all dynami instanes of an irregular referene in aloop and then ommuniate for all non-loal values ina single step. This strategy is known as the \inspetor-exeutor" paradigm [12, 14℄. The inspetor determineswhat non-loal data will be aessed, and the exeutorperforms the omputation on loal data and loalizednon-loal data.Figure 4 abstrats a typial situation in whih irreg-ular referenes arise. Arrays A, B and C are attributesof a single lass of objet, and array INTER desribe foreah objet the other objets in its lass that it will in-terat with. The ode fragment orresponds to a phasein whih eah objet interats with all the other objetson its interation list. The referenes to C are irregularsine they use an indiretion array as a subsript.An inspetor for a loop nest should ideally be plaedat the outermost loop level allowed by data dependenes.In Figure 4 the inspetion phase ould be plaed before

1 foreah Node n aessed in Loop l.2 if n is NOT in loaltree then3 nonloal.Insert(n)4 othersNonloalIds = Alltoall(nonloal.ids)5 found = loaltree.Searh(othersNonloalIds)6 myNonloals = Alltoall(found)7 loaltree.Insert(myNonloals)8 PROCEED WITH LOOP NEST COMPUTATION...Figure 6: Algorithm for inspeting ottrees.the outermost loop. The inspetor would exeute onlyone, examining the ontents of INTER(j,i) and gath-ering all non-loal elements of C needed by eah proes-sor. Resoure onstraints may make suh an inspetorplaement impossible and require that ommuniationbe strip mined to avoid exessive spae for storing o�-proessor values.To ensure that non-loal data aessed multiple timesby a single proessor in an inspeted loop nest is om-muniated and stored only one, a hash table is usedto avoid dupliates. In Figure 4, dupliate values ofINTER(j,i) for many subsript positions an ause re-peated aesses to same non-loal element of C by aproessor. These non-loal values need only be gath-ered and stored one on that proessor. Figure 5 showswhat the sample ode might look like after transforma-tion to inspetor/exeutor style. The statements within\<>" would be translated to one or more alls to rou-tines from a library suh as CHAOS [4℄.To use values olleted by an inspetor-based om-muniation, the indiretion array (INTER in Figure 4)must be updated to reet the loations of the non-loal elements of the indexed array (C) before use inthe exeutor loop. In their standard usage, inspetor-exeutors transform potentially non-loal irregular ref-erenes into de�nitely loal, indiret referenes. Weshow that while use of the inspetor-exeutor strategyby our hand-oded MPI implementation works this way,the strategy used in the HPF implementation does not.4.2 Hand-oded InspetionOur implementation uses a form of inspetor-exeutorsadapted to our hoie of Warren and Salmon \hashed-ottrees" [15℄ for the ottree data struture of the appli-ation. Looking up a node in suh trees uses a uniqueidenti�er (representing the nodes loation in the tree)as a key for aessing nodes in a hashtable represent-ing the tree. This approah simpli�es management ofdistributed trees in two ways. First, the identi�er fora node is the same on all proessors. Seond, inte-gration of non-loal nodes into a loal tree is simple:data for non-loal nodes is simply added to a proes-sor's hashtable.6



program tinyreal*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)real*8 C_INTER(NUM_INTER, NUM_ELTS)integer INTER(NUM_INTER, NUM_ELTS)CHPF$ distribute (blok) :: A, B, CCHPF$ distribute (*,blok) :: INTER, C_INTERforall (i=1:NUM_INTER,j=1:NUM_ELTS)C_INTER(j,i) = C(INTER(j,i))end foralldo i = 1, NUM_ELTSdo j = 1, NUM_INTERA(i) = B(i) * C_INTER(j,i)enddoenddoendFigure 7: Regularization example ode.phase redund nodes aessedbuild tree 1 hildrenmake lists 216 hldrn of ollgs of prntup/downward pass 1 hildrenlist1 interations 26 olleagueslist2 interations 189 well separated boxeslist34 interations ? (none in full tree)Table 2: Redundany fators; worst ase, full tree.The basi algorithm we use to inspet loops overnodes in the ottree is shown in Figure 6. First, eahproessor inspets its loal portion of the omputationfor aesses to non-loal nodes and ollets identi�ersfor these nodes into a hashtable. Next, all proessors ex-hange the IDs in their o�-proessor hashtables. Third,eah proessor searhes its tree for data requested andthen replies with the neessary data if found. Finally,eah proessor inserts non-loal data reeived into itstree hashtable and the loop omputation ontinues with-out further interruption.Note that, though we don't have to update any indi-retion array (sine the array being indexed is atuallya hash table), we still e�etively transform potentiallynon-loal irregular referenes into de�nitely loal, in-diret3 referenes, as in our earlier desription of thestandard inspetor-exeutor paradigm.4.3 Inspetion in HPFAs noted earlier, Hu and Johnsson use generalized arrayassignments to gather non-loal data in what amountsto a variation of the inspetor-exeutor tehnique. How-ever there is an important di�erene between their teh-nique and the standard inspetor-exeutor strategy de-sribed above: their tehnique transforms potentiallynon-loal irregular referenes into de�nitely loal, regu-lar referenes.Figure 7 demonstrates the \regularization" of theirregular referene in our example program. A new ar-ray C INTER of the same size and dimension of INTER3The indiretion here is through the hashtable.

