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ABSTRACT

While a hardware supported shared address space offers programmability advantages and bet-

ter performance for fine-grained applications, the very mechanisms that create those advantages

appear to prevent the machines that use them from scaling to large numbers of processors. For this

reason, hardware-based distributed shared memory (DSM) platforms have largely been dismissed

in the context of scientific computing. This dissertation proposes changes to a hardware-based

DSM architecture that allow users to use two address spaces to gain the scalability of distributed

architectures while retaining the benefits of the shared address space architecture.

The thesis of this dissertation is that the Dual Address Space Architecture provides both an

efficient mechanism for enabling increased user and compiler control over data consistency and

data locality, and a high-level interface for programmers to conceptualize and take advantage of the

mechanism. The Dual Address Space Architecture thus provides users and compilers an efficient

means, particularly appropriate to the structure of scientific applications, of keeping data consistent

and local, enabling improved performance over current global address space implementations.

The dissertation evaluates its thesis in two parts. The first part demonstrates the feasibility of

the ideas by describing the details of the high-level architecture, including the programming model,

and its implementation via extensions to a standard directory-based cache coherence protocol. The

second part evaluates the performance of Dual Address Space implementations of two applications

that currently underperform on distributed address space platforms. First, cycle-accurate simula-

tion results indicate that a Dual Address Space version of HYCOM, an ocean model which features

an irregular data decomposition, significantly reduces the number of last-level cache misses that



x

cause communication, resulting in substantial improvement in performance. Second, experiments

with two implementations (distributed memory and shared memory) of the Fast Multipole Method,

a tree-based algorithm for solving N-body problems, expose weaknesses in both that would be

cleanly and efficiently addressed by a Dual Address Space implementation of the algorithm.
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Chapter 1

Introduction

The trend in large-scale High Performance Computing systems design has been toward max-

imizing peak performance by connecting as many microprocessors as possible with the fastest

interconnect available, leaving the management of the distributed address space to applications.

An undesired side-effect of this trend has been to narrow the range of applications that can take

full advantage of the hardware.

In order to be successful on these platforms, applications require a simple parallelization strat-

egy, as embodied by data decomposition (how data is distributed across processors), computation

partitioning (how computation is divided among processors), and communication patterns (how

required non-local data is made local). An example of an application that maps well to the largest

platforms available today is S3D [33], which models combustion through fluid dynamics simula-

tion. The application uses an explicit stencil-based solver, implying only nearest-neighbor com-

munication, and a regular, static distribution of data.

Molecular dynamics applications [59, 62, 60], on the other hand, are not well-suited for these

platforms. In addition to dynamic data distributions and communication patterns, a particular

problem for the scalability of these simulations is long-range force computation: on distributed

hardware, the most practical solution requires transformation to Fourier space, and the three-

dimensional FFT requires communication equivalent to a transpose. While tree-based solutions

exhibit significantly more locality, they are not practical to implement in distributed memory.

Notably, even applications with only slightly more complex parallel behavior than S3D have

difficulty mapping onto distributed hardware. An example is HYCOM [11], an ocean model that,
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like S3D, features a static data distribution and uses an explicit stencil-based solver. However, the

distribution of data across processors is slightly complicated by land-avoidance, resulting in load

imbalance which in turn reduces scalability.

While a hardware-maintained shared address space offers programmability advantages and im-

proved performance for applications with irregular data distributions and communication patterns,

the very mechanisms that create those advantages appear to prevent machines that use them from

scaling to large processor counts. For this reason, hardware-based distributed shared memory

(DSM) platforms have largely been dismissed in the context of scientific computing.

However, the confluence of two trends in High Performance Computing may serve to resur-

rect interest in DSM research for scientific computing. The first is the challenge presented by

multicore microprocessor architectures. Current multicore implementations use broadcast-based

protocols to maintain cache coherence, which are known not to scale beyond a few 10’s of pro-

cessors. Projections call for hundreds of cores per socket in the near future [6]. The second is the

growing recognition that a global address space can simplify parallel programming, making users

more productive [74].

1.1 Artifactual Communication

The primary challenge facing applications attempting to scale-up on DSM implementations

like the SGI Altix [75] is artifactual communication. The term (which originates with Culler

and Singh [17]) refers to unnecessary communication due to unintentional interactions with the

extended memory hierarchy that implements the global address space in hardware, as distinct from

inherent communication required by the application.

False Sharing The most notorious example of artifactual communication is “false sharing.” This

phenomenon arises when multiple processors write different words co-located in a cache block,

causing ownership of the block, and the data, to ping-pong between the processors.

False sharing is a particular problem for scientific applications that make use of multi-dimensional

domain decompositions in order to reduce communication volume.
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The root cause of false sharing is eager invalidation-based cache coherence, which helps main-

tain the memory consistency model visible to software. The consistency model determines when

the effects of writes by each processor are visible to other processors. Programmers intuitively

expect sequential consistency, which has significant impact on performance.

Relaxed consistency models can improve the situation without placing too much burden on

programmers. However, full advantage of the relaxation cannot be leveraged when the underlying

coherence protocol mechanism remains unchanged: the coherence protocol continues to eagerly

propagate actions for write instructions, regardless of whether the actions are required by the con-

sistency model.

False Ownership A less widely understood aspect of artifactual communication arises on DSM

implementations, like the Altix, where the protocol home for data is determined independently of

the parallelization strategy.

“False ownership” results when there is a mismatch between the owner as defined by the co-

herence protocol and the owner as defined by the data decomposition. The situation results in

communication for every cache miss, potentially severely degrading performance.

False ownership exacerbates the false sharing problem for applications using multi-dimensional

domain decompositions: if a block owned in the data-parallel sense but not according to the proto-

col is evicted from the cache due to false sharing, both the communication that causes the eviction

and the communication to get it back must go through a third node, the home.

False ownership is also problematic for applications that attempt to dynamically modify their

data decomposition: if there is no way to change the home of the data, then the true owner becomes

a false owner.

1.2 The Dual Address Space Architecture

This dissertation proposes modifications to a hardware-based distributed shared address space

architecture that enable users and compilers to address both types of artifactual communication. It
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conjectures that shared and distributed address space architectures are actually just endpoints on a

spectrum, and considers a midpoint: a machine with both address spaces.

In a Dual Address Space there are two kinds of memory: global, which hardware keeps co-

herent with a standard coherence protocol, and strictly local, which is left incoherent. Users are

provided with a mechanism for specifying, at word-granularity, data that would benefit from local-

ization – being moved from global to local memory – yielding the following benefits for memory

accesses that have been localized:

• Control over the placement of data in the memory hierarchy.

• Elimination of false sharing.

• An efficient global reduction mechanism.

A Dual Address Space implementation takes advantage of User-Controllable Coherence [51],

which proposes modifications to a standard hardware-based coherence protocol. The new protocol

manages the two address spaces and the transition of data between them, enabling efficient, dy-

namic movement of data between local and global address spaces, without copying. By providing

users and/or compilers limited control over the coherence protocol mechanism, User-Controllable

Coherence offers complete control over both the consistency policy and the locality of data.

The following two sections demonstrate, with the aid code examples, how increased control

over data placement and the consistency policy can enable improved performance. The first exam-

ple illustrates with a micro-benchmark how false sharing and false ownership can be avoided in

applications like HYCOM which feature irregular data distributions but more regular computation

and communication patterns. The second example uses a benchmark fragment to show how lo-

calization along with the reduction mechanism can be used to efficiently manage data partitions in

applications, like molecular dynamics, which feature more dynamic data distributions and irregular

communication patterns.
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#define SIZE 16 // doubles per cache block

double a[SIZE] __attribute__ ((aligned(128)));

double b[SIZE] __attribute__ ((aligned(128)));

...

if (myid == 0) {

// init a & b

}

else if (myid == 4) {

first = 1;

last = 8;

}

else if (myid == 8) {

first = 8;

last = 15;

}

if (myid == 4 || myid == 8) {

for (j = 0; j < n; j++) {

for (i = first; i < last; i++) {

a[i] = (b[i-1]+b[i]+b[i+1])/3;

}

SYNCH();

for (i = first; i < last; i++) {

b[i] = (a[i-1]+a[i]+a[i+1])/3;

}

SYNCH();

}

}

(a)

Inst Communication Cycles
standard 1.00 1.00 1.00
inv 1.04 0.84 0.90
update 1.02 0.60 0.53
red-inv 1.17 0.30 0.31
red-upd 1.16 0.23 0.21
multidim 1.17 0.30 0.25

(b)

Figure 1.1 The artifactual communication model: (a) code fragment describing the model
implementation, and (b) performance of various methods of addressing the problem normalized to
the performance of a standard MESI cache coherence protocol on a release consistent processor.

1.3 Example 1: False Sharing Model

The purpose of the false sharing model is to hold a magnifying glass to a situation in which

artifactual communication has been maximized, enabling a clear demonstration of how localization

can be used to combat it. The code fragment in Figure 1.1(a) describes the model. To induce false

sharing, two threads – pinned to processors P4 and P8, and located on different nodes since there

are four processors-per-node – perform a simple stencil computation, each computing and storing

results for half of a cache block. The block is thus owned, in the data-parallel sense, by both

processors. To induce false-ownership, the block is initialized, and therefore owned as far as the
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coherence protocol is concerned, by a thread pinned to a third processor P0, located on a third

node.

Note that the model contains true-sharing, in addition to false sharing. The stencil simply

averages each element with its nearest neighbors. To permit parallelization, the computation is

broken into two parts, thus splitting the dependence between the write of a border element by one

processor and the read of the same element by another processor. The explicit synchronization in

between the two parts ensures that data written by one processor is ready for consumption by its

neighbor in the next half-iteration.

The table in Figure 1.1(b) presents results demonstrating the effectiveness of different ap-

proaches to reducing the artifactual communication, as measured by: instructions completed, cache

misses that cause communication, and most importantly, performance. The data was obtained from

runs of the model code on the simulator described in Chapter 5. The results are all normalized to

the performance of the standard MSI-based protocol used by the Altix and modeled by the simu-

lator when only “global” memory instructions are used.

1.3.1 Localization

Figure 1.2(a) demonstrates a quick and dirty approach to localization, using a pragma-based

mechanism to convey to the compiler which addresses should be loaded into which address space.

Note that data does not actually move from address space to address space until it is referenced by a

load or store; a pragma does not move data but only indicates the flavor of load or store instruction

the compiler should use when referencing the indicated variable within the pragma’s scope.

The idea is to keep data owned by a processor in its local address space, so at the outset each

processor moves the data it owns into the local address space. At synchronization points, each

processor moves data that it has written and that will be read by other processors into the global

memory. This globalization occurs at the LFETCH(), where each processor touches the block

with a global (note the lack of a localizing pragma covering this statement) prefetch instruction.

The localize pragma before the second half iteration results in globalized data moving back into
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if (myid == 4 || myid == 8) {

for (j = 0; j < n; j++) {

#pragma localize (a,b)

for (i = first; i < last; i++) {

a[i] = (b[i-1]+b[i]+b[i+1])/3;

}

SYNCH();

LFETCH(a); // global!

SYNCH();

#pragma localize (a,b)

for (i = first; i < last; i++) {

b[i] = (a[i-1]+a[i]+a[i+1])/3;

}

SYNCH();

LFETCH(b); // global!

SYNCH();

}

}

(a)

if (myid == 4 || myid == 8) {

#pragma localize (a,b)

for (j = 0; j < n; j++) {

for (i = first; i < last; i++) {

a[i] = (b[i-1]+b[i]+b[i+1])/3;

}

SYNCH();

UPDATE(a);

for (i = first; i < last; i++) {

b[i] = (a[i-1]+a[i]+a[i+1])/3;

}

SYNCH();

UPDATE(b);

}

}

(b)

Figure 1.2 Two approaches to reducing artifactual communication through the use of multiple
address spaces: (a) localization followed by globalization, and (b) localization with an explicit

update.

the local address space during the stencil computation. Finally, the block is moved back into the

global address space in order to satisfy communication requirements for the next iteration.

The motion of data back and forth between address spaces can be avoided through the use

of an explicit update instruction, as demonstrated by Figure 1.2(b). Here the localizing pragma

covers all statements in the j loop, so that the block remains in the two local address spaces

throughout the computation. However, after each half iteration, the explicit update instruction

conveys to the protocol that each processor’s version of the block should be communicated to all

“sharers,” and multiple writes resolved through the reduction mechanism. Note that the protocol

requires synchronization on either side of the update to ensure that all protocol transactions for one

computation or communication phase have completed before entering the next phase.

The second and third rows of the table in Figure 1.1(b) clearly indicate the performance ben-

efit of keeping data localized: while inv, the version corresponding with Figure 1.2(a), exhibits

improvement in both cache misses and cycle time over the standard protocol, update more than

doubles that improvement in both categories.
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1.3.2 Reducing Inherent Communication

As will be described in detail in Chapter 6, some applications like HYCOM take advantage of

redundant computation on extended halos of non-local data to reduce communication frequency.

This optimization is usually not possible for applications which take full advantage of the ben-

efits of a global address space. When data arrays are treated as single, global entities, simulta-

neously operated on by multiple threads, writes associated with redundant computation cannot

be performed without disturbing the data read and written by neighboring threads. Figure 1.3(a)

demonstrates how localization can enable redundant computation to reduce synchronization in a

Dual Address Space.

The primary modification to the fragment from Figure 1.2(a) is to strip-mine the j-loop, in-

troducing a new k-loop. The new loop controls the bounds of the i-loops, so that they shrink on

each iteration. The effect is that each processor begins computing on a localized version of the

whole block but gradually shrinks the computation as it uses up “non-local” data. After all the

data has been used up, the processors synchronize, exchange data via update instructions, and then

start again. Note that eight elements are exchanged when the block is updated, making this a very

efficient mechanism for exchange of data. On the other hand, when only one element is required,

as in the non-redundant update case of Figure 1.2(b), the mechanism is significantly less efficient.

A more subtle change is required by the coherence protocol’s mechanism for resolving multiple

writers. Recall that upon issuing the update instruction, all writers send the block to the directory,

which merges it with the old version of the block before sending it on to other owners. The

protocol’s assumption is that the writers have written distinct words in the block, and steps are

taken to merge the blocks. The results are undefined if multiple processors write the same word.

Thus, to avoid undefined results, processors need to selectively invalidate words they have written

but do not own, by simply writing a neutral element, before the update. Since the block is in cache,

these writes do not affect performance, but they do complicate the code. Here we have hidden

them in the UPDATE() call.

The fourth and fifth rows of the table in Figure 1.1(b) again clearly indicate the performance

benefit of redundant computation to minimize synchronization. Despite a nearly 20% increase in
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if (myid == 4 || myid == 8) {

#pragma localize (a,b)

for (j = 0; j < n; ) {

for (k = 7; k >= 0 && j < n; k--, j++) {

if (myid == 4) {

upper=last+k;

lower=first;

}

else if (myid == 8) {

lower=first-k;

upper=last;

}

for (i = lower; i < upper; i++) {

a[i] = (b[i-1]+b[i]+b[i+1])/3;

}

k--;

for (i = lower; i < upper; i++) {

b[i] = (a[i-1]+a[i]+a[i+1])/3;

}

}

SYNCH();

UPDATE(b);

}

}

(a)

#define SIZE 16 // doubles per cache block

double a[MAX_THR][SIZE] __attribute__ ((aligned(128)));

double b[MAX_THR][SIZE] __attribute__ ((aligned(128)));

...

if (myid == 4 || myid == 8) {

for (j = 0; j < n; ) {

for (k = 7; k >= 0 && j < n; k--, j++) {

if (myid == 4) {

upper=last+k;

lower=first;

}

else if (myid == 8) {

lower=first-k;

upper=last;

}

for (i = lower; i < upper; i++) {

a[myid][i] =

(b[myid][i-1]+

b[myid][i]+

b[myid][i+1])/3;

}

k--;

for (i = lower; i < upper; i++) {

b[myid][i] =

(a[myid][i-1]+

a[myid][i]+

a[myid][i+1])/3;

}

}

SYNCH();

if (myid == 4) {

for (i = last; i < SIZE-1; i++) {

b[myid][i] = b[8][i];

}

}

else if (myid == 8) {

for (i = 1; i < first; i++) {

b[myid][i] = b[4][i];

}

}

SYNCH();

}

}

(b)

Figure 1.3 Using redundant computation to reduce synchronization: (a) in a dual address space,
and (b) using multidimensional arrays under a normal protocol.
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the dynamic instruction count, red-inv (the implementation of which we haven’t shown but which

corresponds with inv from Figure 1.2(a)) significantly improves the performance of inv. However,

again, the update version performs substantially better by keeping the block in local memory.

Finally, Figure 1.3(b) demonstrates a method for achieving the same redundant computation

in software under a normal coherence protocol. While this version uses multidimensional arrays

to provide each processor an isolated, though still globally accessible, copy of its data and the

halo, thus avoiding false sharing altogether, it gives up the advantages of the global address space.

In particular, note that communication of the halo elements in the copy loop requires knowledge

of both the exact processor from which the data is to be copied as well as the exact location

of elements to be copied within that processor’s array. While these calculations are simple in

the regular case, where the data is evenly divided among processors, it can be significantly more

complicated when the amount of data owned by processors differs.

Perhaps surprisingly, both the communication requirements and the performance of multidim

are worse than those of red-upd, as indicated by the sixth row of the table in Figure 1.1(b). We have

identified two potential explanations: first, the invalidate protocol requires two communications per

block to achieve the copy while an update protocol only requires one. Second, note that there is a

small window for false sharing during the copy loop: one processor is reading elements from one

half of b while the other processor is writing the other half.

1.4 Example 2: AMMP

AMMP is a molecular dynamics simulator found in both the SPEC CPU2000 and the SPEC

OMP2001 benchmark suites. Computation in the benchmark is dominated by non-bonded force

calculations, which account for more than 96% of the execution time of the benchmark [7]. If

no approximation is used, the solution requires O(n2) computation: for each atom, determine the

force exerted on it by every other atom.

