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Abstract

This paper describes experiments with two paral-
lel implementations of the Fast Multipole Method –
one using the shared memory programming model
(OpenMP), the other the message passing model
(MPI) – on the SGI Altix 3700 at Oak Ridge Na-
tional Laboratory. The purpose of our experiments
was to test our hypothesis that direct access to shared
memory enabled by hardware-based cache coherence
is a better match for the fine-grained communica-
tion requirements of the tree-code computations of
the algorithm, while the message passing version’s
gather/scatter approach is more efficient for the more
coarse-grained interaction computation.

After providing some context for the discussion
with a description of the algorithm and our paral-
lelizations, we begin the analysis of our experiments
by describing the unexpected initial results on the
Altix, and how we went about obtaining more repre-
sentative data. Then, having addressed the problem,
we turn our attention to the larger implications of
our experiments.

We find that, as we expected, the tree-code is much
better suited to shared memory, both from a commu-
nication and an actual performance standpoint. On
the other hand, contrary to our expectations, and
though communication requirements appear to favor
the gather/scatter approach to interaction computa-
tion taken by the MPI version, the shared memory
version consistently outperforms the message passing
version.

∗Prepared by OAK RIDGE NATIONAL LABORATORY
P.O. Box 2008 Oak Ridge, Tennessee 37831-6285 managed by
UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

1 Introduction

This paper describes experiments with two paral-
lel implementations of the Fast Multipole Method –
one using the shared memory programming model
(OpenMP), the other the message passing model
(MPI) – on the SGI Altix 3700 at Oak Ridge Na-
tional Laboratory.

The Fast Multipole Method (FMM) is an example
of a class of algorithms that uses hierarchical data
structures (i.e., trees) to rapidly approximate the nu-
merical solution of the O(N2) N-Body problem. The
FMM has been shown to approximate the solution
with high accuracy in O(N) time, though the con-
stant factor is quite large.

A potential application of the FMM of particular
interest to molecular scientists is the computation of
long-range interactions in molecular dynamics simu-
lations. The algorithm exhibits a high degree of spa-
tial locality, which should result in low communica-
tion requirements on parallel supercomputers. This
feature makes it an attractive alternative to the com-
munication intensive FFT approach to speeding up
long-range interactions currently used by the Blue
Gene project [1].

On the other hand, irregular communication pat-
terns make efficient parallelizations of the algorithm
difficult, if not impossible, to achieve, particularly for
the distributed memory architecture that is the hall-
mark of most existing large-scale supercomputers.

While the bulk of the run-time of the algorithm is
spent in interaction computations – whose commu-
nication requirements, though irregular, can be han-
dled efficiently on distributed memory architectures
– the remaining time is spent doing fine-grained tree-
traversals which can become a bottleneck as proces-
sors are added to the problem.

The purpose of our experiments was to test our hy-
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pothesis that direct access to shared memory enabled
by hardware-based cache coherence is a better match
for the fine-grained communication requirements of
the tree-code computation, while the message pass-
ing version’s gather/scatter approach would be more
efficient for the interaction computation.

Initial results strongly supported our hypothesis:
those pieces that we expected to perform well did
in fact perform well, and those that we expected to
perform poorly performed poorly. However, the de-
gree to which the Altix performance degraded, on the
pieces we expected to do poorly, as we added proces-
sors, led us to question the results.

After taking some time to understand the perfor-
mance of our applications on the Altix, we were able
to obtain much more realistic results which, interest-
ingly, in some respects contradicted our hypothesis.

Our analysis of the experiments in this paper fol-
lows a similar trajectory: after providing context for
the discussion – with a brief explanation of the Fast
Multipole Method algorithm in Section 2, and our
parallelization strategies in Section 3 – we begin the
analysis in Section 4 by describing the unexpected
initial results on the Altix, and how we went about
obtaining more representative data. Then, having
addressed the problem, we turn our attention to ex-
amining the implications of the data for our hypoth-
esis.

Finally, in Section 5 we draw conclusions, both
about programming the Altix, and more generally
about programming shared memory.