is introdued to represent loalized values of C. Next,C INTER is assigned the values of C that are referenedthrough INTER. Beause of the way the arrays have beendistributed, any non-loal elements of C referened byINTER are impliitly ommuniated in this step and willsubsequently be loal. Finally, the indexed referene inthe omputation loop is replaed with a referene to thenew array.On the surfae, regularization appears to be a simpleand elegant solution for handling irregular referenes inHPF. However, if the index array is muh larger thanthe array(s) it is indexing, this approah an severelyhurt performane.For an illustration of the potential impat, onsiderthe list2 interations of Anderson's method (betweenwell-separated boxes). Suppose box B is an interior nodein a full tree; it is then well-separated from 189 otherboxes in a 3D ot-tree. Eah of those boxes is also well-separated from B, so B appears on 189 interation lists.Using the regularization strategy to loalize referenesto B in those lists thus auses B's data to be opied 189times, potentially aross proessor boundaries.There are two ways in whih suh opying an hurtperformane. First, multiple opies of B are poten-tially ommuniated to a single proessor (if B appearson multiple lists on that proessor), thereby inreasingommuniation volume and lateny. Seond, whetherB's data is loal or nonloal, new spae must be allo-ated to store it, resulting in as muh as a fator of 189di�erene in B's storage requirements (if B is only onloal lists).We laim that the additional storage required forregularization is ultimately responsible for the perfor-mane di�erene between the HPF implementation andits hand-oded ounterpart. Although the runtime pro-essing required to implement inspetion should ideallybe plaed outside of as many loops as dependenes willallow, resoure onstraints might fore their plaementwithin loops. In several phases of the Hu and Johns-son's HPF implementation, their regularization strat-egy inreases storage requirements to suh an extentthat they needed to plae their gather/inspetion odewithin some loops with many iterations. In ontrast,we are able to plae these inspetors at the outermostlevel in our hand-oded MPI implementation beausewe use a hashtable to eliminate storage redundany.As supporting evidene for our laim that this is themain soure of overhead in the HPF implementation,we point out the orrelation between data in Table 2,whih shows redundany fators for various phases ofthe algorithm, and the results in Figures 1 and 2. Thelargest di�erene in overhead between the implemen-tations is in the make-list phase whih has the largestredundany fator. The build-tree, upward and down-ward passes have little redundany and have small dif-7



ferenes in overhead, despite our hand-oded strategyfor reduing ommuniation in these phases desribedin setion 3.To prove our laim, in the next setion we show thatremoving the redundany in the HPF implementationeliminates muh of di�erene in performane betweenthe implementations.5 Synthesis ApproahTo prove that ommuniation and storage redundanydue to regularization is largely responsible for the per-formane gap between Hu and Johnsson's HPF odeand our hand-oded MPI implementation, we must showthat avoiding this redundany would improve perfor-mane. Unfortunately, regularization is the standardidiom for handling irregular referenes within the HPFlanguage and there are few alternatives. In the HPFlanguage proper, we have found that programmer -driveninspetion of data for loality and redundany is diÆ-ult or impossible beause:1. there is no straightforward means of aessing dataowned by a partiular proessor, and2. there is no notion of arrays loal to a proessor.Going bak to our example from Setion 4, we are un-able to eÆiently express the hashing of the indiretionarray INTER in HPF global ode.So, barring sophistiated ompiler support for re-ating eÆient inspetors automatially suh as that de-sribed by von Hanxleden [6℄, we know of no methodfor a programmer to irumvent the redundany inher-ent in the regularization strategy entirely within theHPF language. We have found, however, that a mod-est use of HPF \extrinsi proedures" [7, 10℄ enables usto avoid the redundany while retaining the bene�ts ofthe high-level HPF model for the rest of the applia-tion. Here, we introdue our strategy by demonstratingits use on the simple program from Setion 4, show howwe have applied it to the Hu and Johnsson's HPF im-plementation, and present measurements of the revisedappliation.5.1 General MethodologyHPF extrinsi proedures enable HPF programs to allode not written in strit data-parallel style and allowthe alled ode to operate on distributed arrays de�nedin the HPF program. HPF LOCAL extrinsi proe-dures, in partiular, have at their disposal several in-trinsi funtions that are unavailable at the global level.For example, the intrinsi funtion size an be usedwithin an HPF LOCAL extrinsi to determine the loalextent of a dimension of a distributed array passed as