The approximation used by AMMP is a simplification of the Fast Multipole Method algo-

rithm [28] described in detail in Chapter 7. As in the full method, force contributions of spatially

co-located clusters of atoms a sufficient distance away from the atom under consideration are
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foreach atom A

foreach node N

if N contains A or is one of 26 nearest neighbors

foreach atom B in node N

compute forces between A and B

else

compute forces between A and node N

(a)

foreach atom A

foreach node N

if N contains A or is one of 26 nearest neighbors

foreach atom B in node N

add B to A’s interaction-list

else

compute forces between A and node N

foreach atom A

foreach atom B on A’s interaction-list

compute forces between A and B

(b)

Figure 1.4 (a) Original uniprocessor algorithm and (b) the algorithm transformed for distributed
memory.

lumped together. However, rather than constructing and maintaining an octtree, where each node

in the tree contains a volume and its children contains one-eighth of that volume, AMMP maintains

only a single level of nodes.

Figure 1.4(a) presents a high-level representation of the uniprocessor algorithm. Note the fine-

grained nature of the access to atoms in the “nearest neighbors” part of the computation: as the

algorithm is constructed, the atoms with which A will interact are not known until immediately

before the force computation.

Note also that the algorithm takes computational advantage of the symmetric nature of forces:

in computing the forces exerted by atom B on atom A, most of the work necessary to compute

forces exerted by atom A on atom B has also been done. The algorithm therefore computes and

stores forces for both A and B at the same time.

The SPEC OpenMP implementation parallelizes the outer loop, using a simple “omp parallel

for” directive. However, the work per atom is not consistent, for two reasons:

1. The symmetry optimization: since A computes forces for both A and B, B does no compu-

tation with respect to A.

2. The number of atoms contained in the nearest neighbor nodes is variable.

To address this potential load imbalance, the implementation uses the “guided” scheduling param-

eter, a work-list solution to computation partitioning whereby each processor takes N/P atoms,
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where N is the number of remaining atoms after the previous processor has taken its share. This

dynamic partitioning strategy allows for iterations that take varying amounts of time, providing

computation balance at the cost of locality.

Additionally, the SPEC OpenMP implementation adds locks around data involved in the sym-

metry optimization noted above. Locks are required since the data for atom B is potentially read

and updated by multiple processors at the same time. As the number of processors increases, re-

dundant computation becomes significantly more cost-effective than the serialization caused by

locking.

1.4.1 Distributed Implementation

The SPEC OpenMP implementation is not suitable for Non-Uniform Memory Access (NUMA)

architectures like the SGI Altix, which require attention to data locality.

First, to take advantage of the spatial locality that exists in the data, we use a well-known

linear sorting technique to sort atoms along a Hilbert curve [68], significantly improving locality

at minimal cost. Second, we replicate the nodes, since there are relatively few of them and they

are required by all processors. Third, we eliminate the guided scheduling parameter, which is

not effective for load balancing on this platform since it does not take into account the locality of

atoms. Instead we divide the algorithm into two parts as demonstrated in Figure 1.4(b).

Since the amount of work per atom in the first loop is consistent, we distribute the atom-list in

a simple block distribution, allowing an even distribution of computation of the first loop across

processors. The first loop both performs the atom-node calculations and builds an interaction list

consisting of the atoms in nearest neighbor nodes for each atom. We then partition iterations of

the second loop according to the amount of work per atom based on the interaction list. This

repartitioning of iterations essentially results in a repartitioning of data also.

A message passing implementation is left with the additional problem of gathering non-local

atom data for atom-atom interactions. Gathering non-local atoms from the gather lists proceeds in

several stages. First, each processor determines which processors own each atom on each gather

list, taking care to ensure that an atom that appears on more than one list is only gathered once.



13

(a) (b)

(c)

Figure 1.5 Results from runs on an SGI Altix at NASA Ames: (a) lock, (b) no-lock, (c) MPI.

Next, each processor sends requests for the indices of the atoms it requires, and then services the

requests of other processors. Finally, each processor receives the data it requested. Despite the

use of very high-level MPI collective communication primitives, this implementation of the gather

increases the overall code size by roughly 33%.

1.4.2 Performance

Figure 1.5(a) (lock) and Figure 1.5(b) (no-lock) demonstrate the effect of the use of locks on

performance and scalability. Lock uses locks during the atom-atom computation in the second loop,

with disastrous performance consequences. No-lock dispenses with the symmetry optimization,

and instead performs redundant computation. While performance is much improved, the scalability

of the atom-atom computation is hampered by the repartitioning of data: although computation is

perfectly balanced, the scaling efficiency is only 60% and shrinking as the number of processors

increase.
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(a) (b)

Figure 1.6 Improvement from localization, focusing on atom-atom computations, results
normalized to localized version: (a) cache misses that result in communication , (b) performance.

Finally, Figure 1.5(c) demonstrates the scalability problems of the MPI implementation. At 128

processors the time to gather the interaction list dominates the time to compute the interactions.

1.4.3 Localization

Local is a localized version of the lock implementation, which retains the symmetry optimiza-

tion but dispenses with the locks. Instead it makes use of the protocol’s reduction mechanism,

allowing updates to be performed on localized data.

Rather than repartitioning the atom data, the local implementation effects an efficient gather/scatter

communication by introducing a new data structure containing only those elements of the atom data

that are updated in the second loop. During the loop each processor updates its private copy of the

new atom data structure. The updated data items are then globalized in a third loop (partitioned in

the same manner as the first loop) which collapses them via a sum reduction and adds them to the

still localized original data elements.

Figure 1.6(a) and Figure 1.6(b) demonstrate the benefit of localization as measured by commu-

nication reduction and performance improvement, focusing on the atom-atom phase of the com-

putation. The data was obtained from runs of lock, no-lock and local on the simulator described in

Chapter 5.

Local reduces communication of lock by a factor of 75 at 128 processors and improves perfor-

mance by a factor of 43, while still allowing the computation saving device. Local communicates
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half as much data and improves performance by a factor of 2.5 over no-lock. Importantly, the

performance gap widens as the processor count increases. In addition to reduced computation due

to the symmetry optimization, local benefits from both the ability to overcome false ownership

through the explicit placement of repartitioned data in local memory, and the efficiency of the

reduction mechanism.

1.5 Contribution

The thesis of this dissertation is that:

1. User-Controllable Coherence is an efficient mechanism for enabling increased user and com-

piler control over data consistency and data locality.

2. The Dual Address Space provides a high-level interface for programmers to conceptualize

and take advantage of the mechanism.

3. Together they provide users and compilers an efficient means, particularly appropriate to the

structure of scientific applications, of keeping data consistent and local, enabling improved

performance over current global address space implementations.

After a discussion of related work in the next chapter, the remainder of the dissertation evalu-

ates the thesis in two parts. The first part demonstrates the feasibility of the ideas by describing the

details of the high-level architecture, including the programming model, and its implementation

via extensions to a standard directory-based cache coherence protocol. The second part evalu-

ates the performance of Dual Address Space implementations of two applications that currently

underperform on distributed address space platforms:

1. HYCOM makes use of a static though slightly irregular data decomposition, complicating

the nearest-neighbor communication due to stencil computations. The use of a shared ad-

dress space simplifies computation partitioning considerably, while localization significantly

reduces false sharing and other artifactual communication, and preserves a communication
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reducing technique through redundant computation on an extended halo of remote data oth-

erwise not possible in a global address space implementation.

2. The Fast Multipole Method features highly irregular, dynamic computation partitioning, data

decomposition and communication that significantly impair implementation in a distributed

address space. The dissertation demonstrates, through indirect evaluation on existing hard-

ware using hardware counters, the potential for the use of localization to maintain and modify

data partitions, and efficiently control communication through the array reduction mecha-

nism.



17

Chapter 2

Related Work

Research on Distributed Shared Memory (DSM) systems was an extremely active area in the

previous decade, peaking in the late 1990’s. An advantage of working in such a mature area is that

one has a clear vantage point over what was successful, and what was not. However, success is not

necessarily determined by merit and care must be taken not to overlook the specific merits of ideas

that may have fallen short in another area or simply not had sufficient support to withstand the test

of time.

At a course granularity, three approaches to research in this area have focused on different

weaknesses of snoopy broadcast-based shared memory systems. Hardware-based approaches at-

tack scalability concerns by replacing the broadcast-based snoopy cache coherence protocol with

point-to-point message-based directory protocols. At the other extreme, software-based systems,

generally implemented by modifying the virtual memory subsystem of an operating system, at-

tempt to give programmers the benefits of a shared address space at a relatively low cost. Finally,

hybrid systems add varying amounts of hardware in an attempt to optimize the price-performance

trade-off; decreasing the cost of pure hardware controlled systems while improving on the perfor-

mance of purely software-controlled systems.

The point of reference for this discussion (and the dissertation as a whole) is hardware-based

CC-NUMA (Cache Coherent, Non-Uniform Memory Access), arguably the dominant system to

emerge from DSM research and almost certainly the most relevant to scientific computing. CC-

NUMA is currently exemplified by Altix [75] systems from Silicon Graphics Incorporated (SGI).
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The Altix is the follow-on to SGI’s Origin2000 [46], itself a commercialization of the prototype

Dash [47] system created by researchers at Stanford University.

Several very thorough surveys of the general area already exist [17, 63]; the remainder of

this chapter therefore focuses on the aspects of DSM research most relevant to User-Controllable

Coherence and the Dual Address Space Architecture.

2.1 Reducing Artifactual Communication

In the introduction we distinguished between two classes of artifactual communication: com-

munication due to false ownership of data and communication due to false sharing of data. On

CC-NUMA platforms the distinction is one of granularity: ownership occurs at a page granularity

while data transfer, and thus sharing, occurs at a block granularity. However, in software DSM

systems, both ownership and sharing typically occur at a page granularity.

2.1.1 Addressing False Ownership

Cache-Only Memory Architectures (COMA) [82] address the issue by distributing ownership

at cache-block granularity. In this architecture, there is no memory, instead memory is treated

as a cache. As a consequence there is no home node for a block. The major problem for this

architecture is what to do on a cache miss, that is when the desired block is not already in the local

cache. Both locating the missing block, and ensuring that there is somewhere to put the replaced

block if it is the last copy, require complex hardware. Another problem is determining the correct

amount of memory to enable good performance.

Simple COMA [69] architectures address the complexity of COMA systems by distinguishing

between coherence granularity and ownership granularity. As with a CC-NUMA architecture, data

is allocated at a page granularity but kept coherent at a block granularity. However, unlike CC-

NUMA, space is allocated in local memory for non-local data, again at a page granularity. Other

blocks in the page are left invalid unless and until they are requested by the CPU. When a non-local

block is evicted from the cache it can be stored in, and re-fetched from, local memory, as long as

it has not been written by another processor.
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Simple COMA still has a “last-copy” problem on block replacement, significantly complicat-

ing the coherence protocol. A variant from Stanford [38] addressed this problem by maintaining a

fixed home for a block. However, a significant problem for all variants of the architecture is wasted

memory due to fragmentation. MS-COMA [9] attempts to address that problem by allowing mul-

tiplexing of pages; that is non-local blocks from multiple pages are permitted to reside in the same

local page.

Stache, the memory cache of the Tempest [65] architecture, preceded Simple COMA. However

it requires a custom coherence protocol whereas, according to the authors, S-COMA works with

a standard protocol. Reactive NUMA [24, 29] attempts to combine the best aspects of S-COMA

with those of CC-NUMA platforms.

While the replication of cache blocks can improve performance for applications whose working

sets for read-only data is larger than the last-level processor cache, it does not address false sharing.

2.1.2 Addressing False Sharing

Hardware-based cache coherence protocols are by nature eager algorithms, reacting in response

to every read and write. Even so, these mechanisms are not sufficient to ensure the reasonable

global ordering of instructions issued by multiple processors as formalized by sequential consis-

tency [44]. The additional ordering constraints required to preserve sequential consistency are:

1) writes to the same location must be serialized, and 2) writes must be globally complete before

any read returns the written value [4].

These constraints have many performance implications, not the least of which is to exacerbate

the impact of false sharing. As we will discuss in Chapter 6, multiple writes by different processors

to the same block, each of which must complete before the next can be issued, can result in block

ownership ping-ponging from processor to processor.

Relaxed consistency models address the performance problems of sequential consistency by

removing, to varying degrees, the ordering constraints imposed by the model. The most ambitious
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models, Release Consistency [26] and Weak Ordering [3], relax all ordering constraints for nor-

mal memory operations, and introduce special “fence” instructions to enable explicit indication of

synchronization.

While the use of these instructions allows multiple writes to the same block to be coalesced

before a coherence, if the underlying coherence protocol mechanism remains unchanged, the win-

dow of opportunity for coalescing is narrow. The protocol eagerly propagates actions for write

instructions regardless of their position with respect to fence instructions.

The Delayed Consistency [21] hardware protocol takes advantage of the distinction between

synchronizing versus normal memory operations to delay coherence operations for normal memory

operations until synchronization. However, the hardware proposed is limited in scope – the authors

advocate maintaining state, and thus delaying coherence, for only between two and eight blocks at

a time – so the window of opportunity for coalescing coherence transactions remains quite small.

More recent hardware-based work attempts to use speculation to reduce false sharing. For

example, Coherence Decoupling [36] speculatively assumes that a block is not truly shared, and

rolls back if that assumption turns out to be false. Again, the window of opportunity is determined

by the amount of state that can be saved in hardware structures near the CPU. Another problem is

that it can actually increase coherence-related traffic. Finally, it does not address the problem of

true-sharing.

Since software-based distributed shared memory systems implement the coherence protocol

in software, they have the advantage of perspective: coherence operations can be delayed until

they are absolutely necessary. In these systems coherence is maintained at a page granularity,

greatly increasing the likelihood of false sharing, so the coalescing of coherence transactions is

essential to performance. Additionally, these systems can take advantage of the coarser transaction

granularity to use an update protocol rather than the invalidation protocol used by most hardware

implementations.

The Munin [13] software DSM system, taking full advantage of the freedom provided by the

Release Consistency model, delays all coherence transactions until the end of a critical section. At

the synchronization, processors send their modifications, in the form of diffs, to all sharers. The
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Treadmarks system proposes a variation, known as Lazy Release Consistency [39], to the Munin

protocol: rather than send diffs to all sharers at the end of a critical section, send modifications

only to the processor that requires them at the beginning of the next critical section. Follow-on

work by the same authors, described in the next subsection, provided mechanisms for a compiler

to indicate further opportunities for reducing traffic. Home-based Lazy Release Consistency [86],

simplifies the protocol substantially by supplying a per-page “home” node (as in hardware-based

DSM systems), providing a single point of contact for requests for, and updates of, each shared

page.

2.2 Software Control Over Coherence

A large body of work that attempted to take advantage of the structure of scientific applica-

tions by allowing software control over cache coherence protocols, centered around the Tempest

interface for user-level shared memory [66]. A defining distinction between that work and User-

Controllable Coherence is their respective views of the role of the coherence protocol and the

consistency model. In Tempest, the coherence protocol is explicitly described and treated as a pol-

icy. The entire coherence protocol is available at the user level, and optimizations to reduce com-

munication require modifications of the protocol, as well as the application, on a per-application

basis [23].

A contemporaneous response to this potential embarrassment of riches, Loosely Coherent

Memory [45], proposed a restricted set of mechanisms (i.e., a fixed Tempest coherence pro-

tocol), very similar in spirit to those provided by User-Controllable Coherence, that compilers

could invoke to perform communication optimizations. In particular, it provided three directives

which might retrospectively be viewed as moving data between local and global address spaces:

mark modifications created a writable block removed from the jurisdiction of the coherence pro-

tocol; reconcile copies acted as a barrier, after which all modified blocks had been flushed to

their home to be reconciled by a user-definable function; finally, flush copies enabled a processor

to return modified blocks to the home processor without the implied barrier. Perhaps the most

significant difference between LCM and User-Controllable Coherence is the former’s lack of a
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mechanism to reconcile (i.e., “globalize”) at a granularity finer than all-modified-blocks: without

such a mechanism it is impossible to keep data that does not need to be communicated localized

while globalizing data that requires communication.

Earlier work from the same group, Cooperative Shared Memory (CSM) [34], also proposed

directives enabling software and hardware to work together to communicate data more efficiently.

The emphasis of that work was on cost-efficiency: it proposed 1) simplified coherence hardware,

leaving software to handle complex cases; and crucially, 2) semantics-preserving directives – in-

serted by users or compilers, describing producer/consumer data patterns – to help avoid the com-

plex cases.

As noted above, the Treadmarks software DSM system also provided mechanisms that could

be invoked by a compiler to improve protocol performance [22] by partially or fully removing data

from the domain of the coherence protocol. In particular, it provided two directives: Validate was

used to explicitly fetch a region of data (or if the region was indicated to be completely overwritten,

not fetch it), thus bypassing the usual page-faulting mechanism for bringing in non-local data; Push

enabled explicit updates of remote data at a barrier.

Other researchers have tried to circumvent the inefficiency of update protocols when combined

with eager hardware-based coherence by providing mechanisms for the indication of specific op-

portunities for updates: the data forwarding mechanism [41] from Illinois, the deliver and update-

write operations on the DASH architecture [47], and the poststore instruction on the Kendel Square

Research KSR1 [67]. In the same vein, several groups of researchers have also looked at integrating

into DSM systems more explicit message passing mechanisms that bypass the coherence protocol

[42, 85, 25, 70].

Finally, other groups have looked into programmable coherence protocols, most notably the

FLASH [43] project at Stanford; however, on that system the protocol was not accessible at user-

level, only at system level.
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2.3 Transactional Memory

Transactional memory [32] is currently enjoying enormous research interest. The goal of trans-

actional memory is to simplify parallel programming by providing mechanisms, in hardware or

software, for implementing implementing critical sections as transactions. The idea is that code

within a transaction can be executed in parallel speculatively and rolled back if a conflict is de-

tected. References to data that is truly shared and contended are not helped by this technique.

Speculative Lock Elision[64] automatically creates transactions from lock-based critical sec-

tions by speculatively assuming that locks are not necessary, executing as though the locks are not

present, and rolling back if the speculation is incorrect.