2 The Fast Multipole Method

While the computational kernel is actually due to An-
derson [2], the algorithmic structure of our codes is
exactly the same as Greengard and Rokhlin’s Fast
Multipole Method [4].

As we have already noted, the FMM is a member
of a class of algorithms known as “hierarchical meth-
ods”. In general, hierarchical methods gain computa-
tional advantage in the solution of the N-body prob-
lem by aggregating the effects of groups of bodies a
sufficient distance away from the evaluation point.

Hierarchical methods create and maintain group-
ings of bodies using a data structure known as an
octtree. One constructs an octtree starting with a
root box that contains all of the bodies and then re-
cursively subdividing boxes into 8 sub-boxes of equal
size until a stopping condition is met. Recursion in
an adaptive octtree may stop at different levels at

Figure 1: Example of an adaptive quadtree.

different locations in the tree, depending on the dis-
tribution of bodies. Figure 1 gives an example of an
adaptive quadtree, the two-dimensional version of an
octtree.

Rather than requiring each body to traverse the
tree individually, as in the O(n log n) Barnes-Hut al-
gorithm [3], the FMM makes use of the observation
that when two boxes are “well-separated”, the far-
field effect of all the bodies in one box on those in
the other (and vice-versa) can be approximated as a
single interaction between the boxes. Such interac-
tions between well-separated boxes occur at all levels
of the tree, and the savings in computation enable
the FMM to compute far-field forces in O(n) time.

In the remainder of this section we describe, with
the aid of Figure 2, the steps of the adaptive algo-
rithm, developed for use with adaptive octtrees.

The first step is to create the octtree. Once the
tree is formed, to simplify implementation and max-
imize cache locality, the algorithm traverses the tree
to compute several types of interaction lists for each
box.

There are three types of interaction computations
and therefore three lists (see Figure 3): boxes in List1
are adjacent leaf boxes (and therefore are not suf-
ficiently distant from each other to allow approxi-
mation); boxes in List2 are the same size and well-
separated (that is, sufficiently distant from each other
to allow approximation); finally, boxes in List34 are
different sized and well-separated from the perspec-
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Figure 2: The steps of the adaptive FMM algorithm
and how we divide them into the Tree-code and In-
teractions summary categories.

tive of one of the boxes but not the other.

An upward pass over the boxes in the tree estab-
lishes the far-field approximations for each box: At
the leaves, the approximation for a box is computed
from the bodies within; at higher levels, the approx-
imation for a box is computed from approximations
for boxes it contains.

Then each box computes interactions with all the
other boxes on its interaction lists.

Finally a downward pass propagates results, col-
lected at each level in the form of a “local-field po-
tential,” from box to box, all the way down to the
bodies at the leaves.

3 Parallelization Strategies

3.1 Message Passing: MPI

We introduced our MPI implementation in [7]. It
draws on three sources: The FMM program in the
SPLASH-2 suite from Stanford [10], an HPF library
implementation [5] of the FMM, and Warren and
Salmon’s “hashed-octtree” approach to a different
tree-code [9]. We showed in [7] that, due to more ef-
ficient communication mechanisms, the performance
of our code compared favorably to the HPF version
on up to 128 processors of a Cray T3E.

Source

List1

List2

List34

Figure 3: Interaction lists for a box in the example
quad-tree from Figure 1.

Non-local Data Access. The primary barrier to
overcome in a message passing implementation of the
FMM is the irregular access of data imposed by the
adaptive octtree data structure. Our implementa-
tion uses a form of inspector-executor adapted to the
hash-table representation of the octtree we borrowed
from Warren and Salmon.

Each node in the tree is represented by a unique
identifier, derived from the node’s location in the tree,
which is used as a key for accessing nodes in a hash-
table representing the tree. This approach simplifies
management of distributed trees in two ways. First,
the identifier for a node is the same on all proces-
sors. Second, integration of non-local nodes into a
local tree is simple: data for non-local nodes is sim-
ply added to a processor’s hash-table.