program tinyreal*8 A(NUM_ELTS), B(NUM_ELTS), C(NUM_ELTS)integer INTER(NUM_INTER, NUM_ELTS)CHPF$ distribute (blok) :: A, B, CCHPF$ distribute (*,blok) :: INTERreal*8 C_LOC(MAX_LOC*number_of_proessors())integer map(MAX_LOC*number_of_proessors())CHPF$ distribute (blok) :: C_LOC, mapmap = 0all hash(map, INTER)forall (i=1:MAX_LOC*number_of_proessors(), map(i).ne.0)C_LOC(i) = C(map(i))end forallall ompute(A, B, C_LOC, INTER)end Figure 8: Transformed main program.extrinsi (hpf_loal)subroutine hash(map, INTER)integer map(:), INTER(:,:)integer table(NUM_ELTS), sum, itable = 0do i = 1,size(INTER,2)do j = 1, NUM_INTERtable(INTER(j,i)) = 1enddoenddosum = 0do i = 1, NUM_ELTSif (table(i) .eq. 1) thensum = sum + 1table(i) = summap(sum) = iendifenddodo i = 1,size(INTER,2)do j = 1, NUM_INTERINTER(j,i) = table(INTER(j,i))enddoenddoend subroutineFigure 9: Simple hashing proedure.an argument. Beause extrinsi proedures enable pro-essors to perform di�erent operations in parallel (asopposed to idential operations on di�erent parts of thesame array) their use is frowned upon by data-parallelpurists.We are interested solely in the ability extrinsi pro-edures give us to de�ne loal arrays and manipulateloal setions of distributed arrays. We use this apabil-ity �rst to loally ollet a vetor of unique indies thatwill be used to indiretly aess a distributed array andthen later to perform a ommuniation-free omputa-tion with loalized data. Figures 8{9 demonstrate howwe use these proedures to eÆiently loalize the irreg-ularly indexed array in the example program shown inFigure 4.Figure 9 implements hash, an HPF LOCAL proe-dure to perform the hashing that we are unable to ex-press in the the HPF language proper. We delare anarray table to be the global size of the indexed array8



C and then loop over the loal portion of the index ar-ray INTER to determine the elements of C that will beneeded loally. The seond loop ollets the index po-sitions of C that will be needed loally into loal slotsin the array map. (Figure 8 shows how the array map islater used to gather values of the indiretly indexed ar-ray C.) Finally, the third loop nest in Figure 9 updatesINTER with the indies that loalized values will haveafter they are gathered.The transformed main program in Figure 8 delarestwo new arrays: the mapping array map desribed aboveand the array C LOC into whih elements of C will begathered.4 After alling the hash proedure to omputemap, a forall loop atually gathers the non-loal valuesneeded by eah proessor. Finally, the omputation isperformed using the loalized data.We are fored to pakage the omputation loop intoanother extrinsi proedure due to what we pereiveto be a limitation of HPF: although we have ensuredthat the values of C that will be indiretly referenedby INTER will be loal in C LOC, there is no way for usto indiate this to the ompiler. (The HPF \indepen-dent" diretive asserts only that there are no depen-denes in a loop, not that no ommuniation is ne-essary.) The ompute proedure performs the ompu-tation loop using the loalized data now available inC LOC. In ompute, C LOC is indiretly indexed with theINTER array, whih was rewritten by the hash proe-dure. We do not show the ode for the ompute ex-trinsi proedure as it is nearly idential to the originalprogram.5.2 AppliationWe applied our inspetion strategy using HPF LOCALto the phases of Hu and Johnsson's HPF implementa-tion where the performane measurements of Setion 3.3indiated that they were needed most: list onstrution,and interation omputation. Here we provide resultsfrom experiments on the transformed ode. The over-head measurements in the plots follow the presentationstrategy outlined in setion 3.3. We show results forHPF, HPF-MPI, and MPI as before. In addition, weintrodue HPFLOC, and HPFLOC-MPI variants basedon our use of HPF LOCAL to eliminate ommuniationand storage redundany.Figures 10{11 demonstrate the suess of our teh-nique applied to the HPF implementation, and substan-tiate our laim that the performane gap between theHPF and MPI implementations was due to the storageand ommuniation redundany arising through regu-larization. When omparing the original HPF version4For brevity, in the main program we have omitted \interfae"bloks for the hash and ompute extrinsi proedures. These state-ments are neessary so the ompiler an orretly pass global data toloal proedures.