The work in this area closest to User-Controllable Coherence in spirit is Transactional Coher-

ence and Consistency [31] since it is also based on a contract between hardware and software:

in this case, software partitions computation into atomic transactions and hardware ensures that

they execute atomically. The drawback of this everything-is-a-transaction view is that fine-grained

transactions are not an efficient means of exploiting the kind of coarse-grained parallelism exhib-

ited by most scientific applications.

2.4 Address Spaces

Hardware-based distributed shared memory systems provide a shared virtual address space on

top of a shared physical address space. Software-based DSM systems, on the other hand, provide

a shared virtual address space on top of distributed physical address spaces. In both systems, a

parallel program is typically implemented as a single process with multiple threads of control, all

running in the same global address space.

Several Cray systems, including the T3E [72] and the more recent Blackwidow [71], implement

a distributed virtual address space on top of a shared physical address space. On these platforms it

is possible to directly access remote data with special load and store instructions, but not possible

to cache it. As in the message passing paradigm, a parallel program is implemented as multiple

processes, each with its own complete address space; however, each process also has the ability to
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directly access data in the address space of other running processes (so long as it knows where to

find it).

For completeness, we must mention the existence of a “Dual Address Space Operating Sys-

tem,” patented by researchers at Hewlett Packard [54]. Under this operating system, an application

developer can decide whether to run in either a shared address space or a private address space. In

other words, the choice is made at a program granularity.

2.5 OpenMP Extensions

Finally, another source of related work stems from attempts in the OpenMP community to

extend the standard with specific support for distributed shared memory platforms. For example,

work by DEC describes HPF-like extensions to partition data and computation [10], while other

work advocates runtime page migration [58]. One sub-branch of particular relevance to our work

advocates privatization of memory references in software [80, 14]. That work suffers from the need

to explicitly copy data from global to private memory. Also, while it is clear that their approach

would apply well to coarse-grained applications, it does not appear to apply equally well to fine-

grained applications.
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Chapter 3

Architecture and Programming Model

This chapter describes the Dual Address Space, the software interface to the Dual Address

Space Architecture. Throughout the chapter, the discussion focuses on the high-level interface,

abstracting away from the hardware implementation. This abstraction is reflected by our use of the

term threads, as opposed to the more hardware-oriented processors. The discussion also abstracts

away the other side of the interface, using software to denote the output of compilers as well as

that of systems programmers and application developers.

The chapter opens with a description of the Dual Address Space. It proceeds by introducing

new instructions for accessing data in the two address spaces, and moving data between them. It

then describes the memory model, in particular how sequential consistency is preserved. The chap-

ter closes with a discussion of the programming model, demonstrating how software can explicitly

use the Dual Address Space to reduce artifactual communication.

3.1 Dual Address Space

A thread in a Dual Address Space Architecture has access to two address spaces: the global

address space normally associated with threads, plus a local address space.

As Figure 3.1 indicates, in size and structure, the local address space of each thread is a logical

duplicate of the global address space. If the global address space is addressable by 64 bits, then a

thread’s local address space is also 64-bit. Data in the local address space is subject to the same

access controls as in the global address space. Storage set aside for data at a particular address in
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Figure 3.1 A thread’s-eye view of the standard global address space (left), and of the Dual
Address Space (right).

the global address space, is implicitly also set aside at that address in each thread’s local address

space. However, the values in the storage may be different.

Data Validity. At a given moment in time, data is only valid, at a word granularity, in either the

global address space or the local address space of one or more threads. Data in the global address

space is valid for all threads. Provided synchronization operations are marked, data in the global

address space is kept sequentially consistent for data-race-free programs. On the other hand, data

values in a thread’s local address space are only valid for that thread. Localized data is not kept

consistent and multiple local copies, with different values, may exist in parallel.

Data Movement. Threads move data between address spaces at a word granularity. Data move-

ment is instantaneous and affects all threads. When one thread moves a word from the global

address space to its local address space, the word is invalidated for all other threads until they

explicitly either 1) move it into their own local address space, or 2) move it back into the global

address space.

When any thread moves a word from its local address space to the global address space, the

action results in the collapse of all the local values. If a reduction operator has been defined for

the address then all the local values and the value from the global address space reduce to one

according to the operator. Otherwise, if multiple local data values exist, the result is undefined.
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3.2 New Memory Instructions

The Dual Address Space Architecture introduces two new memory instructions that enable

access to the local address space, ldL and stL. Additionally, to facilitate data motion between the

two address spaces, localizing semantics are added to local memory instructions, and globalizing

semantics are added to existing, global, ld and st instructions.

3.2.1 Local Memory Instructions

Local memory instructions serve two purposes: in addition to loading and storing data in the

local address space of the issuing thread, they also localize data – move from the global to the local

address space – that is not already present.

To enable reductions, the general form for local loads is ldL[op], where op is either nop, or one

of eight reduction operators. The reduction operator is associated with the load of data targeted

for a reduction because the global value is not loaded; instead, since the local accumulation will

ultimately accumulate onto the old global value, the thread initializes the data with the identity

element particular to the operator.

The precise semantics for local instructions are as follows (where ldL indicates that op == nop

and ldLop that op != nop):

• ldL r1 = [r2]:

1. If the data at the address in r2 is not valid in the local address space of the issuing

thread, then localize it: move the data from the global address space and mark the

address localized.

2. Fetch the data at the address in r2 from the local address space and store it in r1.

• ldLop r1 = [r2]:

1. If the data at the address in r2 is not valid in the local address space of the issuing

thread, then localize it: fill the local memory at the address with the identity elements
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particular to the operator op (i.e., 0 for “+” and 1 for “*”), and mark the address local-

ized.

2. Fetch the data at the address in r2 from the local address space and store it in r1.

• stL [r2] = r1:

1. If the data at the address in r2 is not valid in the local address space of the issuing

thread, then localize it: mark the address localized.

2. Store the data in r1 into the address in r2 in the local address space.

3.2.2 Global Memory Instructions

Global ld and st instructions also serve two purposes: in addition to loading and storing data

in the global address space, they also globalize data – move data from the local address spaces of

any threads that have the data localized to the global address space – that is not already present.

The precise semantics for global memory instructions are as follows:

• ld r1 = [r2]:

1. If the data at the address in r2 is not valid in the global address space of the issuing

thread, then globalize it: move the data from the local address space and mark the

address globalized.

2. Fetch the data at the address in r2 from the global address space and store it in r1.

• st [r2] = r1:

1. If the data at the address in r2 is not valid in the global address space of the issuing

thread, then globalize it: mark the address globalized.

2. Store the data in r1 into the address in r2 in the global address space.

3.2.3 Update Instruction

Finally, a new update memory instruction serves to effectively globalize and re-localize, in a

single step, data currently valid in the executing thread’s local address space.
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The precise semantics are as follows:

• update [r1]:

1. After all threads that have the data in r1 valid in their local address space have executed

the update, each will have the same new value, updated according to the presiding

reduction operator, valid in their local address space.

Note that, to ensure forward progress, all threads that have the data localized must execute the

update.

3.2.4 IA-64 Extension

As evidence that the instruction-set extensions we propose are not onerous, we demonstrate

that the new instructions easily fit within the opcode-space of the existing IA-64 instruction-set

architecture. IA-64 memory instructions contain a two-bit hint-bit field, yielding a maximum of

four possible hints, of which only three are currently used. We use the fourth combination to indi-

cate local instructions. Other bits, normally used to store load/store-type information not relevant

to local operations, describe the reduction operator for loads, or indicate the update property for

a prefetch. We have also extended Intel’s Open Research Compiler for IA-64 to produce IA-64

binaries with localizing extensions.

3.3 Memory Model

We define the Dual Address Space memory model in terms of programmer-centric weak order-

ing synchronization models [3], later renamed sequential consistency normal form (SCNF) models

in Adve’s thesis [2]. Recent work has used SCNF models to define the memory models of both the

C++ and Java languages [12, 50].

SCNF models define contracts between software and hardware. The idea behind the contracts

is to enable faster hardware by reducing the burden of maintaining sequential consistency, while

simultaneously relieving software of the need to understand the requirements imposed by those

optimizations.
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3.3.1 Data-Race-Free-0

The simplest synchronization model is called Data-Race-Free-0. Informally, software promises

hardware that it will explicitly label all memory operations for which ordering matters as synchro-

nization operations, so that hardware can focus on those operations and not worry about maintain-

ing order for other operations. In turn, hardware promises that it will maintain order for synchro-

nization operations.

A more formal description, based on the presentation in Adve’s thesis, follows (though taking

a cue from the Lazy Release Consistency authors [39], we have condensed several definitions):

Definition 3.1 Two memory operations conflict if they access the same location and at least one is

a write [73].

Definition 3.2 Happens-before-0 ( hb0−−→):

• Given two memory operations op1 and op2 that are executed by the same thread, if op1 occurs

before op2 in program order, then op1
hb0−−→ op2.

• Given two synchronization operations op1 and op2 that are executed by different threads but

access the same location, if op1 completes before op2 (i.e., op2 reads the value written by

op1), then op1
hb0−−→ op2.

• If op1
hb0−−→ op2 and op2

hb0−−→ op3, then op1
hb0−−→ op3.

Definition 3.3 Data-Race-Free-0:

1. Synchronization operations are marked.

2. All conflicts are ordered by the happens-before-0 relation.

3.3.2 Localized-Data-Race-Free-0

In order to preserve sequentially consistent semantics for a data-race-free-0 program with local

accesses, software must ensure that localization does not undermine the happens-before-0 relation.

For example, Figure 3.2 depicts a situation in which a read does not return the value of the last
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Figure 3.2 Example of a cross-thread local-to-local causal conflict.

write, even though the happens-before-0 relation does hold between the two operations, because

both are local operations. (In the figure, PO labels indicate happens-before-0 ordering due to

program-order, while the SO label indicates happens-before-0 ordering due to synchronization-

order.)

Informally, to be guaranteed a sequentially consistent execution, software must ensure that no

attempt is made by one thread to read data localized and written by another thread until: 1) after

the two threads have synchronized, and 2) some thread has globalized the data.

We formally extend the definition of Data-Race-Free-0 as follows:

Definition 3.4 Two memory operations op1 and op2 are in causal conflict if op1 is a write and op2

is a read that returns the value written by op1 [2].

Definition 3.5 Two memory operations op1 and op2 are in local-to-local causal conflict if op1 is a

stL and op2 is a ldL that returns the value written by op1.
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Definition 3.6 A cross-thread local-to-local causal conflict occurs when op1 and op2 are executed

by different threads, op1 is a stL, and op2 is a ldL that would return the value written by op1 if

either operation were global.

Definition 3.7 Localized-Data-Race-Free-0

1. Synchronization operations are marked and global.

2. All conflicts are ordered by the happens-before-0 relation.

3. There are no cross-thread local-to-local causal conflicts.

Note that software may legitimately choose not to obey Localized-Data-Race-Free-0. For ex-

ample, looking again at Figure 3.2, it is possible that software intends that the load should read

data from a previous local store to x, and not the store by the thread running on P0, despite the

synchronization event. Similar situations arise frequently in reduction computations.

However, to hold up its end of the contract hardware must ensure that when software does obey

Localized-Data-Race-Free-0, it is guaranteed sequential consistency; thus if the local read by the

thread on P1 in Figure 3.2 is replaced by a global read, or by an update matched by updates from

all other threads with localized copies of x, the value returned must be the value written by the

thread on P0.

3.3.3 Extending Other SCNF Models

Adve’s thesis goes on to describe more complicated SCNF models designed to permit more

complex hardware optimizations. For example, by refining the requirements for marking synchro-

nization operations slightly, the Data-Race-Free-1 model permits release consistent (RCSC) hard-

ware. As long as the synchronization operations remain global, the extension of Data-Race-Free-1

to allow local operations is trivial.

Two more synchronization models described in Adve’s thesis, PLpc1 and PLpc2, represent

stages in the realization of a model that supports more complex release consistent (RCPC) hard-

ware.
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Figure 3.3 Using a Dual Address Space to: (a) create a data partition, (b) repartition data.

Again, PLpc1 requires further distinguishing between different varieties of synchronization

operations. PLpc2, on the other hand, requires software to distinguish data operations that must

occur atomically from those that can be executed non-atomically. A non-atomic write is visible

on one processor before it is visible on all processors. A non-atomic read returns the value of a

write before it is visible on all other processors. Since all local reads and writes are by definition

non-atomic, they may be labeled as such.

Thus, so long as software marks synchronization operations according to the SCNF model

requirements, and avoids cross-thread local-to-local causal conflicts, it will be guaranteed sequen-

tially consistent execution of a PLpc2 program with local memory operations on release consistent

(RCPC) hardware.

3.4 Programming Model

Software uses the Dual Address Space to avoid artifactual communication by 1) explicitly

placing data near threads that use it, and 2) explicitly delaying communication until it is required.
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3.4.1 Data Partitioning

Defining a data partitioning using a Dual Address Space is similar to using the existing first-

touch policy on the SGI Altix. Under first-touch the first thread to touch a piece of data owns that

data; more precisely stated, the thread owns page that the data resides in.

The benefit of the first-touch policy over more static policies, for example round-robin at a

page or block granularity, or even the programmer-controlled distribution offered by languages

like High Performance Fortran, is that it allows the data distribution to be dynamically determined.

Thus the data partition can follow the computation partition, and need not be determined or even

expressible at compile time.

However, the policy has two obvious drawbacks. First, the granularity of ownership is de-

termined by an architectural parameter, the page size, not by the needs of the application. As

described in the introduction, this can lead to significant performance degradation due to false-

ownership, particularly for computations that require multi-dimensional data distributions. Second,

since only the first touch matters, a data distribution is static after it has been initially determined.

There is no mechanism for modifying the distribution once it has been defined.

The following shows how local operations enable the data partition to follow the computation

partition at a much finer granularity, since data can be localized at a word granularity. It then goes

on to describe how a data partition thus defined can be modified.

Partitioning Data. To create a data partition, as shown in Figure 3.3(a):

1. Owners localize their portion of the data and continue to operate on it using local operations.

The example supposes that computation partitioning divides loops that operate on the pictured

array into three equal parts (three colors), but because the data straddles a single page boundary

(solid line), the Altix first-touch policy divides ownership into two parts. Proper data distribution is

achieved by using local memory operations for the duration of the computation rather than global

operations, as follows (where a stL operating on a 4-byte value translates to the st4.loc assembler

mnemonic):
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loop: loop:

st4 [r2]=r3,4 st4.loc [r2]=r3,4

... => ...

add r3=1,r3 add r3=1,r3

br.cloop.sptk loop br.cloop.sptk loop

Note that the lifetime of the distribution is not limited to the loop shown; rather it is determined by

the next use of globalizing instructions.

Repartitioning Data. Figure 3.3(b) illustrates the steps required to modify an existing data par-

tition:

1. Threads (current owners, new owners or others) globalize data to be repartitioned.

2. New owners localize their portion of the data and continue to operate on it using local oper-

ations.

This example continues the previous example, further supposing that computational require-

ments dictate a redistribution of the array from three equal parts to three unequal parts.

loop:

st4.loc [r2]=r3,4

...

add r3=1,r3

br.cloop.sptk loop

... ;; set up for loop2

loop2:

lfetch [r2],4

br.cloop.sptk loop2

... ;; set up for loop3

loop3:

st4.loc [r2]=r3,4

...

add r3=1,r3

br.cloop.sptk loop3



36

G L
0

L
1

L
2

v
1

v
1

v
1

v
1

v
2

v
1

v
1

v
2

v
2

v
2

v
2

(a)

G L
0

L
1

L
2

v
1

0 0 0

v
2

v
3

v
4

v
5 

(= v
1
 + v

2
 + v

3
 + v

4
)

(b)

Figure 3.4 Using a Dual Address Space to implement communication patterns:
(a) producer/consumer, (b) reduction.

The redistribution is achieved by having each thread globalize its data (in loop2, using global

prefetch instructions), then relocalizing according to the new computation partition in loop3, and

continuing to use local memory operations for the duration of the computation.

3.4.2 Communication

Since localized data is not kept consistent, modifying (already) localized data does not cause

communication. Since globalizing localized data causes it to become consistent, and communica-

tion is required for consistency, communication is made explicit by moving data into the global

address space. Thus, to explicitly delay communication, software localizes data and leaves it

localized for as long as possible, moving it to global memory only when required to satisfy data-

dependencies.

The following describes how the appropriate use of local and global operations can ensure

that common communication patterns are implemented efficiently by making their communication

explicit.
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Producer/Consumer. Figure 3.4(a) demonstrates the steps required to explicitly implement pro-

ducer/consumer communication of a single word:

1. Each thread, producer and consumer(s), localizes the word and continues to operate on it

with local operations.

2. Threads synchronize.

3. One thread, producer or consumer, globalizes the word.

Note that either producer or consumer may globalize the data, and that the other may continue

to use local operations. However, if the data is being globalized only to be immediately localized

again by all threads, a more efficient implementation would use the explicit update mechanism to

communicate the updated word from producer to consumers:

1. Each thread, producer and consumer(s), localizes the word and continues to operate on it

with local operations.

2. All participating threads, producers and consumers, execute the explicit update instruction.

Note that in addition to removing the globalization, the explicit update approach may also re-

move the need for synchronization. Synchronization is implicit since all producing and consuming

threads participate in the update. However, in general, synchronization may still be necessary to

ensure other global values are consistent.

For an example of producer/consumer communication see the false sharing model discussion

in Chapter 1.

Reductions and Gather/Scatter. Figure 3.4(b) illustrates the steps for implementing the reduc-

tion communication for a single word:

1. Writers localize the word using operator-load and continue to operate on it with local oper-

ations.

2. Threads synchronize.
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3. Some thread globalizes the word, causing a reduction.

Again, an alternate implementation might leave the data localized and ensure that all participat-

ing threads, writers and any readers, execute the update instruction. However, it must be noted that

after doing so, all threads are left with the new global value, albeit localized; the operator property

is lost, and the data is no longer fit for future reduction.

To implement a more general gather/scatter communication for non-local writes to an array of

data:

1. Writers localize the portion of the array that they will update, using operator-loads and

compute using local operations.

2. Threads synchronize.

3. Threads, owners or otherwise, globalize the array, causing multiple reductions.

For an example of gather/scatter communication, see the localized implementation of AMMP

in Chapter 1.