The following pseudo-code demonstrates how the
MPI implementation inspects a typical loop-nest for
non-local references and communicates required non-
local data:

foreach Node n accessed in Loop l

if n is NOT in localtree then

nonlocal.Insert(n)

othersNonlocalIds = Alltoall(nonlocal.ids)

found = localtree.Search(othersNonlocalIds)

myNonlocals = Alltoall(found)

localtree.Insert(myNonlocals)

Body Distribution. Another significant problem
that the FMM poses for a distributed memory imple-
mentation is the initial distribution of bodies across
processors such that communication is minimized and
load balance is maximized. We have found that sort-
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ing bodies according to their position along a Hilbert
space-filling curve [8] is an excellent match for this al-
gorithm: since both the Hilbert curve and the octtree
recursively divide space in half along each dimension,
all bodies in the same leaf of the octtree are contigu-
ous after the sort. We can then partition the sorted
sequence of bodies among the processors by assigning
each a contiguous range of bodies and, with a little
care, ensure that each processor is assigned all bod-
ies in a given subtree of the octtree before the tree is
even built.

Parallelization. Below we provide details about
the parallelization of each step in the algorithm from
Figure 2:

build – Given the partitioning strategy described
above, we are able to construct octtrees locally, ex-
cept for a brief communication phase in which proces-
sors exchange information about shared boxes (boxes
at upper levels of the tree whose sub-boxes lie on more
than one processor) to ensure that the representation
of these boxes is globally consistent.

mklists – The fine-grained nature of the compu-
tation in the list-construction algorithm, combined
with large communication requirements, can cause
this step to be a major bottleneck in the parallelized
application if special care is not taken. We have
transformed the uniprocessor list construction algo-
rithm into a level-by-level form which allows us to use
the inspector-executor strategy noted above, at each
level, to gather non-local data before computing lists
for that level.

up, down – As noted earlier, we replicate informa-
tion about shared nodes at the uppermost levels of
the tree to all processors and ensure that all nodes in
a subtree below any non-shared node are located on
the same processor. This partitioning strategy avoids
communication in the downward pass and requires
only a single communication step in the upward pass
when moving from private nodes to the shared par-
ents.

List1, List2, List34 – As in list construction,
we communicate non-local data required during the
interaction computations using our variation on
the inspector-executor technique. To ensure load-
balance, we move data for boxes involved in each of
the three computation phases into a “weighted-block”
distribution immediately prior to that phase. This in-
volves looking in the work-list for each box involved in
the computation to determine the amount of work it
will do, and then minimally redistributing the boxes

such that each processor will have approximately the
same total amount of work.

3.2 Shared Memory: OpenMP

The shared memory implementation represents a
merging of our MPI derivative back into its SPLASH
parent, with the aid of OpenMP parallelization prag-
mas.

Non-local Data Access. The primary difference
between the OpenMP and MPI codes is the former’s
ability to directly access non-local memory. This abil-
ity manifests as an advantage in two ways: first it
makes the code, particularly the tree-code, much eas-
ier to write and understand. As a rough measure of
this advantage, the our OpenMP version requires 2/3
the number of lines of C code relative to the MPI ver-
sion.

Secondly, direct access of non-local memory poten-
tially makes the code much more efficient, since there
is no need for extra computation and synchronization
associated with an inspection phase for irregularly
accessed data. On the other hand, there is also po-
tential for inefficiency due to the cache-based nature
of hardware coherence: reuse of non-local data that
does not stay cached, whether due to capacity or co-
herence misses, can severely degrade performance.

Body Distribution. Despite the ability to access
global memory, due to locality concerns it is still ben-
eficial for both load balance and communication to
“distribute” data appropriately, especially when the
architecture exposes local memory to the user. For
this reason, we use exactly the same algorithm to
partition bodies, sorting them according to their po-
sition along a Hilbert space-filling curve, as in the
MPI code.

Parallelization. Below we provide details about
each algorithmic step:

build – As with the MPI version, the partition-
ing strategy described above allows most of the oct-
tree construction to be done locally. While merging
the trees still requires some synchronization through
locks, it is minimal compared to the amount re-
quired in the original SPLASH code. However, un-
like the MPI version, there are no shared boxes in the
OpenMP version, which guarantees a certain amount
of contention as processors add their boxes from the
top levels of their local trees to the global tree.
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mklists, up, down – The fine-grained computation
in these steps, coupled with their limited reuse of non-
local data, makes them ideally suited to the direct
memory access capability of shared memory.