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(b) List1Figure 10: List reation and list1 interation times asperentage of interations.versus HPFLOC on eah of the graphs, the redutionsare dramati. For example, Figure 11(a) shows thatoverhead in list reation is redued by roughly a fa-tor of 10 by using an HPF LOCAL inspetor. Whenusing this strategy with Hu and Johnsson's MPI-basedolletive ommuniation rather than the PGHPF de-fault ommuniation, Figures 10{11 show that overheaddrops by an additional fator of two or more.Only the list34 interations seem to give the HPFLOCversion some trouble. We attribute this to the fat thatwe are fored to use a rather ineÆient ommunia-tion method to move the boxes into the weighted-blokdistribution. Spei�ally, beause of the way data islaid out and the formulation of the funtion whih de-termines the new distribution, we are fored to use asatter opy rather than a forall to move the data;unfortunately satter opy does not provide a goodway to move multi-dimensional data. One is fored touse a very general tehnique by whih it is possible todesribe the new position of every single element in thearray; in this ase, we simply want all elements of a rowto follow the �rst element.9
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(b) List34Figure 11: List2 and list34 times as perentage of inter-ations.6 Summary and ConlusionsWe have desribed and evaluated two sophistiated par-allel implementations of an adaptive, hierarhial solverwhih uses Anderson's method for alulating intera-tions in n-body systems: our expliitly-parallel MPI im-plementation and Hu and Johnsson's data-parallel HPFimplementation. Our measurements of these implemen-tations demonstrated that there were signi�ant per-formane di�erenes between the hand-oded MPI andthe HPF implementations. After onsiderable analysisof the performane and the implementation strategies,we hypothesized that the primary soure of ineÆienyin the HPF implementation was redundant ommuni-ation that was neessary to initialize redundant stor-age that is used for regularizing indiret referenes. Wedemonstrated that when this redundany is eliminatedin just two phases of the HPF implementation, withthe aid of HPF LOCAL semantis, the performane ofthe otherwise unhanged HPF implementation loselyapproahes that of the hand-oded version.Figure 12 demonstrates just how lose: from the plotwe an see that on 64 proessors, while the original HPF
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Figure 12: Total time as % of interation omputation.phase MPI HPFLOC-MPIBUILD TREE 1.19 4.08MAKE LISTS 3.45 2.37UPWRD PASS 1.39 3.33LIST1 INTR 19.8 25.2LIST2 INTR 24.5 26.0LST34 INTR 23.0 23.6DNWRD PASS 1.43 4.22OTHER 0 5.48TOTAL TIME 77.5 96.9Table 3: Absolute times (in ses.) for 64 pros.implementation inurs nearly 300% more overhead thanthe hand-oded version, our implementation redues thegap to just 50%. If we aept the assertion that ol-letive ommuniation support in the PGI HPF om-piler ould be improved to approah the eÆieny of thespeialized ommuniation routines written by Hu andJohnsson (used by the HPF-MPI and HPFLOC-MPIversions) then there is a fairly onsistent gap of about25% left between the performane of the hand-odedMPI implementation and the revised HPF implementa-tion.Two questions remain. First, what aounts for theremaining performane gap and an it be bridged? Se-ond, what are the impliations of this work for irregularomputation and HPF?Remaining Gap. From Table 3 it's lear that almostall of the remaining di�erene in running times be-tween the two implementations an be attributed tothe phases of the algorithm that we did not hange.The one exeption would appear to be the List1 inter-ations, for whih there is still be a substantial gap of�ve seonds. However, four seonds of this gap are dueto a small di�erene in the omputational algorithm:all the HPF versions have a test in an innermost loopwhih we avoided in the MPI implementation. (We a-ounted for suh di�erenes in our de�nition of over-head, so they don't a�et the overhead measurementsshown in our plots.) If we adjust for the List1 algo-rithmi ineÆieny, we �nd that the phases of the HPF10