3.4.3 Higher-level Interface

Currently the only high-level interface for distinguishing between local and global memory op-

erations is a simple pragma-based mechanism for C/C++ programs, and its directive-based equiv-

alent for Fortran programs. The syntax for the localize pragma is as follows:

#pragma localize ([optional-operator,] name-list)

The pragma indicates to a complying compiler that, for the duration of the following statement

(potentially a statement block containing multiple statements), operations accessing data in name-

list should be local operations. If the optional-operator parameter is present, then loads should be

implemented as operator-loads.

A more elegant, high-level language approach to expressing the location and motion of data in

the Dual Address Space is an open research question.
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3.5 Summary

This chapter described the Dual Address Space, the programmer’s interface to the Dual Address

Space Architecture, beginning with a thread’s-eye view of the Dual Address Space. In size and

structure, the local address space is a logical duplicate of the global address space, but it may

contain different data values. Data is only valid in either the local or global address space at a

given time. The chapter then introduced new instructions for accessing data in the local address

space, ldL and stL, and presented the precise semantics of the local and global instructions.

Next, the chapter provided a formal definition of the memory model, in terms of well-established

programmer-centric synchronization models. It demonstrated that as long as software follows es-

tablished guidelines (indicating synchronization operations and making them global; ensuring no

races exist between data operations; ensuring localized data is globalized appropriately) it will

be guaranteed sequentially consistent execution. Finally, the chapter described the programming

model, explaining how software uses the Dual Address Space to explicitly reduce artifactual com-

munication.
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Chapter 4

Implementation

This chapter describes an implementation of the Dual Address Space Architecture. The im-

plementation extends the SGI Altix design, itself based on the SGI Origin [46], with roots in the

Stanford Dash [47]. The chapter opens by describing extensions to the design of a node, the basic

building block in all the aforementioned systems.

The chapter continues with a detailed description of the User-Controllable Coherence [51]

cache coherence protocol, initially assuming single-word cache blocks, but then considering the

ramifications of multi-word blocks. Next the chapter describes the support for the memory consis-

tency model presented in the previous chapter. Finally, the chapter closes with a discussion of the

implementation of local memory.

4.1 Node Design

Figure 4.1 presents a block diagram of a node, the basic building block in a Dual Address Space

implementation. The design is based on the node of an SGI Altix system, though we also refer to

its predecessor the Origin 2000, about which more detailed information is publicly available [46].

The Hub chip, renamed the Super-Hub (SHub) in the Altix, is literally at the center of the

design. It connects one or more processors with 1) memory and its associated directory, 2) the

network and 3) I/O. The Hub hides the DSM implementation from the processor by handling all

memory requests, determining whether requested blocks are available locally or require communi-

cation, performing any communication necessary to obtain requested blocks, and finally supplying

the blocks to the processor.
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Figure 4.1 Block diagram of a node in a Dual Address Space implementation, based on that of
the SGI Altix and its predecessor, the Origin 2000.

In current Altix implementations, the SHub is a separate ASIC. As core counts increase with

chip density, we would expect it to become more integrated with the processor as in current AMD

Opteron designs [15].

4.1.1 Processor Interface

The primary requirement on the processor, in addition to the instruction set and coherence pro-

tocol extensions required to support a Dual Address Space, is that it supports a relaxed consistency

model. We assume an Itanium-based processor since 1) the current Altix is Itanium-based, 2) Ita-

nium uses a release consistent memory model, and, 3) as we have demonstrated in Chapter 3, the

IA64 instruction set can easily be extended to support localizing instructions.

Each processor is shown with a point-to-point connection to the Hub rather than connected via

a single common bus. The distinction is purposeful and significant, since local memory requests

should not be subject to a bus-based protocol. However, the implementation could be realized as a

multiplexed single bus, as in the Origin implementation [46].

Hardware to perform reductions, inspired by the Tree Module in IBM’s Blue Gene/L sys-

tem [1], is located in the Processor Interface. As the result of the reduction transaction, the re-

questing processor receives multiple responses, one from memory, and one from all processors
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that have updates. The requesting processor’s interface is responsible for combining results and

delivering them to the processor.

4.1.2 Memory and Directory Interface

The directory and memory interface is extended with connections to local memory. The imple-

mentation of local memory is discussed in detail in Section 4.5.

4.1.3 Network and I/O Interfaces

The network and I/O components of the interface remain unmodified.

4.2 Cache Coherence Protocol

This section describes the implementation of the User-Controllable Coherence protocol. For

ease of presentation we divide the description of the protocol into two parts. The first part describes

the processor side of the protocol, abstracting away the mechanism by which coherence events are

propagated between processors. The second part focuses on that mechanism, describing extensions

to a directory-based protocol.

4.2.1 Abstract Protocol

The traditional role of a cache-coherence protocol is to help maintain a global address space

in the presence of caching – that is, to ensure that one processor’s modifications to global memory

are visible to all processors. State machines for every block in every processor cache, maintain

the following invariant: multiple processors can read a cached block at the same time, but only a

single processor can write a cached block at a time. This system of state machines preserves the

invariant by producing for each input – a read or write operation on a block by some processor –

the coherence events, if any, necessary to maintain the invariant for that block.

Figure 4.2 presents the state machine for a standard MSI cache coherence protocol. It consists

of three states, representing the state of a line in the cache – Modified, Shared, or Invalid. Modified

indicates that the block has been, or will be, written and is held exclusively in that cache. Shared
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Figure 4.2 Basic MSI protocol state diagram (based on Culler and Singh [17]).

indicates that the data is read-only and may be found in other caches. Invalid indicates that the

block is either not in the cache or is present but has been invalidated.

There are two kinds of transitions between states. Solid lines indicate internal transitions,

transitions caused by the execution of load and store instructions. Labels on the internal transitions

indicate the instruction that caused the transition and the resulting coherence events generated. For

instance, a store to a shared block results in a transition to state modified, in addition to a GetX

coherence event.

Dashed lines indicate external transitions, transitions caused by coherence events generated

by other processors. Labels on the externally caused transitions indicate the coherence event that

caused the transition and whether or not a data response is required.

Extended Protocol. In addition to maintaining the global address space, the User-Controllable

Coherence protocol also maintains a local address space for every processor, and facilitates the

transitions between the two address spaces. There are two significant ways in which supporting a

local address space is different from supporting a global address space. First, uncached localized
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Figure 4.3 Extensions to the MSI protocol to enable transparent use of local memory.

blocks reside in local memory: localized blocks purged from the cache reside in local memory,

and local memory must be searched first for blocks not found in cache. Second, localized blocks

can be both read and written by multiple processors, requiring a mechanism that resolves both

accumulations to the same address and multiple writes to different parts of the same block.

Figure 4.3 illustrates changes to the protocol required to support a Dual Address Space. For

clarity, the state diagram is broken into two parts with internal transitions on the left (with solid

lines), and external transitions on the right (with dashed lines). Inspection of the two halves reveals

that the basic MSI protocol described above remains intact; the transitions between the M , S and

I states are exactly the same.

The protocol adds three new states – Local Modified (ML), Local Shared (SL), and Local

Invalid (IL). Like its counterpart in the standard protocol, ML indicates that the block is localized
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and has been, or will be written; however, it does not imply exclusive access to the block. Blocks

in SL state are localized read only, and therefore do not require communication upon globalization.

IL represents localized data that has been evicted from the cache and moved to local memory.

Note that there is an ambiguity between I and IL since both represent data that is not cached.

Processors determine whether to look for data in local or global memory based on the type of the

memory instruction that caused the miss. If the instruction was local load or store, the issuing

processor looks for the data in local memory first. If the data is not found, then the request is

forwarded to global memory. Similarly, if the instruction that caused the miss was a global load

or store, then the processor goes straight to global memory, though it is possible the processor has

the data in its local memory. The coherence mechanism must be able to make the distinction and

inform the processor.

Internal transitions between the new set of states closely mirror the transitions between the old

states. Internal transitions between global states and local states and back, which reflect localiza-

tion and globalization events respectively, are also symmetric.

External transitions, on the other hand, are not symmetric since no coherence events result in a

transition to a new local state. Two new coherence events, GetSL and GetXL, indicate that some

other processor has localized a block. Processors that have the global data cached must invalidate

it upon receiving a GetSL or GetXL to ensure they do not find data if they issue a normal load or

store to the address. However, processors that already have the block localized are not interrupted.

At a high level, a typical localization/globalization cycle for a block proceeds as follows:

1. Processors execute global operations on the block, resulting in the global coherence events

necessary to maintain the invariant.

2. Some processor executes a localing memory operation on the block, resulting in a localizing

coherence event, which invalidates the block in all other processor caches.

3. The processor, and potentially others, continues to execute local operations. While for the

most part these operations do not generate coherence events, the coherence mechanism con-

tinues to monitor the address, waiting for a globalizing event.
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Figure 4.4 Pictorial descriptions of the complete set of transactions necessary to maintain
coherence in the four protocol phases described in the text. Types 1, 2 and 3 may be familiar as

the transactions in a standard protocol, while types 4, 5 and 6 are new.

4. Some processor executes a globalizing memory operation, resulting in a globalizing coher-

ence event which potentially leads to a reduction if it has been modified.

4.2.2 Directory Protocol

In a directory protocol, the coherence mechanism is enhanced with state machines for every

block in memory, collectively called the directory. The directory in conjunction with the processors

maintains the coherence invariant for each block via sequences of messages, collectively referred to

as transactions. Figure 4.4 presents the full arsenal of transactions necessary to maintain coherence

in a Dual Address Space. The first three, types 1, 2 and 3, may be familiar as transactions from a

standard protocol, while types 4, 5 and 6 are new.

A state machine at the directory in a standard MSI protocol has three states: Modified means

a processor has the block modified. The directory keeps track of which processor. Shared means

at least one, possibly more than one processor, has the block read-only. Again, the directory keeps

track of the processors in its sharing list. Finally, Idle means that no processor has the block

cached. Directory state machines are extended with two new states, ML and SL.
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The high-level localization/globalization cycle for a block in a directory-based implementation

proceeds as follows:

1. Global. A standard directory-based MSI protocol, very similar to that presented in [61],

maintains global coherence. No transaction is necessary when a processor executes a load

and finds the block already cached. Similarly, if a processor has already modified a block in

its cache, no transaction is necessary to perform further reads or writes.

When a transaction is necessary, its type is determined by two factors: whether the instruc-

tion modifies the block, and whether the block is already modified in another cache. Simple

request-response transactions (Type 1 in Figure 4.4) are possible when data has not already

been, and will not be, written. Type 2 transactions are required when data is going to be writ-

ten: other processors that have cached the data must be informed, through an invalidation

message, so that they do not read stale data. Finally, Type 3 transactions are necessary when

data that has been written is going to be read or written by another processor: the directory

forwards the request to the writer, which replies to the requester with the data.

2. Localizing. The first dynamic instance of a localizing load or store to a block results in a

message to the directory for that block, which sends invalidation messages to any current

sharers, adds the requesting processor to the sharing list, and forwards the block.

3. Local. Most subsequent localizing loads and stores to the block do not result in any further

coherence transactions. Two exceptions: 1) When a read-only block is written, resulting in

a transaction to inform the directory that a reduction may be necessary. 2) When owners of

a localized block perform an update transaction.

4. Globalizing. The first instance of a globalizing load or store instruction results in the ap-

propriate re-globalizing actions at the directory. Specifically if the state of the block is

Local-Shared the directory ensures that sharers are downgraded. On the other hand if it

is in Local-Modified state the directory must ensure that all writers – noted on the sharing

list – send their contributions to the requesting processor, and that the requesting processor

knows the reduction operator and how many messages to expect.
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4.2.2.1 Transaction Details

The following describes the details of the directory protocol. Actions taken by the directory

depend on the type of message received from a requesting processor, and the state of the block at

the directory.

GETS: Equivalent to standard protocol if block is in a global (or idle) state at the directory.

Otherwise, this is a globalizing transaction.

Global

• Idle or Shared: Type 1 transaction: directory adds requester to the sharing list for the block

and sends requester the data.

• Modified: Type 3 transaction: directory adds requester to the sharing list for the block, and

forwards the request to the current owner. Owner downgrades its copy of the block to shared

and forwards the data to the requester and to the directory. The directory needs a valid copy

of the block to satisfy future requests for the block.

Globalizing

• Local Shared: Type 2 transaction: directory adds requester to sharing list, sends requester

the data, and sends sharers a downgrade message: they may keep the data, but they should

move it from state SL to state S. Sharers send acks to requester to complete the transaction.

• Local Modified: Type 5 (reduction) transaction: directory removes sharers from sharing

list, and adds requester. Directory sends data to requester (along with reduction operator

and operand type and size) and sends a reduction message to sharers. In response, each

sharer sends its copy of the block to requester, which performs a reduction according to the

algorithm presented in Section 4.3.2.

GETX: Again, equivalent to standard protocol if block is in a global (or idle) state at the direc-

tory. Otherwise, this is a globalizing transaction.

Global
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• Idle Type 1 transaction: directory adds requester to the sharing list for the block and sends

requester the data.

• Shared: Type 2 transaction: directory adds requester to sharing list, sends requester the

data, and sends sharers an invalidate message. Sharers invalidate their data and send acks to

requester to complete the transaction.

• Modified: Type 3 transaction: directory removes current owner from, and adds requester to,

the sharing list for the block, and forwards the request to the owner. Owner invalidates the

block and forwards the data to the requester and to the directory. The directory needs a valid

copy of the block to satisfy future requests for the block.

Globalizing

• Local Shared: Type 2 transaction: directory adds requester to sharing list, sends requester

the data, and sends sharers a local-invalidate message. The message type is distinct from a

normal invalidate in order to remove potential ambiguity in the event of a race, as described

in Section 4.2.2.2. Sharers send acks to requester to complete the transaction.

• Local Modified: Type 5 (reduction) transaction: directory removes sharers from sharing list,

and adds requester. Directory sends data to requester (along with reduction operator and

operand type and size) and sends reduction message to sharers. In response, each sharer

sends its copy of the block to requester, which performs a reduction according to the algo-

rithm presented in Section 4.3.2.

GETSL: If this is a localizing request, the actions taken by the directory are very similar to those

for a GETX in a standard protocol, since sharers must be invalidated.

Localizing

• Idle: Type 1 transaction: directory adds requester to the sharing list for the block and sends

requester the data.
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• Shared: Type 2 transaction: directory sends invalidations to all sharers (since subsequent

global references must re-globalize the block), removes them from the sharing list, adds

requester to the new sharing list, and sends requester the data. This transaction is very similar

to that associated with a read-exclusive request when there are sharers in a standard directory

protocol. The difference is that the requester is not made owner since other processors may

also now request localized versions of the block.

• Modified: Type 3 (or 4) transaction: directory forwards the request to the current owner,

which subsequently invalidates its copy of the block and forwards the data to the requester

and to the directory. The directory needs a valid copy of the block in case the requester, or

some other processor, writes a portion of it while the address is localized.

A Type 4 transaction results when the requester is also the owner. While it might seem

possible to simplify the transaction by sending the data with the initial request, as we will

explain in some detail in Section 4.2.2.2, doing so would lead to an explosion in the number

of protocol states. In the interest of keeping the number of states to a minimum, the requester

sends a simple request and awaits the forward of its own request.

Local

• Local Shared or Local Modified: Type 1 transaction: directory adds requester to the sharing

list for the block and sends requester the data.

GETXL: The actions are nearly identical to those for GETSL. The primary difference is that

the reduction operator (possibly nop) and the type and size of the operands are included in the

request message and stored at the directory. If the reduction operator is not nop, the directory

simply acks the requesting processor, since the requester will initialize its local copy of the block

with values appropriate to the reduction operator; for instance, in the case of a sum reduction, the

block is initialized to zero.

UPDATE: The block must be in state Local Modified. Furthermore, every processor on the

sharing list must send its copy of the block.
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Local

• Local Modified: Type 6 transaction: after a message has been received from each processor

on the sharing list, directory reduces the block according to the stored reduction operator and

operand type and size. Directory then sends the new block to each processor on the sharing

list.

4.2.2.2 Transient States

To this point we have conveniently ignored race conditions. Race conditions arise in a re-

quest/response protocol when there are requests for blocks for which requests are already out-

standing. Transient states – intermediate states in which a request has been made, but a response

has not yet been received – allow a protocol to explicitly handle race conditions, since intermediate

states can be backed out of if necessary.

However, because extra states complicate both the verification of a protocol design and testing

once it is implemented [17], it is important to keep the number of transient states to a minimum.

We have taken great pains to limit the total number of states in our protocol to less than twice the

total number in the original protocol.

We have already noted one instance where given a choice between adding transient states or

adding latency to a transaction, we decided to avoid adding states. Recall that in the situation

where a processor had a block modified and was making a localizing request, we observed that

sending the data to the directory at that point would result in a protocol state explosion.

The problem with this situation is the potential for a race if some other processor makes a

request for the block. That potential requires the use of a transient state to enable the localizing

cache to back out of the localization if it loses the race. Since there are two potential destination

states, SL and ML, two transients would be required, call them MSL and MML. In addition, each

of those two states requires two more transient states to handle the situation when the localizing

processor loses the race. In that event, it must await two messages from the directory in any order:

a busy-ack acknowledging (and refusing) the original request, and the forwarded request from the
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other processor. The odd-looking transaction type 4 in Figure 4.4, then, is the result of avoiding

the addition of six new protocol states.

Another example arises from a similar situation going in the other direction, globalizing a

localized block. In this case a processor has a block localized, in either state SL or ML, and

issues a global operation. Again, the potential for race conditions requires the use of transient

states. Rather than adding four new transients – i.e., SLS, SLM , MLS, MLM – we have chosen

to reuse existing transients from the global protocol: IS and IM. Fortunately, most requests are

not ambiguous since they can be divided between those that are only applicable to localized data

and those that are only applicable to global data. Other saved state serves to disambiguate the few

remaining requests.