List1, List2, List34 – We are not currently load-
balancing interactions. While our use of inspector-
executors to communicate non-local data in the MPI
interaction computations dictates that all processors
do all List1 computations, at the same time, then
all List2 and then all List34, shared memory allows
much more flexibility in terms of overlapping compu-
tations. Not yet having determined the optimal way
to order the List computations for the shared mem-
ory version, and also requiring a meaningful way to
compare computation times with the MPI version, we
currently simply use the same strategy as the MPI
version but without the load balancing step.

4 Experiments

In this section we describe our experiments with the
two versions of the FMM, described in the previous
section, on Ram, the Altix at Oak Ridge National
Laboratory.

4.1 Setup

Ram has 256 Intel Itanium2 processors running at
1.5GHz, each with 6MB of L3 cache. The machine
features 8 GB of memory per processor for a total of
2 TB of shared memory.

We use as controls for our experiments two systems
based on the same Itanium2 processors as Ram, but
which utilize very different interconnection networks.
To validate OpenMP results we use the 64 processor
HP Superdome at the University of Kentucky. For
comparing MPI results we use the Teragrid array of
workstations at NCSA.

For our experiments we have chosen to examine
“constant work” scalability. For all runs, as we in-
crease the number of processors, we increase the data
size proportionately, keeping the number of bodies
simulated per processor constant. Unless otherwise
noted, that number is 4000. Since the FMM is
purportedly an O(N) algorithm, perfect scalability
would result in constant run-times as the number of
processors is increased, evidenced by a flat horizontal
line in plots where processors increase on the X axis
and times are measured on the Y axis.

We present two categories of results: 1) summary
results, in which we divide total time into “tree-

code” versus “interactions”, and 2) detailed results,
in which we further divide the summary data into
its constituent parts; our division of the steps of the
sequential algorithm between “tree-code” and “inter-
actions” is as noted in Figure 2. As described in
Section 3, both parallel algorithms add an initial sort
step to the algorithm, which we add to the “tree-
code” category.

While most of the measurements we present are
times – measured with either gettimeofday() or where
possible the more precise clock gettime() interface –
we present per-processor cycle and level three cache
(L3) miss counts obtained from Itanium2 perfor-
mance counters when appropriate. (L3 misses are
significant since they must be satisfied from memory,
potentially non-local, in which case they cause com-
munication.) For simplicity, in most cases, the result
we present is the average across all processors.

4.2 Performance Expectations

Before we start looking at results, a word about ex-
pectations. As discussed earlier, we expect the ir-
regular, extremely fine-grained communication of the
tree-code phases to favor hardware-based cache co-
herence.

On the other hand, the more coarse-grained com-
munication requirements of the interaction phases
– while still irregular – favors a message-based ap-
proach for two reasons:

• For maximal efficiency, non-local data should
stay where it is after has been communicated. In
cache-based approaches, evicted non-local data
must be re-fetched. One of the key observations
in [7] is that there is heavy reuse of non-local
data in the List2 interactions, which would seem
to translate into a high likelihood for redundant
communication as non-local data is evicted from
the cache.

• Again, for maximal efficiency, updates to non-
local data should not interfere with one-another.
In a message-based approach, updates are natu-
rally handled as reductions. On the other hand,
in the shared memory paradigm, updates are
more naturally expressed using locks to synchro-
nize access to the data, potentially resulting in
both lock-contention and unnecessary communi-
cation traffic as the updated values propagate
from cache to cache.
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OpenMP MPI
Superdome Altix Altix Teragrid

Procs Tree Inter Tree Inter Tree Inter Tree Inter
4 0.036 0.48 0.027 0.42 0.035 0.58 0.044 0.79
16 0.048 0.53 0.047 0.51 0.087 0.67 0.090 0.90
64 0.11 0.63 0.11 2.8 0.80 0.90 0.34 1.1
128 N/A N/A 0.37 7.0 6.3 1.0 0.92 1.1

Table 1: Initial results: OpenMP on Altix vs OpenMP on HP Superdome and MPI on Altix vs MPI on
Teragrid cluster

4.3 Initial Results

Table 1 presents the initial results of our experiments.
As expected, OpenMP-style programming is much
more efficient on the tree code portion of the pro-
gram than MPI, but is less efficient than MPI (which
fetches all non-local data before computing) for in-
teractions. However, the degree of inefficiency on the
Altix, contrasted with the performance of the control
architectures, leads us to question the results.