implementation that we didn't hange aount for 86%of the remaining performane gap while the phases wehanged aount for only 14% of the remaining gap.There are several fators whih ontribute to the re-maining 14% performane gap in the appliation phaseswe modi�ed to use the HPF LOCAL-based inspetionstrategy. First, we have taken great pains in the MPIimplementation to ensure that no ommuniation ofdata \holes" takes plae, whereas the HPF implemen-tation annot. For example, when ommuniating thepartiles assoiated with a leaf box, we ommuniateand store exatly the number of partiles assoiatedwith that box, while the HPF implementation ommu-niates and stores the maximum number of partilesper box for every box. Seond, our use of struturesto group data in the MPI implementation results in asingle ommuniation per objet whereas the HPF im-plementation's use of attribute arrays results in multipleommuniations per objet, whih inreases ommuni-ation overhead.These same fators, of ourse, also ontribute to theperformane gap for the phases that we did not modify.There are two omponents to the remaining di�erenein the unmodi�ed phases: the extra partitioning phaserequired in the HPF appliation, and the algorithmiphases (upward and downward passes, tree build). We�rst note that the extra partitioning phase was not im-proved by the use of Hu and Johnsson's MPI routines,primarily beause it uses more ompliated ommunia-tion onstruts suh as san redutions that they hosenot to implement in MPI. The time for this phase ouldpotentially be lower if the PGI runtime library ommu-niation routines an be improved.After aounting for the fators disussed above, weattribute the rest of the performane di�erenes to dif-ferenes in partitioning strategies used by the HPF andMPI implementations. As desribed in Setion 3 themain feature that distinguishes the partitioning strat-egy we used in MPI from that used in HPF is the notionof proessors sharing boxes in the upper levels of thetree. Given the restritions on user knowledge of proes-sor/data relationships imposed by the HPF language,it is not lear how one ould implement this strategyin HPF. Perhaps instead of a single array representingboxes, one ould split them into two sets: those ownedby a single proessor in a distributed array and thoseowned by all proessors in a separate repliated array.Whether a ompiler ould eÆiently oordinate datamotion between the two sets as we have in our imple-mentation, is not obvious.Impliations. We have shown that if arbitrary irreg-ular appliations are to be implemented with high ef-�ieny in data-parallel languages suh as HPF, thenspeial are must be taken to avoid redundany in theommuniation and storage of non-loal data. We be-

lieve that this work therefore has impliations for twogroups:1. Vendors of HPF ompilers need to provide bet-ter support for automatially generating appro-priate inspetor-exeutor ode for irregular refer-enes. Tehniques desribed by von Hanxleden [6℄in his dissertation would suÆe for the ases we en-ountered, though extensions to these tehniquesmay be needed for more omplex ases, suh asthose involving multiple levels of indiretion. With-out ompiler-synthesized inspetors and exeutors,we know of no way to eliminate the ommuniationredundany that results from regularization with-out dropping into HPF LOCAL extrinsis. At-tempts to ahieve the desired e�et by not using aforall loop for regularization of irregular referenepatterns aused the PGI HPF ompiler to employrun-time resolution with whih no speedup is pos-sible.2. Until better inspetor-exeutor support beomeswidely available in HPF ompilers, HPF applia-tion developers would do well to follow our exam-ple and use HPF LOCAL extrinsi proedures toimplement inspetor-exeutor style handling for ir-regular referenes in ases where storage and om-muniation redundany prove signi�ant.7 AknowledgementsWe thank Yu \Charlie" Hu and Lennart Johnsson forgiving us unrestrited aess to their HPF n-body ap-pliation. We thank the National Partnership for Ad-vaned Computational Infrastruture at the Universityof California, San Diego for aess to their Cray T3E,and TCCIS at the University of Houston for aess totheir IBM SP2.Referenes[1℄ S. Aarseth, M. Henon, and R. Wielen. Astronomyand Astrophysis, 37, 1994. Referene for Plummerdistributions for N-body problems.[2℄ C. R. Anderson. An implementation of the fastmultipole method without multipoles. SIAM J.Si. Stat. Comput, 13(4):923{947, July 1992.[3℄ J. Barnes and P. Hut. A hierarhial o(n logn)fore alulation algorithm. Nature, 324:446{449,1986.[4℄ R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang.Communiation optimizations for irregular sien-ti� omputations on distributed memory arhite-tures. Journal of Parallel and Distributed Comput-ing, 22(3):462{479, Sept. 1994.11
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