4.3 Block-based Storage

The definition of a Dual Address Space states that data is localized and globalized at a word

granularity. However, standard cache coherence protocols operate at a multi-word, or block, gran-

ularity; multi-word blocks have the potential to impact both performance and correctness of the

User-Controllable Coherence protocol.

Beginning with performance impact, global operations on data co-located with localized data

can result in significant performance degradation. Just as each global operation globalizes the

block, each subsequent local operation re-localize the block. To avoid such ping-ponging between

address spaces, software will want to avoid to the extent possible co-locating data that will be

localized with data that will not. This involves optimizations already standard practice on shared-

memory platforms, such as aligning data on cache-line boundaries and padding data structures to

ensure they fill an entire block.

More troublesome are two potential correctness problems:

• Writes to different parts of the same localized block by multiple processors must be resolved

correctly when the block is globalized.
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1 wrk-blk = blk-in-my-cache;
2
3 foreach incoming block blk
4 if OP == NOP then
5 if is-from-dir(blk) then
6 dir-blk = blk;
7 else if is-invalid(wrk-blk) then
8 wrk-blk = blk;
9 else

10 xor-blk = xor-blk | (wrk-blk ^ blk);
11 endif
12
13 if is-last-blk(blk) then
14 if is-zero(xor-blk) != true then
15 wrk-blk = xor-blk ^ dir-blk;
16 endif
17 endif
18 endif
19
20 else if OP == ADD_INT_1 then
21 foreach byte in blk and wrk-blk
22 wrk-blk += blk;
23 end
24 endif
25
26 else if OP == ADD_INT_2 then
27 foreach double-byte in blk and wrk-blk
28 wrk-blk += blk;
29 end
30 endif
31
32 [etc...]
33
34 end

Figure 4.5 Reduction algorithm.

• Depending on how operator reductions are implemented, mixing of reduction data with data

not involved in the reduction could lead to incorrect results.

Both potential problems are handled through the reduction mechanism, invoked when a localized

block that has been modified by more than one processor is globalized.

The cache on the receiving end of a reduction transaction, the type 5 transaction in Figure 4.4,

executes the algorithm listed in Figure 4.5. Inputs to the algorithm come from three sources: 1) the

processor’s own cache or local memory (blk-in-my-cache), 2) the directory, which has the original
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block (dir-blk), and 3) other processors that have modified the block. The action taken by the cache

depends on the reduction operator, as well as the type and size of the operands, information carried

as part of the data message in which the block is sent. No matter what the operator, the overall

goal is to take the contribution from each processor and accumulate it onto the block that had been

stored at the directory.

4.3.1 Multiple Local Writers

When the operator is nop, multiple processors may have written different words in the block.

The code in lines 4-18 merges the writes into a single block. In common with several page-based

software DSM implementations that handle multiple writers [70, 16], the code exploits the fact

that ((A xor B) xor A) == B.

Since it is a violation of Localized-Data-Race-Free-0 for multiple processors to write at the

same address of a localized block, we can assume that if two versions of block B – call them B1

and B2 – are both modified, the modifications do not overlap. Further, we know that in locations not

modified, each is equivalent to the original block A stored at the directory. Therefore (B1 xor B2)

is equivalent to (B xor A) – where B contains the modifications of both B1 and B2 – and B can

be recovered by XOR’ing the result of (B1 xor B2) with the directory entry A. The algorithm

works by accumulating a series of these (B1 xor B2) computations in xor-blk and then recovering

B through a final XOR with dir-blk.

4.3.2 Operator Reductions

Assuming a single reduction operator per block, and no intermixing of reduction data with

non-reduction data, the implementation of the accumulation for other operators is straightforward.

The only complication is ensuring that correctly sized operands are used in the computations.

For example, byte-sized operands are formed in line 21 of the algorithm, while double-byte-sized

operands are formed at line 27.

We have identified three levels of support for the intermixing of reduction data with data not

involved:
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• Do not allow intermixing of reduction data with non-reduction data. Under this approach it

is software’s responsibility to ensure that reduction data is not co-located in a block with data

that is not involved. The current implementation takes this approach; thus, ldLop initializes

the entire block and a globalizing reduction operates on the entire block.

• Allow intermixing of reduction data for one operator with non-reduction data. The addition

of per-word bits to the per-block state would enable an arbitrary association between words

and a single operator: ldLop would initialize only the affected word and set the per-word bit.

A globalizing reduction would operate only on words with the bit set.

• Full generality: allow multiple reduction operators per block. A straightforward, but costly,

implementation might provide storage for an operator per word. A more realistic imple-

mentation might instead permit multiple reduction operators, but with a severe performance

penalty. Under this approach, a ldLop on a block already localized with a different operator

would result in a reduction of words linked with the current operator, enabling the block

to be re-localized with the new operator. Future operations on words linked with the old

operator would again require a reduction to reinstate the old operator.

4.3.2.1 Atomic Updates

A subtle impact of the multiple-operators-with-reduced-performance approach is its require-

ment for an atomic update mechanism. Consider the following scenario: P0 has executed a ldLop,

executed another instruction to update the value in register, and is about to stL the value. However,

before it executes the store, the block is globalized and re-localized because P1 has executed a dif-

ferent reduction operator on another word in the block. When P0 executes the store, it does so in an

unexpected context; rather than writing a value that will be reduced along with local values from

other processors, it is potentially creating what could become the new, incorrect, global value.

One way to provide atomic updates would be to introduce a localized compare-and-swap in-

struction (called cmpxchg in the IA-64 instruction set), and mandate that software use the instruc-

tion when performing updates to words involved in reductions. In this scenario, an update sequence
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might look as follows (where we have taken significant liberties with IA-64 instruction syntax for

ease of presentation):

label:

ld4.loc.+ r1=[x] ld4.loc.+ r1=[x]

add r2=r1,r2 => add r2=r1,r2

st4.loc [x]=r2 cmpxchg4.loc r3=[x],r2,r1

if (r3 != r1) goto label

The cmpxchg only succeeds if the value at x has not been modified since the load; if it fails, the

ldLop is reperformed to ensure that conditions are appropriate for a future operator reduction. An

alternative option, assuming support for transactional memory, is to require software to perform

updates within a transaction.

We will revisit the need for atomic updates in Section 4.5.2.

4.4 Memory Consistency

In the Dual Address Space memory model, data is either in the global address space, and kept

consistent according to the global consistency model, or it is localized and not kept consistent. An

implementation must take care to ensure that there is no in-between: that there is no time in the

transition between global to local, or back, that an address is in an undetermined state relative to

the consistency model.

4.4.1 Global Consistency Model and Enforcement

As noted earlier, we are assuming a processor based on the Intel Itanium implementation,

which uses a relaxed memory ordering model [37]. The model is based on release consistency,

introduced with the Stanford Dash system [26].
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Under release consistency there are two types of synchronizing operations, acquires and re-

leases. Data operations are allowed to occur in any order, subject to two constraints: 1) all oper-

ations after an acquire, in program order, must wait for the acquire to complete; 2) all operations

before a release, in program order, must complete before the release completes.

The Dash work identified two flavors of release consistency, determined by the ordering im-

posed on synchronization operations: RCSC imposes sequential consistency on synchronization

operations, while RCPC relaxes the ordering to processor consistency (PC) [27, 26]. Itanium intro-

duces a third variety, RCTSO [57], under which hardware ensures that synchronization operations

occur in total store order (TSO) [78].

No information is publicly available as to how the Altix enforces its consistency model, but we

assume the enforcement mechanism is based on the Dash implementation. In the Dash, memory

ordering constraints imposed by release consistency were enforced via fences [26]. Fences were

essentially counters, located in the Dash equivalent of the Hub chip, that kept track of outstanding

accesses. The counter was incremented upon issue of the transaction for an access, and decre-

mented upon completion of the transaction as identified by the receipt of either data or the final

acknowledgement.

An acquire implies a full fence, meaning all future operations must await its performance: the

processor stalls until the acquire counter is zero. On the other hand, a release implies only an

immediate fence, meaning that it does not block future instructions. However, it cannot complete

until all previous outstanding operations have completed. In an aggressive implementation each

release requires its own counter, set initially to the current number of outstanding requests and

decremented upon completion of each of (only) those requests.

4.4.2 Localization

According to the contract in the memory model discussion of Chapter 3, in order to be guaran-

teed sequential consistency, software must ensure that all synchronization operations are global.

A Dual Address Space implementation upholds its end of the contract by ensuring that all

operations, global and local, are treated the same way with respect to synchronizing operations.
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The same counters that keep track of outstanding global data operations also keep track of local

operations. Thus, all data operations, local and global, are guaranteed to have been performed after

a release, and no data operation, local or global, can perform before an acquire performs.

Thus hardware ensures that a globalizing operation immediately after a release receives the

latest value(s) from the processors that had the data localized. Similarly, a localizing operation

immediately after a release is guaranteed to receive the latest global value. No such guarantees are

offered for unsynchronized globalizations and localizations.

4.5 Local Memory

The nomenclature we have adopted for local storage, local memory, strongly suggests that it be

implemented as a memory (i.e., data that enters does not leave unless it is explicitly invalidated),

and the next subsection describes two such implementations. In fact, however, local memory

need not be implemented as a memory1; Section 4.5.2 describes an alternative, local memory

implemented as a cache.

4.5.1 Local Memory as Memory.

A literal-minded implementation of the Dual Address Space would extend conventional virtual

memory: every page in the virtual address space would map to two physical pages, a global physi-

cal page and a local physical page. The advantage of such an approach would be that both local and

global memory would be served by the same physical memory pool, allowing per-application bal-

ancing of memory resources between global and local. Additionally, it leaves open the possibility

of extending both local and global memory by swapping pages to disk.

One drawback to this approach is its requirement for significant modifications to the micro-

processor virtual memory system implementation: page-tables, the TLB, and the TLB-filling

mechanism. However, the major flaw in the design is that, because of the location of the co-

herence protocol handlers in the memory hierarchy, they only receive physical addresses from

processors and directories. Any action required by an operation on a global address that affects a

1This insight due to David Wood.
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local address, for example a local invalidation due to a global load, would require a mechanism for

translation between local and global physical addresses. Translations in the other direction would

also be necessary. The efficient implementation of such mechanisms is difficult to envision.

Our current implementation avoids this problem by using global physical addresses for both

global and local memory. Local data is stored associatively, as it would be in a hardware cache, on

a per-block basis. Block-based storage is a good match for the targeted applications: both multi-

dimensional and irregular distributions tend to fragment pages. Block granularity also simplifies

the handling of per-block state information required for the coherence protocol, since data may be

returned from local memory already modified.

The trade-off between size and speed tends to favor low-associativity designs for large caches.

However, to maximize the use of space, our implementation leverages work on software-managed

caches that improves the scalability of fully associative memory structures via a hashing scheme [30].

The implementation does have drawbacks. First, while the software-managed cache imple-

mentation provides good performance for the average case, a potential limitation is the lack of a

maximum time bound for negative results. Another problem is that it puts a fixed limit on the size

of local memory. On the other hand, using virtual memory to extend physical memory via page

swapping can be slow and Cray implementations, for example, have historically never used it.

4.5.2 Local Memory as Cache.

A cache-based implementation of local memory retains the advantages of block-based storage.

It also enables faster positive and negative searches, and reduces concerns about size limitations.

However, a problem that must be solved is the handling of replacements of localized blocks. The

directory’s response depends on the state of the replaced block:

Block in state SL: Silent replacements are not possible because SL in the cache does not imply

SL at the directory.

1. Cache sends replacement message (no data) to directory.

2. Directory removes processor from sharing list.
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The consequence of the replacement, namely that a future ldL by the same processor is slowed by

the refetch, is limited to the replacing processor.

Block in state ML, op != nop: If the (entire) block is involved in an operator reduction compu-

tation, i.e., op != nop, then the block need not be invalidated in sharers’ caches, the directory can

update its copy of the block according to the reduction operator and operands.

1. Cache sends replacement message, with data, to directory.

2. Directory takes processor off sharing list.

3. Directory reduces block.

Again, the consequence of the replacement is limited to the replacing processor.

Block in state ML, op == nop: If the block is not involved in an operator reduction, then it must

be invalidated in all sharers’ caches, since the XOR reduction algorithm depends on all caches

starting from the original block stored at the directory.

1. Cache sends replacement message, with data, to directory.

2. Directory takes processor off sharing list.

3. Directory sends invalidation message to all sharers.

4. Sharers send block back to directory.

5. Directory reduces block.

6. Directory removes all sharers from sharing list.

Here the consequences are more widespread, future ldL/stL of any sharer is slowed by the refetch.

The cache’s replacement policy should strongly favor keeping modified blocks cached.

The invalidation of sharers could be avoided if the directory were able to save modified blocks

until they were 1) required for an XOR reduction, or 2) refetched by the modifying processor. The
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optimization can be implemented as a fully associative table indexed by block address. The table

cannot be too large because it needs to be searched in parallel with every directory access. If a

block is found for the requesting processor it is returned, otherwise the directory returns its copy

of the data. A block is inserted into the table upon replacement if it is in state ML, op == nop, and

there is room in the table. If the table is full, the directory falls back on the invalidation approach.

Upon reduction, if there are multiple blocks associated with the address in the table, the directory

reduces them to one, and sends the reduced block and the original to the requesting processor.

4.5.2.1 Atomic Updates Revisited

Note that the scenario presented in 4.3.2, where there was an interruption before the stL of an

updated value involved in a reduction, can also arise if local memory is cache-based. Suppose the

block is replaced (and thus reduced at the directory) before the stL; again, the store operates in the

wrong context. Thus, cache-based local memory also requires atomic updates of reduction data.

The solutions noted in that section, an additional local cmpxchg instruction or updates-within-

transaction, also apply here.

4.6 Summary

This chapter has described a full-scale implementation of the Dual Address Space Architec-

ture, an extension of the SGI Altix design, itself based on the SGI Origin. The chapter began by

describing the layout of a node, the basic building block in all the aforementioned systems. Modifi-

cations are largely limited to the coherence protocol implementation in the processor and directory

interfaces, along with the addition of local memory to the memory interface.

The chapter continued with a detailed description of a directory-based implementation of

the User-Controllable Coherence cache coherence protocol, initially assuming single-word cache

blocks, and then describing in detail the ramifications of multi-word cache blocks. The chapter

then described support for the consistency model introduced in Chapter 3. Finally, the chapter

closed with a discussion of the implementation of local memory.
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Chapter 5

Simulation Platform

This chapter introduces the simulation platform we used to perform the experiments described

in Chapter 1 and Chapter 6. The simulator both accurately models an existing CC-NUMA plat-

form, the SGI Altix 4700, and incorporates the protocol modifications described in Chapter 4.

The chapter is divided into three parts. The first part describes a mechanism for directing

a multi-threaded reference stream to a single back-end memory system simulator – a modified

version of the Slicc/Ruby portion of the Gems simulator from the Multifacet group at the University

of Wisconsin [77] – while ensuring that the references are simulated in the same global order

that they would have occurred in a multiprocessor. In Section 5.1 we introduce the algorithm by

describing the implementation of a simulator prototype which blocks on every reference. Since the

Itanium2 [53] processor on which the Altix architecture is based does not block on most memory

references, the actual algorithm used by our simulator is more complicated. Section 5.2 describes

in detail how we model those elements of the Itanium2 micro-architecture essential for the accurate

simulation of memory references.

The second part, Section 5.3, describes how we have used this mechanism, in conjunction with

a custom parallelization of the Ruby back-end, to implement a parallel simulator that models a

1024 processor Altix 4700 system. Finally, the third part, Section 5.4, presents an evaluation of

the accuracy and performance of the parallel simulator.
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void
reference(UINT64 tid, UINT64 pred, 
          UINT64 iaddr, UINT64 addr)
{
    if (pred == 0) {
        cycle[tid]++;
        return;

    

}

void 
incr_cycle(UINT64 tid, UINT64 iaddr) 
{
    cycle[tid]++;
}

void 
Instruction(INS ins, void *v)
{
    switch(INS_Category(ins)) {
    case TYPE_CAT_STORE:
    case TYPE_CAT_LOAD:
        PIN_InsertCall(IPOINT_BEFORE, ins, (AFUNPTR)reference, ...);
        break;
    default:
        PIN_InsertCall(IPOINT_BEFORE, ins, (AFUNPTR)incr_cycle, ...);
    }
}

    }

    sem_down(&thread_sem[tid]);

    sem_up(&sim_sem);

void
sim_loop(void* unused)
{
    int i;

    

        UINT64 min = MAX_UINT64, min_tid = 0;
        
        for (i = 0; i < max_threads; i++) {
            if (go[i] && cycle[i] < min) {

        

    }
}

    while (!done) {

                min = cycle[i];
                min_tid = i;

        sem_down(&sim_sem);

    sem_down_cnt(&sim_sem, max_threads);

        sem_up(&thread_sem[min_tid]);

            }
        }
        cycle[min_tid] += 1;

Figure 5.1 Prototype code.

5.1 Simulator Prototype

When a multi-threaded front-end is used to generate memory references for a single-threaded

back-end memory system simulator, the accurate modeling of synchronization and cache co-

herency protocol state requires that care be taken to ensure that threads execute instructions in

an order that is consistent with a multiprocessor execution. This constraint imposes a synchroniza-

tion requirement between the threads and the simulator. The prototype simulator uses semaphores

to implement that synchronization.

Introduced by Dijkstra [20], semaphores are essentially counters that control access to re-

sources. The interface to semaphores consists of two components: wait and signal (originally

P and V respectively). A typical implementation of wait causes the initiating thread to sleep until

it is signal’d by another thread.

Semaphores provide a simple mechanism to synchronize the producer/consumer relationship

between the application threads and the simulator:

1. Consumer waits for producer
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2. Producer produces, then signals the consumer and waits for consumer.

Unfortunately, in the absence of a lightweight thread library, the efficient implementation of

semaphores is still an open problem: because wait and signal require atomicity and an efficient

sleep mechanism, they are typically handled in the operating system kernel, implying a costly

context switch on every call.