Specifically, while we expected from the outset that
the Superdome’s more SMP-like performance (albeit,
at the cost of limited architectural scalability) would
give it an advantage, the 4X performance difference
at 64 processors was unexpected.

Worse, while we expected that the shared memory
platform would be a better match for the collective
communication calls (MPI Alltoall, MPI Alltoallv,
MPI Scatter) used heavily by the MPI version than
the distributed network of workstations at NCSA,
according to our results its actual performance 6X
slower.

In the next sections we examine the causes of these
unexpected results.

4.3.1 Altix OpenMP Performance

Figure 4(a) and (b) show cycle counts and L3 misses
for each algorithmic step for the OpenMP version of
FMM on the Altix. The correlation between the ex-
tremely high cycle and L3 miss counts in the List2
computation phase led us to hypothesize that a large
number of non-local misses was saturating the net-
work.

After discussions with an SGI representative, and
closer inspection of the List2 interaction code, we nar-
rowed the problem to the allocation of a large table
heavily used by during the List2 interactions.

The Altix is a Non-Uniform Memory Access
(NUMA) architecture, which means that memory
modules are distributed along with processors across
all the nodes of the machine, connected via a com-

munication network. While all memory is globally
addressable, processors can access memory located
near them faster than memory across the network.

Such an architecture requires a policy to determine
in which node’s memory a page will live. The Altix
uses a “first-touch” allocation policy: pages are allo-
cated in the local memory of the first processor that
touches them.

Because we allocated and initialized the table in
sequential start-up code before entering the paral-
lel section, it was first touched by Processor 0, and
therefore all the pages associated with the table were
stored in its node’s local memory. As a consequence,
every subsequent access to table data that missed in
the issuing processor’s cache had to be satisfied by the
node containing Processor 0, leading to tremendous
network congestion and poor performance.

A simple fix is to delay allocation until the par-
allel section, and then replicate the table by allow-
ing each processor to allocate and initialize a private
copy. The downside is an increase in the global mem-
ory footprint of the application.

Figure 4(c) demonstrates the performance im-
provement that replicating the table yields: at 128
processors, the number of cycles spent in List2 com-
putation is reduced from nearly 9 billion to less than
350 million.

It is interesting to note that we did not run into
this problem on the HP Superdome because it uses a
different algorithm for distributing memory. Rather
than first-touch at a page granularity, the HP dis-
tributes memory round-robin at a block granularity.
While also a NUMA architecture (using a directory-
based cache coherence protocol), a very fast aver-
age case access provides the feel of an SMP. How-
ever, maintaining acceptable average case behavior
requires limiting the machine size. The largest Su-
perdome currently available has 128 processors.

Lesson: on the Altix, programmers must be very
aware of how and where they allocate data.
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Figure 4: (a) OpenMP cycle counts, for each algorithmic step, on Ram: List2 interaction computation clearly
dominates. (b) L3 miss counts: note correlation between List2 misses and cycles. (c) Cycle count results
after replicating a large table so that each processing element has a copy in local memory: List2 interactions
no longer dominate.
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Figure 5: Multiple iterations of MPI version: (a) 20 iterations on Altix, (b) 3 iterations on Teragrid.

4.3.2 Altix MPI Performance

Our initial talks with an SGI representative concern-
ing the performance of the MPI version uncovered a
problem with our understanding of an argument to
the dplace command, which ensures that a process
to processor affinity is established and maintained.
However, while fixing the command line did have a
beneficial effect on the overall runtime, we were still
left with a substantial (6X) gap in the time to per-
form mklists between the Altix and the Teragrid.

Recall that mklists is the list construction phase
in which the tree is traversed to determine, for each
box, all the boxes it needs to interact with during the
interaction phase.

To test the hypothesis that the problem is related
to startup overheads on the Altix that would amor-
tized over a longer running time, we performed some
experiments in which we ran the simulation for mul-
tiple iterations. Currently our FMM codes simply

measure the potential at the end of a single time-
step and do not convert that potential into a force
with which to advance bodies. Hence, running multi-
ple iterations is not physically meaningful. However,
it does provide insight into the performance of mk-
lists as demonstrated in Figures 5(a) and 5(b). While
there is little difference between the iterations on the
Teragrid, we notice a sharp decrease over the first
few iterations on the Altix. Furthermore, as shown
in Figure 6(a), an initial very large gap between the
minimum number of cycles that a processor spends
making the lists and the maximum, soon converges
over the course of multiple iterations.

Further evidence that the Altix’s poor performance
in our initial experiment is attributable to startup
overheads that are amortized over time is provided
by Figure 6(b). This data demonstrates that if we
increase the size of the data set by a factor of 200,
thereby increasing the volume of communicated data
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Figure 6: (a) Convergence of min/max/avg on Altix. (b) Three iterations of runs using huge data sets –
where the number of bodies per processor is increase by a factor of 200 – on Altix (left) and Teragrid (right).

List1 List2 List34 sort build mklist up down

phase

0

1.0

2.0

3.0

4.0

5.0

6.0

by
te

s 
(M

B
)

shared mem
single copy

Figure 7: Bytes communicated by MPI version.

by a similar factor, there is little difference between
the mklists time on the two architectures, even when
running for just a single iteration.

Accepting that the problem is some kind of initial-
ization overhead, we are still left with the following
nagging question: why are they only in visible in the
mklists step of the algorithm?

One clue might be related to the way that mes-
sage passing is implemented on the Altix. By de-
fault, messages are copied twice through shared mem-
ory: once out of the sender’s memory into a tempo-
rary buffer and then again into the receiver’s mem-
ory. An optimization which removes the copy to the
temporary buffer is enabled by default for some col-
lective communication calls, including MPI Alltoall,
for large messages.

Figure 7 plots data provided by several functions
unique to the SGI MPI implementation which provide
information about message types and volume of com-
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Figure 8: Rough comparison of bytes communicated
by MPI vs OMP (128 procs).

municated. The figure provides us with two pieces of
information which may be relevant to understanding
the initialization overheads in the mklists step: first,
there is a large volume of the less efficient double-
copied messages in the mklists phase. Second, since
mklists uses MPI Alltoall exclusively, that implies a
large volume of small messages in this phase.

One or both of those pieces of information

4.4 Extended Results

Having gained an understanding of the initial perfor-
mance problems on the Altix, we now shift our focus
to the original purpose of the experiments: to test our
hypothesis that while shared memory maintained by
hardware-based coherence mechanisms is more effi-
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cient for fine-grained tree-code, message passing is a
more efficient match for the coarse-grained interac-
tion code.

One measure by which to compare the efficiency of
two parallel implementations is the amount of com-
municated data to complete a given task. In Sec-
tion 4.4.1 we make a preliminary comparison of the
amount communication (in bytes) required by the two
platforms for 128 processors.

Another measure is, of course, scalability. In Sec-
tion 4.4.2 we examine runtime trends as we increase
the number of processors.

4.4.1 Communication Estimates

In order to measure communication efficiency we
would like to be able to measure the actual number of
bytes communicated across the network over a given
period of time. Unfortunately, we are not currently
aware of how to perform this measurement precisely
on on the Altix.

However, we do have access to data which to a
certain degree approximates communication for both
versions.

For the OpenMP version, as we have already seen,
we can access hardware counters to determine L3
misses. Since not every L3 miss results in commu-
nication, as some percentage will be satisfied from
memory on the node local to the processor, this mea-
sure overestimates communication. However, if the
number of the L3 misses is low we can certainly infer
that the number of misses that cause communica-
tion is low; and, as the number of L3 misses grows,
the likelihood that the misses require communication,
given that some misses do require communication,
also grows.