Figure 5.1 demonstrates the prototype algorithm stripped down to its bare essentials. We make

use of Pin [49], a dynamic instrumentation tool from Intel, to instrument a multi-threaded program

such that every program reference causes a synchronization with a “simulator” running in a sep-

arate thread. Application threads run through a Pin tool based on the code on the left-hand side

of Figure 5.1. The instrumentation routine Instruction() associates the reference() analysis routine

with every memory reference. As a result, all dynamic ld and st instructions will call reference()

before they execute. All other instructions will simply call the incr cycle() analysis routine.

Not shown in the figure, the Pin tool creates a simulator thread before starting the application

threads. The simulator executes the code on the right-hand side of Figure 5.1. The algorithm then

proceeds as follows:

• The simulator immediately waits on a “multiple count” semaphore: the semaphore must be

signal’d multiple times – in this case once by each thread – before the simulator can continue.

• All application threads are then started as normal by Pin. When an application thread hits

its first memory instruction it signals the semaphore that the the simulator is waiting on

(modeled by the dotted arrow in the figure) and then waits on its own semaphore.

• After all the threads have signal’d and wait’d, the simulator thread wakes up and “simulates”.

The prototype simulator does nothing, but the real simulator can now safely simulate time

up till the next completion of a reference.

• The prototype simulator then releases the thread with the oldest reference which executes

until it reaches a memory instruction, wakes up the simulator, and so on.
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5.2 Full-Scale Simulator

As noted in the introduction to this chapter, Itanium2 instruction issue does not block on most

memory references, but rather on instructions that depend on the results of memory references.

In this section we describe how we modified the prototype to model micro-architectural features

required to more accurately simulate the timing of Itanium2 reference generation.

5.2.1 Handling Multiple Outstanding Loads

Since reads do not necessarily block, the placement of semaphores to synchronize instrumented

application threads with the simulator is no longer obvious: blocking is not associated with the ld

instruction that initiated the request, but rather with another, arbitrary, instruction that uses the

register into which the value is read from memory.

Our approach to this problem is to use indirection. We associate semaphores with a table of

outstanding requests, and precede each register use by a look-up into the table to determine whether

the register is associated with an entry in the table; if it is then the thread blocks on the associated

semaphore. Our Pin tool’s analysis routines maintain two structures to help implement the task:

1. MemQueue, with an entry for each outstanding request, keeps track of outstanding requests;

each request is given a slot in the MemQueue and each slot in the MemQueue has an associ-

ated semaphore.

2. RegReady, with an entry for each CPU register, keeps track of when that register is ready to

be read. Instructions that write registers use the structure to indicate the cycle at which the

register will be ready for reading. For example, arithmetic operations that write a register

would update the RegReady entry with the current cycle plus 1 for integer operations or 4 for

floating point operations. Ld instructions, on the other hand, insert a pointer to a reserved

MemQueue slot into the RegReady entry. The thread then continues processing instructions.

If an issuing instruction depends on a register whose RegReady entry contains a pointer to

an entry in the MemQueue, then the thread returns control to the simulator and blocks on the
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semaphore associated with the MemQueue entry. When time has been simulated up till the ref-

erence completes, the simulator replaces the pointer in the RegReady entry with the current cycle

value and returns control to the thread.

Virtual Registers. The discussion above has so far left out an element of the Itanium2 architec-

ture that significantly complicates our efforts: Itanium instructions refer to virtual registers rather

than physical registers. Virtual registers are a mechanism useful for both implementing a register

stack at procedure calls and generating more efficient software pipelining code.

At procedure calls, Itanium compilers allocate a set of fresh local registers for use in the pro-

cedure and to pass parameters. Local registers in the new procedure always begin at register r32.

Under the covers hardware maps the virtual registers to new physical registers, sliding a window

of virtual register names forward over the physical register file. Upon return from the procedure,

hardware pops the stack, sliding the window back so that the logical registers map back to the

physical registers they mapped to before the call.

Virtual registers are also used to implement a rotating register mechanism, which enables com-

pilers to generate extremely compact software pipelining code, as in the following example:

loop:

(p17) st4 [r11]=r33,4

...

(p16) adds r32=100,r36

...

br.ctop.sptk.few loop

The value written to r32 by the adds instruction in one iteration of the loop is read by the st4

instruction on the next iteration, though the store lexically precedes the add. Predicate registers

also rotate, facilitating pipeline start-up and wind-down.

Fortunately, both of these cases are marked in the instruction stream by the use of specialized

branch instructions: call and ret mark procedure calls, while ctop and wtop indicate rotation points.

In our implementation, the RegReady structure is actually associated with an “infinite” array of

physical registers, and we keep track of where virtual registers point in the physical registers after
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pushes, pops, and rotations, via pointers. We can then use a FindReg() routine to map a virtual

register to physical register in order to set or read the ready time for the physical register. Since we

assume an infinite number of physical registers we do not model the spilling of register contents to

memory necessary when hardware runs out of physical registers.

5.2.2 Other Micro-architectural Considerations

Instruction issue and counting cycles. The Itanium architecture has strict limitations on the

number of instructions that may issue each cycle and the order in which they may issue. The

compiler groups instructions into “bundles” that obey these constraints. One of the runtime values

that an analysis routine can receive as a parameter from the instrumentation routine is the value

of a stop bit, which indicates whether the current instruction is the last instruction of a bundle.

With that information our analysis routines can ensure that at most two bundles are issued before

incrementing a cycle counter.

The cycle counter is also incremented 1) when an issuing instruction depends on a register

whose RegReady value is greater than the current cycle, and 2) when control returns to a thread

after a st instruction completes.

Features not modeled. Our model of the Itanium2 micro-architecture is far from complete. Our

assertion that it is sufficient makes some assumptions about our workload:

• We do not model the instruction stream coming from memory, so we are assuming that:

1) L1 instruction cache misses are rare and do not affect performance, and 2) instructions do

not conflict with data in the L2 and L3 caches.

• We do not model branch prediction hardware so we are assuming that most branches are

predicted correctly.

• Finally, we do not model finite functional units so we are assuming that in our workload,

structural hazards are rare and do not affect performance.
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5.3 Simulator Parallelization

As described in the previous sections, the full simulator consists of two parts. The front-end

performs cycle-accurate simulation of Intel Itanium2 cpus and feeds memory references to the

back-end memory system simulator. The back-end determines the number of cycles it would take

to satisfy the references and returns control back to the front-end. The previous sections described

how a multi-threaded front-end can be used to produce references for a monolithic back-end. In

this section we describe how we have parallelized the back-end, resulting in a fully parallel multi-

processor simulator.

We have parallelized the simulation of the back-end at the granularity of a node, where a node

consists of the hardware associated with a network endpoint. On the Altix, this endpoint is referred

to as a SHUB, and consists of a memory controller and associated memory, a network interface,

and two dual-core Itanium processors. Thus, each thread of a multi-threaded application runs on

its own front-end, and four front-ends feed each back-end.

In our original parallel implementation, the front-end was a Pin tool operating on a multi-

threaded application as described in the previous sections. Each thread group, consisting of one

back-end and its front-ends, was pinned to an Altix processor. The semaphore calls described in the

previous sections were implemented as “spin yield” semaphores: a thread implicitly blocked on a

semaphore by continuously calling the sched yield system call until the condition it was waiting for

was met. In this fashion, scheduling and descheduling were left to the operating system, resulting

in significant overheads.

However, the ultimate cause for our abandonment of this implementation was a simple artifact

of the way Pin managed application memory which prevented the simulator from simulating more

than 64 threads. While this problem likely would have been easily fixed had we had access to the

source code, Pin is closed-source and the original Itanium version we were using was no longer

supported, so we were forced to change platforms.

The current implementation uses Hewlett Packard’s recently open-sourced Itanium simulator

Ski as a front end. In this implementation only the back-ends are true system threads, while the
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front-ends are essentially user-level threads. We have implemented the semaphores using calls

to make context() and swap context(), POSIX mechanisms for creating user-level thread libraries.

This allows much more efficient explicit passing of control between simulated front-end threads

and their back-end.

While the move to Ski had many advantages – chief among them allowing us to simulate an

order of magnitude more threads – there were at least two significant disadvantages:

1. The front-end simulator now must explicitly manage the simulated application’s memory,

rather than leaving the task to Pin. Every memory access must go through a translation from

virtual page address to physical page address. The page table is implemented as a large,

parallelized (since it is accessed by multiple front-end threads simultaneously), bucket hash

table. As we are only concerned with additions to the table, we enable parallel insertions with

a simple lock-free algorithm: we use the test-and-set atomic instruction to add the current

element to the front of the list only if the front of the list has not been changed by another

processor.

2. The front-end is required to handle thread-management issues, which again, had been han-

dled implicitly by Pin. Unfortunately Ski does not contain support for system calls used by

the pthreads library. Rather than attempting to implement such support, we chose to im-

plement a handful of calls typically found in a threading library as system calls, allowing

them to be handled directly in the front end. Among the calls we support are: parallel which

spawns threads; barrier which implements a barrier; lock and unlock which enable point

to point synchronization; and get thread num and get num threads which return the calling

thread’s id and the total number of threads respectively.

5.3.1 Network Parallelization

The back-end models the network of a 256 node Altix system, including: the dual plane, fat-

tree topology; NUMA-link routers; and the SHUB network interface chips. The major problem

facing parallel network simulators is the maintenance of a global clock: in order to avoid timing



70

violations (i.e., to ensure that packets are not received later than they should be), simulation threads

must be synchronized.

There are two approaches to parallelizing network simulators based on discrete event simula-

tion: the conservative approach and the optimistic approach [55]. Under the conservative approach,

in order to ensure no message is received later than it should be, simulator threads synchronize a

minimum of every network hop latency cycles. Under the optimistic approach, simulators syn-

chronize less often but must save state in order to allow roll-back if a violation is detected. We take

the conservative approach, performing a global barrier every network latency cycles.

In the current implementation, we only model the outermost routers of the network. At each

barrier, all back-end threads synchronize, and each back-end thread copies packets destined for

processors in its domain from every other thread. Here, as everywhere, we have taken extreme

care to ensure that remote memory is only read not written. Nevertheless, this approach is a

significant impediment to scalability due to load imbalance: every thread is affected by every other

thread at every barrier. In retrospect, a better approach would distribute the barriers according to

the physical routers in the network. This would also allow more accurate simulation of contention

at internal routers.

5.3.2 User-Controllable Coherence

Applications that do not use localizing instructions run as they would on unmodified hardware.

Applications with localizing instructions use exactly the same simulated hardware, but with the

additional states, transitions, and actions described in Chapter 4. Both the standard MSI protocol

and the extensions are described using the Slicc protocol description language Slicc. The Slicc

compiler automatically generates the protocol state-machine component of Ruby, the back-end

memory system simulator. Ruby also provides a test-bed for rigorously stressing the coherence

protocol to find race-conditions and other errors, of which we have made extensive use.
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Figure 5.2 Per-processor cycle counts predicted by the simulator vs. those measured by
performance counters on hardware.

(a) (b)

Figure 5.3 Per-processor cache miss rates predicted by simulator vs. those measured on
hardware: (a) L3 cache, (b) L2 cache. Note that the simulated L3 miss rates are much more

accurate, and that, as discussed in the text, low-latency L2 inaccuracies have more effect on the
simulated performance of one-d.

5.4 Simulator Validation and Performance

The first part of this section describes our efforts to validate the simulator against actual hard-

ware implementations. The second part briefly discusses the performance of the parallelized sim-

ulator. We performed the hardware (and simulator) runs on a 2048 processor SGI Altix 4700,

an experimental element of the Columbia cluster located at the NASA Advanced Supercomput-

ing facility [56]. We present results from runs of the one-d and two-d variants of the application

described in next chapter.
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5.4.1 Validation

Tying the simulation platform to an existing system is a double-edged sword. On the one hand,

demonstrating that the simulator matches existing hardware can add credence to the results of

simulations of extensions to the hardware. However, doing so adds the significant burden of trying

to exactly match the behavior of often fickle hardware.

Microprocessor simulators are notoriously difficult to validate [19]. Validating a system com-

posed of tightly interconnected microprocessors, in a production environment, significantly adds

to the challenge. In addition to the vagaries of hardware, there are difficulties imposed by the en-

vironment, including: long queue waits, uncertain processor distribution in the network once the

job runs, and noise due to traffic from other processors.

Figure 5.2 compares cycle counts predicted by the simulator with those measured on hardware

using performance counters; the results indicate two problems:

• The simulator significantly over-predicts the number of cycles required to complete an iter-

ation. Moreover, the difference in performance for the one-d variant is substantially greater

than the difference for the two-d variant, potentially calling into question results in the next

chapter that demonstrate improvement over the one-d variant.

• The two-d variant experiences a drop-off in performance at 64 processors not predicted by

the simulator.

The two problems indicate two different sources of inaccuracy: the first is a result of inaccuracies

in the uniprocessor simulation while the second is due to inaccuracy in the network simulation.

Since two-d suffers more L3 misses than one-d (see Figure 5.3(b)) and thus more memory and

potentially network traffic, performance is dominated by long latency events. Therefore, short-

latency inaccuracies in the uniprocessor simulation will have more effect on the performance of

the one-d variant.

As for the unpredicted performance drop for two-d at 64 processors, setting aside potential

inefficiencies in the hardware run (i.e., assume the run was not affected by suboptimal processor
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Figure 5.4 Performance of the parallel simulator, as measured in simulated cycles per second (per
processor). The x-axis labels indicate the number of simulated threads followed, in parentheses,

by the number of processors performing the simulation.

placement and/or network contention from other jobs), the simulator’s contribution to the discrep-

ancy is likely due to inaccuracies in the simulated network model. As noted in Section 5.3, the

simulator does not model the internal routers of the network, but instead computes a fixed latency

for packets based on the number of hops to the destination. Figure 5.3(b) indicates very high L3

miss rates for two-d and, based on data we present in the next chapter, many of the misses are to

remote data. These factors indicate pressure on internal network routers potentially leading to high

queuing delays not currently modeled.

5.4.2 Performance

Finally, we turn our attention to the parallel performance of the simulator. Figure 5.4, which

presents performance as measured by simulated cycles per second per processor, appears to demon-

strate an unfortunate lack of scalability as the number of simulated processors increases.

Note, however, that simulated cycles is not necessarily a fair measure since cycles do not

necessarily require equal amounts of time to simulate. Consider, for example, the difference in

simulation time for cycles in which a simulated thread makes no memory references, versus the

simulation time for cycles in which thread references hit in a cache, versus cycles in which thread
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references require injection into the memory system back-end. Moreover, as the number of simu-

lated processors increases the likelihood that a reference will need to be injected into the memory

system increases (for this workload at any rate).

A more fair measure would be simulated time on a uniprocessor divided by simulated time on

a multiprocessor. However, given the size of the simulations we are performing, both in terms of

number of processors and data per processor, it is unlikely that the simulation would even run on a

uniprocessor.

Nevertheless, there is certainly room for improvement in the simulator’s parallel performance.

We have already noted one problem: load imbalance due to the need for global synchronization

every network latency cycles. Another problem is the potential for all-to-all communication of

data after each barrier, as back-end threads exchange packets. Both of these problems would

be addressed by modeling the internal routers of the network, though thought and care would

be required to ensure that processors that perform the router simulation are kept busy and are

appropriately placed in the network of the simulator’s host.

5.5 Summary

This chapter has described the implementation of a cycle-accurate simulator, which models a

1024 processor SGI Altix 4700 system. The simulator consists of two parts: a reference generating

front-end and the memory system simulator back-end. The chapter described the parallelization of

both parts, resulting in a fully parallelized system simulator, demonstrated capable of accurately

simulating 512 threads running a real application across 128 host processors. Finally, the chap-

ter provided validation and performance data for the simulator, noting several opportunities for

improvement in both areas.
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Chapter 6

Application One: HYCOM

In this chapter we evaluate User-Controllable Coherence in the context of an ocean modeling

code, HYCOM [11], the Hybrid Coordinate Model, in production use at the Naval Oceanographic

Office (NAVOCEANO).

As the name suggests, HYCOM uses a hybrid approach to represent ocean coordinates because

no single coordinate system is optimal everywhere in the ocean. In HYCOM, the choice of a vertical

(depth) coordinate system for a discretized point depends on where the point is located in the ocean.

In particular, isopycnal (constant density) coordinates are used in the open, stratified ocean (where

density is dependent on depth). However, a “continuity equation” transitions to a second coordinate

system (theta-levels) for points in shallow coastal regions, or a third coordinate system (z-levels)

for points in the mixed layer or unstratified seas, where the density is not as dependent on depth.

The model solves the partial differential equations defining ocean behavior explicitly, using

finite differencing via a nine-point stencil computation. As noted in the introduction, a general

problem with explicit solution methods is that they tend to require a small time-step when mod-

eling fast changing physical processes [18]. To address this problem, HYCOM divides the model

into two parts: the baratropic phase of the computation models faster moving surface physical

processes, while the baroclinic phase models the slower moving physical processes operating on

the entire volume. This division enables the use of multiple time-step resolutions: by solving mul-

tiple iterations of the faster-moving baratropic equations per iteration of the baroclinic equations,

HYCOM avoids the need for a small time-step throughout.
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do 76 k=1,kk
margin = mbdy - 1
do j=1-margin,jj+margin
do l=1,isu(j)
do i=max(1-margin,ifu(j,l)),min(ii+margin,ilu(j,l))

...

enddo
enddo
enddo

enddo

Figure 6.1 Typical loop-nest from the MPI version of HYCOM.

6.1 Parallelization

This approach also permits the use of a single, simple parallelization strategy throughout, which

should be suitable for distributed memory platforms. The three dimensional volume of the ocean is

divided via a two dimensional domain-decomposition for longitudinal and latitudinal axes, while

depth is divided into a fixed number of layers. Thus each processor is responsible for a column

of ocean. Column dimensions, and therefore processor data and computational partitions, are

determined statically, before the program is compiled.

However, the desire to avoid useless computation involving land elements results in both a

slightly irregular data distribution and irregular loop bounds.

Figure 6.1 presents a typical loop-nest from the MPI version of HYCOM. The k loop iterates

over ocean layers, while i and j iterate over the two-dimensional partition of the k’th layer owned

by a given processor. The l loop, along with the isu, ifu, and ilu arrays, accounts for holes in a

partition due to land mass. The margin variable controls how much of the six-element-wide halo

of non-local data (explicitly communicated previously) is used by a given loop-nest.

Another interesting aspect of HYCOM’s parallelization strategy is its use of an extended halo

of non-local data to minimize synchronization. HYCOM uses an operator splitting approach to

solving differential equations: in essence, rather than using the same right hand side for an entire

time-step, this method uses multiple intermediate left hand side results within a time-step[81]. This
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use of intermediate results leads to intermediate cross-processor data dependencies, which in turn

result in more communication per time-step.

While it is not possible to change the volume of communication required to honor these depen-

dencies, HYCOM makes use of redundant computation to minimize the number of synchronization

events required during a time-step.

Comparison with POP POP [76], the Parallel Ocean Program, is a competing ocean model origi-

nally developed at Los Alamos National Laboratory. POP comprises one quarter of the Community

Climate System Model. Like HYCOM, it is an MPI-based code, written in Fortran90.

The most significant differences between the two models are:

• POP uses a fixed depth coordinate system, z-level. However, this difference is not funda-

mental; there is an ongoing effort to incorporate HYCOM-like hybrid coordinates into a new

version of the code [48].

• Like HYCOM, POP uses an explicit method for most computation phases. However, for the

faster moving baratropic equations, POP uses the implicit conjugate gradient method. While

this choice enables a constant time-step, it has significant implications on the parallelization

strategy. In particular, the conjugate gradient method requires a significant number of col-

lective communication events, which tend to have a severe impact on scalability. Significant

efforts have been undertaken to minimize the impact, including redistribution of data for

different computation phases [40].

• Unlike HYCOM, POP does not feature irregular loop bound: while tiles that consist only of

land are discarded, there is no mechanism for avoiding computation on land elements within

a partition. POP2 permits multiple tiles per processor, enabling finer grained data distribution

at the expense of more complicated communication.
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do 76 k=1,kk
do j=myfirstj,mylastj
do l=1,isu(j)
do i=max(myfirsti,ifu(j,l)),min(mylasti,ilu(j,l))

...

enddo
enddo
enddo

enddo

Figure 6.2 The sample loop-nest transformed for SPMD-style OpenMP.

6.2 Artifactual and Inherent Communication in HYCOM

In this section we illustrate the perils of artifactual communication, and the impossibility of

performing an explicit communication optimization in a global address space, using HYCOM, a

well-known, production ocean modeling code.

6.2.1 SPMD HYCOM

We transform the loop-bounds for SPMD-style OpenMP as shown in Figure 6.2. The values for

myfirstj, mylastj, myfirsti, and mylasti, are computed by each processor during the initializa-

tion phase of HYCOM. We are also forced to introduce extra synchronization between loop-nests,

but again leave details for discussion in Section 6.2.3. Aside from these explicit synchronizations,

all communication of remote data is implicit, initiated when a processor touches an element owned

by another processor (that has not already been cached).

Finally, we note that the existence of holes in the data partition owned by a processor, and

the provision for them evidenced by the l loop, significantly complicates efforts to achieve load-

balance in HYCOM. A major advantage of programming in a global address space is that modi-

fying a processor’s partition simply requires modifying loop-bounds variables such as myfirstj.

Changing partitions is much more complicated in MPI, where remote data must be explicitly found,

named, and moved.
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Figure 6.3 Results from HYCOM runs using the GLBA0.72 data set on an SGI Altix BX2. Here,
as in all figures in this chapter, “cycles” indicates the cycle count measured by performance

counters on the last processor to complete one time-step (the second).

6.2.2 Artifactual: Multi-dimensional Domain Decompositions

HYCOM’s two-dimensional partitioning of each layer of ocean across processors, described

above, is an example of a multi-dimensional domain decomposition. Domain decompositions

co-locate all data associated with a point from a discretized representation of a physical domain

on a single processor, and distribute all such points evenly across processors while, to the extent

possible, keeping points close in physical space on the same processor.

Multi-dimensional domain decompositions distribute more than one dimension across proces-

sors for two reasons. First, doing so reduces communication volume as the number of processors

increases, so long as data-dependencies exist only between neighboring elements. Second, dis-

tributing more than one dimension increases available parallelism: if data is distributed along a

single dimension then the maximum number of processors is determined by the number of ele-

ments in that dimension. If it is distributed across two dimensions then the maximum parallelism

is determined by the multiple of the elements in the first dimension and the number of elements in

the second.

Far from reducing volume, artifactual communication effects from multi-dimensional distribu-

tions can result in significantly increased communication for DSM implementations, like the Altix,

where data ownership is determined at a page granularity. The problem is that multi-dimensional
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Figure 6.4 Results from runs using the GLBA0.08 data set, a larger data set which enables the
use of more processors.

arrays are stored linearly in memory. This means that when a global array is distributed in more

than one dimension, the portions of that array owned by one processor are not contiguous.

If these non-contiguous chunks are smaller than a page, a mismatch between the “owner” as

defined by the coherence protocol and the “owner” as defined by the data decomposition, can

result in a severe increase in communication. If the data decomposition owner does not match

the protocol owner, then every cache miss results in communication, as opposed to a trip to local

memory.

Figure 6.3 demonstrates that artifactual communication resulting from a two-dimensional dis-

tribution of the arrays in cnuity() can result in significant performance degradation. The OMP-1D

and OMP-2D variants described in the figure are different only in the values assigned to the loop-

bound variables from Figure 6.1 (myfirstj, mylastj, myfirsti, and mylasti). In OMP-1D, only

the j loop is parallelized (implicitly distributing the data referenced by the loop in that dimension)

while OMP-2D parallelizes both i and j loops.

6.2.3 Inherent: Communication Frequency Optimization

HYCOM uses an “operator-splitting” approach in its solution of the differential equations that

define ocean behavior. In this approach, results computed within a time-step are used in the same

time-step, increasing data dependencies within a time-step relative to other approaches [81]. This

increase in data dependencies in turn leads to increased communication frequency.
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Distributed address space implementations can mitigate this effect by performing redundant

computation on an extended halo of remote data. Note that the halo is gradually used up as com-

puted results are used. The purpose of the margin variable, described above in Section 6.2.1, is to

ensure that only valid portions of the halo are used.

Implementations that take full advantage of the global address space – by treating each data

array as single, global entity, simultaneously operated on by multiple threads – cannot perform

such redundant computation without disturbing neighboring threads. Instead they must obey the

data dependencies, leading to increased synchronization, as described in Section 6.2.1.

Specifically, the SPMD OpenMP versions of cnuity() execute more than 250 dynamic barriers

per time-step. Since the purpose of the barriers is to ensure that data written by one processor is

read by another, the number of data communication events is similar. The MPI version of cnuity(),

on the other hand, communicates twice: once at function entry and once midway through.

While Figure 6.3 indicates that this increase in synchronization and communication frequency

is not an issue at low processor counts, Figure 6.4 supports the intuition that synchronization and

communication overhead increase significantly as the number of processors increases.

6.3 Experimental Evaluation

This section describes the results of simulating runs of HYCOM on up to 512 processors of a

Dual Address Space Architecture implementation using the simulator described in Chapter 5.

The full distribution of HYCOM is too large for simulation experiments. Rather than using a

smaller benchmark, our approach was to find a representative subset of the actual application for

experiments. To that end we have transformed one module of HYCOM – cnuity(), which computes

the continuity equation described above – to use SPMD-style OpenMP exclusively for both single-

and two-dimensioned data distributions. cnuity() contributes roughly 15% to the total runtime

of HYCOM. The Fortran90 file which implements cnuity() contains over 1200 lines of code,

comprising some 20 loop-nests that read and write more than 40 arrays.

The runs use two of the three data sets provided with the GLBLA0 global ocean benchmark [79].

The three data sets provided with the benchmark are:
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• GLBA0-72, referred to hereafter as small, discretizes the global ocean at 72-degree resolu-

tion, resulting in a 500x382 element grid per layer of ocean. The benchmark distribution

advises using up to 64p for the MPI version of the code. We used 16, 32 and 64 processors

in our simulations.

• GLBA0-24, which we refer to as the medium data-set, discretizes at a 24-degree resolution,

resulting in a 1500x1100 grid. While the benchmark distribution only provides for up to 128

processors, we also used 256 and 512 configurations in our simulation experiments.

• Finally, GLBA0-08, discretizes at 8-degree resolution, providing sufficient data for thou-

sands of processors. This data-set is too large for our simulator to manage efficiently at this

point.

Each simulation experiment ran two iterations of cnuity(), the HYCOM module that computes

continuity equations. We used the first iteration to warm up caches and local memories, and we

present results for the second. Small data set runs use the full benchmark; however, to keep simu-

lation time manageable for the larger medium runs, we truncated the outer k-loop to run only six

iterations rather than 26.

6.3.1 Communication

Figure 6.5 presents data for communication due to last-level cache misses. Each bar represents

the total number of last-level cache misses suffered during the second iteration of cnuity(). The

bars are further divided into four categories:

1. local: misses that were satisfied in local memory, and did not cause communication.

2. compulsory: non-local misses due to the initial reference to the data. Since we present results

from the second iteration, the number of compulsory misses is unsurprisingly very low.

3. capacity/conflict: non-local misses due to limited cache capacity or due to low associativity.

4. coherence: non-local misses resulting from invalidations by other processors, or upgrading

from shared to writable.
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Figure 6.5 Last-level cache miss categorization for small (top) and medium (bottom) data set.

We turn our attention first to the one-d-sim and two-d-sim results, taken from runs using the

standard coherence protocol of a one-dimensional distribution of data and a two-dimensional distri-

bution respectively. As expected, due to artifactual communication two-d-sim suffers significantly

more non-local cache misses than one-d-sim. However, the number of misses due to coherence

increases for both two-d-sim and one-d-sim, as the number of processors increases, again not sur-

prisingly since the computation-to-communication ratio is shrinking.

Turning next to the variants that make use of the dual address space to reduce artifactual com-

munication for the two-dimensional distribution (shown only for small distribution), we see that

all variants reduce the total number of cache misses, and dramatically reduce the number of non-

local misses. However, as the results of the previous section would indicate, the update versions

suffer significantly less communication than the invalidate versions. Finally, the use of redundant

computation further reduces the number of non-local misses from the update-only version.
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(a) (b)

(c)

Figure 6.6 (a-b) Performance for small data set, comparing (a) different localization strategies,
and (b) the best strategy with the standard protocol. (c) Performance for medium data set, versus

the standard protocol

However, in almost all cases the total number of misses is significantly higher for two-d-redupd

than for one-d-sim, implying there is still a performance hit for using a two-dimensional distribu-

tion. We can safely attribute these misses to conflicts: they are definitely not coherence or compul-

sory misses, and since one-d-sim references the same amount of data, they are not due to capacity.

Therefore the two-d variants would all benefit from optimizations to reduce conflicts.

6.3.2 Performance

Figure 6.6 presents performance data in the form of (log-based) scaling curves. Figure 6.6(a)

compares the performance of the four localized two-dimensional variants introduced in the previ-

ous chapter. Again, as predicted by the performance of the model, the update variants, which leave
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data localized, perform significantly better than the invalidate variants, which move data from the

local to the global address space for communication. Unsurprisingly, using redundant computation

to reduce communication helps more at higher processor counts.

Figure 6.6(b) demonstrates that the best performing localize two-dimensional variant consis-

tently outperforms even the one-dimensional variant. It also introduces another variant, one-d-

redupd, which uses the same redundant computation technique for the one-dimensional distribu-

tion. The problem with this variant is that the redundant computation, proportional to the full

non-distributed dimension, quickly outstrips the non-redundant computation. In fact, there is no

result for 64p because there is not enough data per processor to support it.

Finally 6.6(c) presents performance data for the medium data set, showing that the localized

variant retains its performance advantage at higher processor counts. The one-d-sim curve is inter-

esting because the knee at 256 processors is caused by load imbalance: there is insufficient work

when the ocean is divided across processors along one dimension to support more than 256 pro-

cessors. In fact, it is not even possible to generate a distribution for more than 512 processors in

one dimension. The two-dimensional variant however would continue to scale to 1024 processors

(in principle; a bug during program loading on the simulator currently prevents it).

6.4 Summary

This chapter has demonstrated the performance benefits of a Dual Address Space implementa-

tion of HYCOM. It demonstrated the effectiveness of User-Controllable Coherence in both: 1) re-

moving overheads associated with artifactual communication in a global address space, and 2) per-

mitting communication optimizations that would otherwise be impossible in an implementation

that takes full advantage of the global address space. Simulation results indicated that localization

of a shared memory variant of HYCOM, which uses a two-dimensional data decomposition, sig-

nificantly reduces the number of last-level cache misses that cause communication. Furthermore,

results demonstrated that the reduction in communication, combined with a communication opti-

mization in which synchronizations are reduced via redundant computation, leads to performance
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improvement over even a nearly artifactual communication-free one-dimensional data decomposi-

tion.
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Chapter 7

Application Two: Fast Multipole Method

This chapter takes a different approach to evaluating the potential performance of the adaptive

Fast Multipole Method [28] on a Dual Address Space Architecture platform. Rather than simu-

lating a subset of the Fast Multipole Method using a simulator, we draw conclusions from a com-

parison of the performance of the full method running on two hardware platforms, one distributed

address space and the other shared.

The adaptive Fast Multipole Method (FMM) is an example of a class of algorithms that uses

hierarchical data structures (i.e., trees) to rapidly approximate the numerical solution of the O(N2)

N-Body problem. The FMM has been shown to approximate the solution with high accuracy in

O(N) time, though the constant factor is quite large. As noted in the Introduction, a potential

application of the FMM of particular interest to molecular biologists is the computation of long-

range interactions in molecular dynamics simulations.

Unfortunately, irregular communication patterns make efficient parallelization of the algorithm

difficult, if not impossible, to achieve on distributed memory architectures. While the bulk of

the run-time of the algorithm is spent in interaction computations – whose communication re-

quirements, though irregular, can be handled efficiently on distributed memory architectures – the

remaining time is spent doing fine-grained tree-traversals which quickly become a bottleneck as

processors are added.

The purpose of the experiments described in this chapter was to test the hypothesis that direct

access to shared memory enabled by hardware-based cache coherence is a better match for the
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Figure 7.1 Example of an adaptive quadtree.

fine-grained communication requirements of the tree-code computation, while the message passing

version’s gather/scatter approach would be more efficient for the interaction computation.

After providing context for the discussion – with a brief explanation of the Fast Multipole

Method algorithm, and our parallelization strategies – we turn our attention to the experiments,

and the implications of the results for our hypothesis, and for User-Controllable Coherence.

7.1 Algorithm

While the computational kernel we use is due to Anderson [5], the algorithmic structure of code

is the same as the adaptive version of Greengard and Rokhlin’s Fast Multipole Method. Like other

hierarchical methods, the FMM algorithm is centered around the octtree data-structure, which is

created as follows: starting with a root box that contains all bodies, recursively subdivide boxes

into eight equal-sized sub-boxes until a stopping condition is met. In an adaptive octtree, recursion

may stop at different levels in different locations of the tree, depending on the distribution of

bodies. Figure 7.1 gives an example of an adaptive quadtree, the two-dimensional version of an

octtree.
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In contrast with the the O(n log n) Barnes-Hut algorithm [8], which requires each body to

traverse the tree individually, the FMM makes use of the observation that when two boxes are

“well-separated”, the far-field effect of all the bodies in one box on those in the other (and vice-

versa) can be approximated as a single interaction between the boxes. Such interactions between

well-separated boxes occur at all levels of the tree, and the savings in computation enable the FMM

to compute far-field forces in O(n) time.

Figure 7.2(a) describes the adaptive version of the algorithm, developed for use with adaptive

octtrees. After creating the octtree, the algorithm traverses the tree to compute several types of

interaction lists for each box. The algorithm differentiates between three types of interaction com-

putations and therefore defines three lists for each box in the tree (see Figure 7.2(b)): boxes in

List1 are adjacent leaf boxes (and therefore are not sufficiently distant from the source to allow ap-

proximation); boxes in List2 are the same size and well-separated (that is, sufficiently distant from

each other to allow approximation); finally, boxes in List34 are differently sized and well-separated

from the perspective of one of the boxes but not the other.

An upward pass over the boxes in the tree establishes the far-field approximations for each box:

At the leaves, the approximation for a box is computed from the bodies within; at higher levels,

the approximation for a box is computed from approximations for boxes it contains. Then each

box computes interactions with all the other boxes on its interaction lists. Finally a downward pass

propagates results, collected at each level in the form of a “local-field potential,” from box to box,

all the way down to the bodies at the leaves.

7.2 Parallelization Strategies

7.2.1 Message Passing: MPI

The MPI implementation draws on three sources: the algorithmic structure derives from the

FMM benchmark in the SPLASH-2 suite from Stanford [84]; the computational kernel comes from

an HPF library implementation of the algorithm [35]; finally, the data-structure derives from War-

ren and Salmon’s “hashed-octtree” parallelization of the Barnes-Hut algorithm [83]. Performance

compares favorably to the HPF version due to more efficient communication mechanisms [52].
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Figure 7.2 (a) The steps of the adaptive FMM algorithm and their division into Tree-code and
Interactions summary categories. (b) Interaction lists for a box in the example quad-tree from

Figure 7.1.
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foreach Node n accessed in Loop l
if n is NOT in localtree then

nonlocal.Insert(n)

othersNonlocalIds = Alltoall(nonlocal.ids)
found = localtree.Search(othersNonlocalIds)

myNonlocals = Alltoall(found)
localtree.Insert(myNonlocals)

Figure 7.3 Inspection and communication in the MPI implementation.

Non-local Data Access. The primary barrier to overcome in a message passing implementation

of the FMM is the irregular access of data imposed by the adaptive octtree data structure. This

implementation uses a form of inspector-executor adapted to the hash-table representation of the

octtree we borrowed from Warren and Salmon.

Each node in the tree is represented by a unique identifier, derived from the node’s location

in the tree, which is used as a key for accessing nodes in a hash-table representing the tree. This

approach simplifies management of distributed trees in two ways. First, the identifier for a node is

the same on all processors. Second, integration of non-local nodes into a local tree is simple: data

for non-local nodes is simply added to a processor’s hash-table.