Since the transfer size for cache misses is the block
size, we can estimate the number of bytes communi-
cated by multiplying the number of L3 misses by the
block size.

We have also already seen, in the previous sec-
tion, that SGI provides a mechanism for obtaining
the number of bytes communicated by the MPI pro-
grams. Unfortunately, this method also has a short-
coming, in that it does not distinguish, for collective
communication calls, between bytes sent to other pro-
cessors and bytes “sent” to self. Hence, this measure
also overestimates the amount of data communicated.

Bearing these caveats in mind, we can turn to Fig-
ure 8 which compares bytes communicated by the two
versions of FMM at 128 processors. Note that in the
fine-grain steps, most notably build and mklists, we
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Figure 9: Results for all 256 processors of ORNL Al-
tix (3rd iteration).

see that the OpenMP version requires the communi-
cation relatively few bytes of data compared to the
large number required by the MPI version.

On the other hand, the OpenMP versions of the in-
teraction phase, particularly the List2 phase, appear
to transfer much more data than the MPI version.
While not currently a problem given the communi-
cation bandwidth of the machine, it could present a
problem as the number of processors and/or bodies
per processor grows.

This data supports our original hypothesis that
while shared memory would more efficiently commu-
nicate non-local data in the tree-code steps, message
passing would be more efficient for the interactions.

4.4.2 Scalability Trends

In Figure 9 we show results from a run in which we
were given access to all 256 processors of Ram, the
Altix at ORNL. All the way up to 256 processors, the
shared memory version outperforms the MPI version,
even on the interaction code. Since the gap between
the two is fairly steady as the number of processors
grows, we might attribute this to greater indexing
efficiency in the shared memory version: recall that
we use a hash table to represent the octtree in the
MPI version which implies a hash lookup for every
index into the tree rather than the simple pointer
dereference enabled by globally shared memory.

But what happens to performance as we keep in-
creasing processor counts? To help answer this ques-
tion we were fortunate that our contact at SGI pro-

9



0 64 128 192 256 320 384 448 512
Processors

0

1000

2000

3000
C

yc
le

s 
(M

ill
io

n)

MPI-inter
MPI-tree
OMP-inter
OMP-tree

(a)

0 128 256 384 512
Processors

0

1000

C
yc

le
s 

(M
ill

io
n)

List1
List2
List34
sort
build
mklist
up
down

(b)

0 100 200 300 400 500
Processors

0

1000

2000

3000

C
yc

le
s 

(M
ill

io
n)

List1
List2
List34

(c)

Figure 10: Results for 512 processor Altix Bx2 at SGI (3rd iteration): overview (a), and detailed: (b)
OpenMP (c) MPI (tree-code steps removed).
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Figure 11: Results for 512 Teragrid processors (3rd iteration): (a) overview, and (b) detailed (tree-code steps
removed).
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vided us with data from runs on a 512 processor Altix
Bx2 at SGI.

Though the processor cycle time is the same as on
Ram (1.5GHz), and despite a smaller L3 cache (4MB
vs 6MB), both versions of the application generally
run faster on the Bx2, particularly at lower proces-
sor counts. This performance difference is apparently
due to greater bandwidth between nodes provided by
the NUMAlink 4 interconnect. However, as we add
processors, performance is not quite as steady as on
Ram, perhaps due to the smaller cache.

Figure 10(a) shows the summary results for the
Bx2 at SGI, while Figure 10(b) and (c) show results
for each algorithmic step for OpenMP and MPI re-
spectively.

Directing our attention first to the OpenMP sum-
mary results, we see a steeper slope than optimal for
both curves in the summary graph. From the per-
algorithmic-step results we can attribute most of the
growth to two phases: the List34 interaction phase
and the build tree-code phase. It is likely no coinci-
dence that both phases make use of locks to synchro-
nize data access.

As described in 3, we have already done significant
work to try to reduce the effect of synchronization in
the build phase. It appears that we need to find a
more structured means of completing the global tree
that requires even less synchronization.