The pseudo-code in Figure 7.3 demonstrates how the MPI implementation inspects a typical

loop-nest for non-local references and communicates required non-local data.

Body Distribution. Another significant problem that the FMM poses for a distributed memory

implementation is the initial distribution of bodies across processors such that communication is

minimized and load balance is maximized. We have found that sorting bodies according to their

position along a Hilbert space-filling curve [68] is an excellent match for this algorithm: since

both the Hilbert curve and the octtree recursively divide space in half along each dimension, all

bodies in the same leaf of the octtree are contiguous after the sort. We can then partition the sorted

sequence of bodies among the processors by assigning each a contiguous range of bodies and, with

a little care, ensure that each processor is assigned all bodies in a given subtree of the octtree before

the tree is even built.
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Parallelization. Below we provide details about the parallelization of each step in the algorithm

from Figure 7.2:

build – Given the partitioning strategy described above, we are able to construct octtrees locally,

except for a brief communication phase in which processors exchange information about shared

boxes (boxes at upper levels of the tree whose sub-boxes lie on more than one processor) to ensure

that the representation of these boxes is globally consistent.

mklists – The fine-grained nature of the computation in the list-construction algorithm, com-

bined with large communication requirements, can cause this step to be a major bottleneck in the

parallelized application if special care is not taken. We have transformed the uniprocessor list

construction algorithm into a level-by-level form which allows us to use the inspector-executor

strategy noted above, at each level, to gather non-local data before computing lists for that level.

up, down – As noted earlier, we replicate information about shared nodes at the uppermost

levels of the tree to all processors and ensure that all nodes in a subtree below any non-shared

node are located on the same processor. This partitioning strategy avoids communication in the

downward pass and requires only a single communication step in the upward pass when moving

from private nodes to the shared parents.

List1, List2, List34 – As in list construction, we communicate non-local data required during

the interaction computations using our variation on the inspector-executor technique. To ensure

load-balance, we move data for boxes involved in each of the three computation phases into a

“weighted-block” distribution immediately prior to that phase. This involves looking in the work-

list for each box involved in the computation to determine the amount of work it will do, and then

minimally redistributing the boxes such that each processor will have approximately the same total

amount of work.

7.2.2 Shared Memory: OpenMP

The shared memory implementation represents a merging of the MPI derivative back into its

SPLASH parent, with the aid of OpenMP parallelization pragmas.
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Non-local Data Access. The primary difference between the OpenMP and MPI codes is the

former’s ability to directly access non-local memory. This ability manifests as an advantage in two

ways: first it makes the code, particularly the tree-code, much easier to write and understand. As a

rough measure of this advantage, the number of lines of C code in the OpenMP implementation is

half that of the MPI version.

Secondly, direct access of non-local memory potentially makes the code much more efficient,

since there is no need for extra computation and synchronization associated with an inspection

phase for irregularly accessed data. On the other hand, there is also potential for inefficiency due

to the cache-based nature of hardware coherence: reuse of non-local data that does not stay cached,

whether due to conflict, capacity or coherence misses, can severely degrade performance.

Body Distribution. Despite the ability to access global memory, due to locality concerns it is still

beneficial for both load balance and communication to “distribute” data appropriately, especially

when the architecture exposes local memory to the user. For this reason, we use exactly the same

algorithm to partition bodies, sorting them according to their position along a Hilbert space-filling

curve, as in the MPI code.

Parallelization. Below we provide details about each algorithmic step:

build – As with the MPI version, the partitioning strategy described above allows most of the

octtree construction to be done locally. While merging the trees still requires some synchronization

through locks, it is minimal compared to the amount required in the original SPLASH code. How-

ever, unlike the MPI version, there are no shared boxes in the OpenMP version, which guarantees

a certain amount of contention as processors add their boxes from the top levels of their local trees

to the global tree.

mklists, up, down – The fine-grained computation in these steps, coupled with their limited

reuse of non-local data, makes them ideally suited to the direct memory access capability of shared

memory.



94

List1, List2, List34 – We are not currently load-balancing interactions. While our use of

inspector-executors to communicate non-local data in the MPI interaction computations dictates

that all processors do all List1 computations, at the same time, then all List2 and then all List34,

shared memory allows much more flexibility in terms of overlapping computations. Not yet hav-

ing determined the optimal way to order the List computations for the shared memory version, and

also requiring a meaningful way to compare computation times with the MPI version, we currently

simply use the same strategy as the MPI version but without the load balancing step.

7.3 Experiments

This section describes experiments with the two versions of the FMM described in the previous

section, on an SGI Altix BX2. The Bx2 has 512 Intel Itanium2 processors running at 1.5GHz, each

with 6MB of L3 cache. The machine features 4 GB of memory per processor for a total of 2 TB

of shared memory.

The experiments study the weak scaling of FMM on the Altix: as the number of processors

increases, the data size increases proportionately, keeping the number of bodies simulated per pro-

cessor constant. Perfect scalability would result in constant run-times as the number of processors

is increased, evidenced by a flat horizontal line in plots where processors increase on the X axis

and times are measured on the Y axis.

We present two categories of results: 1) summary results, in which total time divides into “tree-

code” versus “interactions”, and 2) detailed results, in which we further divide the summary data

into its constituent parts. Results are the average of per-processor cycle counts and level three

cache (L3) miss counts obtained from Itanium2 performance counters. L3 misses are significant

since they must be satisfied from memory, potentially non-local, in which case they cause commu-

nication.

As discussed earlier, we expect the irregular, extremely fine-grained communication of the tree-

code phases to favor hardware-based cache coherence. On the other hand, the more coarse-grained

communication requirements of the interaction phases – while still irregular – favor a message-

based approach for two reasons:
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Figure 7.4 Rough comparison of bytes communicated by MPI vs OMP (128 procs).

• For maximal efficiency, non-local data should stay where it is after it has been communi-

cated. In cache-based approaches, evicted non-local data must be re-fetched. One of the

key observations in [52] is that there is heavy reuse of non-local data in the List2 interac-

tions, which would seem to translate into a high likelihood for redundant communication as

non-local data is evicted from the cache.

• Again, for maximal efficiency, updates to non-local data should not interfere with one-

another. In a message-based approach, updates are naturally handled as reductions. On

the other hand, in the shared memory paradigm, updates are more naturally expressed us-

ing locks to synchronize access to the data, potentially resulting in both lock-contention and

unnecessary communication traffic as the updated values propagate from cache to cache.

7.3.1 Communication

As a measure of relative communication efficiency, Figure 7.4 presents approximations of the

communication requirements of the two implementations for each algorithmic phase.

For the OpenMP implementation, the approximation is based on L3 cache misses as measured

by hardware counters. Since the transfer size for cache misses is the cache-block size, the number

of bytes communicated is equal to the number of L3 misses multiplied by the block size. Since not

every L3 miss results in communication, this measure overestimates communication. However, if

the number of the L3 misses is low we can certainly infer that the number of misses that cause
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communication is low; and, as the number of L3 misses grows, the likelihood that the misses

require communication, given that some misses do require communication, also grows.

The SGI MPI runtime provides a mechanism for obtaining the number of bytes communicated

by the MPI programs. This method also overestimates the amount of data communicated since it

does not distinguish, for collective communication calls, between bytes sent to other processors

and bytes sent to self.

The data clearly supports the hypothesis that while shared memory more efficiently commu-

nicates non-local data in the tree-code steps, message passing is more efficient for interactions.

For fine-grained tree-code steps, most notably build and mklists, the MPI implementation requires

significantly more communication than the OpenMP version. On the other hand, the OpenMP im-

plementation of the interaction phase, particularly the List2 phase, appears to transfer significantly

more data than the MPI version.

7.3.2 Performance

Figure 7.5(a) presents summary results comparing performance of the two implementations for

the tree-code and interactions. Figure 7.5(b) and (c) show detailed results for each algorithmic step

for OpenMP, and Figure 7.5(d) and (e) show the same for MPI.

All the way up to 512 processors, the shared memory version outperforms the MPI version,

even on the interaction code. Since the gap between the two is fairly steady as the number of

processors grows, we might attribute this to greater indexing efficiency in the shared memory

version: recall that we use a hash table to represent the octtree in the MPI version which implies

a hash lookup for every index into the tree rather than the simple pointer dereference enabled by

globally shared memory.

Based on the detailed results, most of the steep growth for the OpenMP curves in the summary

graph can be attributed to two phases: the List34 interaction phase and the build tree-code phase.

Both phases make use of locks to synchronize data access.
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(a)

(b) (c)

(d) (e)

Figure 7.5 Results for 512 processor Altix Bx2 at SGI (3rd iteration): overview (a), and detailed:
(b) OpenMP tree-code, (c) OpenMP interactions, (d) MPI tree-code, (e) MPI interactions.
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As described in 7.2, we have already done significant work to try to reduce the effect of syn-

chronization in the build phase. It appears that we need to find a more structured means of com-

pleting the global tree that requires even less synchronization.

Locks are required in the List34 phase due to potential non-local writes: recall that List34 is

actually two symmetric lists, such that if Box A is on Box B’s List3 then Box B is on A’s List4.

To simplify the list construction phase, only one end of this dual transaction is recorded in a list

(List34) and both computations are taken care of at the same time in the List34 interaction phase.

As a result, the computation may result in writes to non-local data since Box A may be located on

a different processor than Box B.

The MPI version takes advantage of the fact that each write is only an update to a value which

is not actually used until the phase is over, and turns a collection of non-local writes into a single

post-computation reduction.

Strikingly, despite the OpenMP implementations problems with List34 locks, and the MPI

version’s apparently substantial advantage in terms of communication requirements for the List2

interaction computations, MPI interaction performance consistently lags OpenMP. The detailed

results point to the List2 interactions as the primary source of the problem.

As a potential explanation, recall that every processor gathers all the non-local requests of every

other processor to determine whether it owns the data requested. This all-to-all approach clearly

does not take full advantage of data locality inherent in the algorithm.

Another factor may be that there is some communication involved in redistributing data in

order to load balance the interaction computations in the MPI version. As noted earlier, we are not

currently load balancing the OpenMP interactions.

7.4 Implications for the Dual Address Space Architecture

With its mixture of fine-grained and coarse-grained communication, the Fast Multipole Method

is a particularly good target for a Dual Address Space Architecture implementation. Experimental

data presented in this chapter indicates the following for such an implementation:
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1. The treecode phases require a global, shared address space. Furthermore, the shared address

space implementation must be hardware-based; scalability is already an issue at 512 proces-

sors even on the Altix. The tree building phase in the current implementation is a particular

problem, likely due to locking, and different approaches will need to be investigated for scal-

ing to higher processor counts. One possibility is the replacement of locks with transactional

memory transactions.

2. The interaction phases can benefit significantly from local memory. Though the shared ad-

dress space implementation outperformed the distributed memory implementation in the ex-

periments, there is still significant room for improvement in two areas. First, non-local cache

misses can be substantially reduced in the List2 interactions phase. Second, locking in the

List34 interactions phase can be removed through the use of reductions.

3. There remain several implementation issues to work out. For example, some data is used in

both phases. Also, since particles move from timestep to timestep, repartitioning of localized

data between steps will be necessary.

7.5 Summary

This chapter described experiments with two implementations of the Fast Multipole Method

application – one using the shared memory programming model (OpenMP), the other the message

passing model (MPI) – on two different memory architectures. The experiments demonstrated that,

as expected, the tree-code phases of the algorithm are much better suited to the shared memory

programming paradigm, both from a communication and an actual performance standpoint. The

OpenMP version also outperforms the message passing version for the coarse-grained interaction

phases despite significantly unfavorable communication requirements. Overheads in the inspector-

executor paradigm, or at least in our particular implementation of it, appear to outweigh the benefits

of reduced communication.

The experiments expose weaknesses in both models that can be addressed with a Dual Address

Space implementation of the algorithm: 1) The treecode phases require a global, shared address
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space. 2) The interaction phases can benefit significantly from local memory: First, non-local

cache misses can be substantially reduced in the List2 interactions phase. Second, locking in the

List34 interactions phase can be removed through the use of reductions.
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Chapter 8

Conclusions

Chapter 1 introduced the three-pronged thesis of this dissertation:

1. User-Controllable Coherence is an efficient mechanism for enabling increased user and com-

piler control over data consistency and data locality.

2. The Dual Address Space provides a high-level interface for programmers to conceptualize

and take advantage of the mechanism.

3. Together they provide users and compilers an efficient means, particularly appropriate to the

structure of scientific applications, of keeping data consistent and local, enabling improved

performance over current global address space implementations.

The remainder of the dissertation evaluated the thesis in two parts. The first part evaluated the first

two clauses of the thesis by construction: Chapter 3 described the architecture and programming

model, while Chapter 4 described a full-scale directory-based implementation of the Dual Address

Space Architecture.

The second part of the dissertation evaluated the third clause of the thesis through a perfor-

mance evaluation of Dual Address Space implementations two applications that currently under-

perform on distributed address space hardware. Chapter 6 introduced HYCOM, an ocean modeling

application which makes use of a static though slightly irregular data decomposition, complicating

the nearest-neighbor communication due to stencil computations. Chapter 7 introduced the Fast
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Multipole Method, which features highly irregular, dynamic computation partitioning, data de-

composition and communication that significantly impair implementation in a distributed address

space.

Detailed highlights of the dissertation:

• Chapter 3 described the Dual Address Space, the programmer’s interface to the Dual

Address Space Architecture. It began with a thread’s-eye view of the Dual Address Space.

In size and structure, the local address space is a logical duplicate of the global address

space, but it may contain different data values. Data is only valid in either the local or global

address space at a given time. The chapter then introduced new instructions for accessing

data in the local address space, ldL and stL, and presented the precise semantics of the local

and global instructions.

Next, the chapter provided a formal definition of the memory model, in terms of well-

established programmer-centric synchronization models. It demonstrated that as long as

software follows established guidelines (indicating synchronization operations and making

them global; ensuring no races exist between data operations; ensuring localized data is

globalized appropriately) it will be guaranteed sequentially consistent execution. Finally,

the chapter described the programming model, explaining how software uses the Dual Ad-

dress Space to explicitly reduce artifactual communication.

• Chapter 4 described a full-scale implementation of the Dual Address Space Architec-

ture, an extension of the SGI Altix design, itself based on the SGI Origin. The chapter

began by describing the layout of a node, the basic building block in all the aforementioned

systems. Modifications are largely limited to the coherence protocol implementation in the

processor and directory interfaces, along with the addition of local memory to the memory

interface.

The chapter continued with a detailed description of a directory-based implementation of

the User-Controllable Coherence cache coherence protocol, initially assuming single-word

cache blocks, and then describing in detail the ramifications of multi-word cache blocks. The
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chapter then described support for the consistency model introduced in Chapter 3. Finally,

the chapter closed with a discussion of the implementation of local memory.

• Chapter 5 described the implementation of the cycle-accurate simulator, modeling a

1024 processor SGI Altix 4700 system. The simulator, used in the evaluations of Chap-

ters 1 and 6, consists of two parts: a reference generating front-end and the memory system

simulator back-end. The chapter described the parallelization of both parts, resulting in

a fully parallelized system simulator, demonstrated capable of accurately simulating 512

threads running a real, full-scale, application across 128 host processors. Finally, the chapter

provided validation and performance data from runs of the simulator on a full-scale applica-

tion, noting several opportunities for improvement in both areas.

• Chapter 6 demonstrated the performance benefits of a Dual Address Space implemen-

tation of HYCOM. It demonstrated the effectiveness of User-Controllable Coherence in

both: 1) removing overheads associated with artifactual communication in a global address

space, and 2) permitting communication optimizations that would otherwise be impossi-

ble in an implementation that takes full advantage of the global address space. Simulation

results indicated that localization of a shared memory variant of HYCOM, which uses a two-

dimensional data decomposition, significantly reduces the number of last-level cache misses

that cause communication. Furthermore, results demonstrated that the reduction in com-

munication, combined with a communication optimization in which synchronizations are

reduced via redundant computation, leads to performance improvement over even a nearly

artifactual communication-free one-dimensional data decomposition.

• Finally, Chapter 7 described a different approach to the evaluation of a Dual Address

Space version of the Fast Multipole Method: experiments with two implementations of

the Fast Multipole Method application – one using the shared memory programming

model (OpenMP), the other the message passing model (MPI) – on two different mem-

ory architectures. The experiments demonstrated that, as expected, the tree-code phases

of the algorithm are much better suited to the shared memory programming paradigm, both
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from a communication and an actual performance standpoint. The OpenMP version also

outperforms the message passing version for the coarse-grained interaction phases despite

significantly unfavorable communication requirements. Overheads in the inspector-executor

paradigm, or at least in our particular implementation of it, appear to outweigh the benefits

of reduced communication.

The experiments exposed weaknesses in both models that can be addressed with a Dual

Address Space implementation of the algorithm: 1) The treecode phases require a hardware

supported shared address space. 2) The interaction phases can benefit significantly from local

memory: First, non-local cache misses can be substantially reduced in the List2 interactions

phase. Second, locking in the List34 interactions phase can be removed through the use of

reductions.

Future Work The complete fruition of this work would be a hardware implementation of the

Dual Address Space Architecture, along with a Dual Address Space implementation of a molecular

dynamics code that uses the Fast Multipole Method to solve long-range force computations. In

addition to that long-term goal, there are many other possible directions for future work, including

the following questions:

• What impact could a Dual Address Space Architecture have on the elusive goal of automatic

parallelization?

• Could a Dual Address Space Architecture, on a smaller scale, be useful in addressing prob-

lems with coherence traffic on the multicore building blocks of distributed memory plat-

forms?

• Is local memory with selective globalization the way to implement message passing on

shared address space hardware?

• Could User-Controllable Coherence be the basis for a hardware implementation of Transac-

tional Memory (ala Speculative Lock Elision [64])?
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Finally, independent of the thesis, the pursuit of this dissertation has resulted in an insight

that could be a particularly fruitful area for future work: there is remarkably little to distinguish

applications that succeed on the largest-scale platforms, such as S3D, from others like HYCOM

that are far less successful. Understanding the difference may be the first step towards fixing the

problem.
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