Locks are required in the List34 phase due to po-
tential non-local writes: recall that List34 is actually
two symmetric lists, such that if Box A is on Box
B ’s List3 then Box B is on A’s List4. To simplify
the list construction phase, only one end of this dual
transaction is recorded in a list (List34) and both
computations are taken care of at the same time in
the List34 interaction phase. As a result, the com-
putation may result in writes to non-local data since
Box A may be located on a different processor than
Box B.

The MPI version takes advantage of the fact that
each write is only an update to a value which is
not actually used until the phase is over, and turns
a collection of non-local writes into a single post-
computation reductions. A similar strategy would
obviate the need for the locks in the OpenMP pro-
gram, though potentially at the expense of signifi-
cantly complicating the code.

Turning our attention to the MPI results: strik-
ingly, despite the OpenMP problems with List34
phase locks, and the MPI version’s apparently sub-
stantial advantage in terms of communication re-

quirements for the List2 interaction computations,
Figure 10(a) shows MPI interaction performance con-
sistently lagging OpenMP. The per-algorithmic-step
results point to the List2 interactions as the primary
source of the problem.

Comparing these results with 512 processor results
for the Teragrid in Figure 11(a) and (b), we see that,
while the SGI curve may be slightly steeper than on
the Teragrid, there is an equivalent upward trend.

One potential explanation for this trend may be
that we are hitting the limits of our current inspector-
executor strategy, as described in Section 3. Re-
call that currently every processor gathers the non-
local requests of every other processor to determine
whether it owns the data requested. While simple to
implement, this all-to-all approach clearly does not
take full advantage of data locality inherent in the
algorithm.

Another factor may be that there is some com-
munication involved in redistributing data in order
to load balance the interaction computations in the
MPI version. As noted earlier, we are not currently
load balancing the OpenMP interactions.

5 Conclusions

We described experiments with two implementations
of the Fast Multipole Method application – one using
the shared memory programming model (OpenMP),
the other the message passing model (MPI) – on
the SGI Altix 3700 at Oak Ridge National Lab-
oratory. The purpose of the experiments was to
test our hypothesis that the fine-grained communi-
cation requirements of the FMM tree-code phases
would favor the OpenMP implementation, while
the course-grained communication would favor the
gather/scatter approach of the message passing im-
plementation.

In the first part of our discussion we explained the
Altix’s poor performance in our initial results. For
both shared memory and message passing, it is im-
portant to be aware of the NUMA architecture, and
the careful placement of data that it requires. The
good news is that taking that extra care can yield
good results.

Having addressed the performance problems on the
Altix, in the second part of the discussion we turned
our attention understanding implications of the data
on our hypothesis.

We found that, as we expected, the tree-code is
much better suited to shared memory programming
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paradigm, both from a communication and an actual
performance standpoint. On the other hand, con-
trary to our hypothesis, and though communication
requirements appear to favor the gather/scatter ap-
proach to interaction computation taken by the MPI
version, the OpenMP version outperforms the mes-
sage passing version. It would appear that overheads
in the inspector-executor paradigm, or at least in our
particular implementation of it, outweigh the benefits
of reduced communication requirements.

Coda: User Controllable Coherence. Finally,
we would like to point out that one of the motiva-
tions for this work is to demonstrate the value of a
hardware architecture that combines the benefits of
hardware-based cache-coherence with those of a dis-
tributed memory platform.

One proposal for such an architecture is “User-
Controllable Coherence” [6]. User-controllable coher-
ence provides mechanisms which allow users and/or
compilers to turn on and off cache coherence at a
cache-block granularity using new flavors of load and
store instructions. The idea is to use the efficient
cache-coherence mechanisms to get data where it is
needed, but to not be restricted by either the size of
the cache or unnecessary synchronization.

The FMM is a particularly good showcase for
user-controllable coherence with its mixture of fine-
grained and coarse-grained communication. In future
work we plan to show that, while enabling the same
code and performance for the fine-grained accesses in
the tree-code phases, appropriate use of mechanisms
provided by user-controllable coherence could allevi-
ate problems associated with coarse-grained perfor-
mance with minimal effort.
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