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Abstract

In this paper we describe how we have used Pin to gener-
ate a multithreaded reference stream for simulation of a mul-
tiprocessor on a uniprocessor. We have taken special care to
model as accurately as possible the effects of cache coher-
ence protocol state, and lock and barrier synchronization on
the performance of multithreaded applications running on
multiprocessor hardware.

We first describe a simplified version of the algorithm,
which uses semaphores to synchronize instrumented appli-
cation threads and the simulator. We then describe modi-
fications to that algorithm to model the microarchitectural
features of the Itanium2 that affect the timing of memory ref-
erence issue. An experimental evaluation determines that,
while our methods enable accurate simulation, the use of
semaphores has negative impact on the performance of the
simulator.

1. Introduction

Dynamic instrumentation tools, such as Intel’s Pin [3], en-
able users to dynamically modify binary applications on the
fly through the static definition of procedure calls that are
inserted dynamically into the instruction stream based on in-
struction type.

The idea of using a tool like Pin for architectural simula-
tion is enticing for two reasons:

1. Ease of implementation – since the tool provides access
to every instruction in the instruction stream, and meth-
ods for distinguishing their important features, much of
the burden of decoding and interpreting instructions is
removed from the simulator writer.

2. Performance – since instructions, after an initial instru-
mentation by Pin, run on the hardware they were meant
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to run on, rather than through an interpreter, there is the
potential for increased simulator performance versus a
more standard implementation which decodes every dy-
namic instruction.

These were among the considerations that led us to Pin in
our search for a mechanism to generate memory references
for our existing back-end memory system simulator, a modi-
fied version of the Slicc/Ruby simulator created by the Mul-
tifacet group at the University of Wisconsin [5].

In this paper we describe how we have used Pin to gen-
erate a multithreaded reference stream for simulation of a
multiprocessor on a uniprocessor. Since our goal was to
use the simulator to evaluate the performance of cache-
coherence protocols on existing multiprocessor hardware
(the HP Superdome), a primary concern was to model as ac-
curately as possible the effects of coherence protocol state,
and lock/barrier synchronization on the performance of mul-
tithreaded applications running on multiprocessor hardware.

The algorithm we describe ensures that references are
simulated in the same global order that they would have oc-
curred in a multiprocessor by halting a thread when it blocks
on a memory reference and only releasing it after time has
been simulated up to and including the time at which the ref-
erence completes. In this way we ensure that the simulator
never simulates a reference by one thread to an address that
another thread should have referenced first.

The rest of the paper proceeds as follows: we begin in
Section 2 with a brief discussion of Pin and how it works.
Then in Section 3 we introduce our algorithm by describing
the implementation of a prototype version of our full-scale
simulator which blocks on every reference. Since the Ita-
nium2 [4] processor on which the Superdome architecture is
based does not block on most memory references, the actual
algorithm used by our simulator is more complicated. Sec-
tion 4 describes in detail how we model those elements of the
Itanium2 microarchitecture essential for the accurate simula-
tion of memory references. Finally, in Section 5 we present
an evaluation of both the accuracy of the simulator and its
performance.



2. Pin

In this section we give a brief overview of Pin and the
application interface it presents to users.

A user creates a Pin tool – by writing C or C++ code with
calls to the Pin library – compiles and links it with the Pin
library, and then runs an application binary through the Pin
tool by passing it (and it’s arguments) on the command line.

The primary interface to the Pin library is the
PIN AddInstrumentInstructionFunction() which takes as
an argument a user-defined function which will be
called every time the Pin tool instruments an instruction
from the target application. (Another library function
PIN AddInstrumentInstructionSequence() may be used in-
stead to instrument at the granularity of a basic block.)

Within that user-defined function, known in Pin parlance
as an “instrumentation” function, use can be made of in-
spection routines to determine the instruction type, and then
based on type, insert calls to “analysis” routines. Analysis
routines can take as parameters runtime values such as regis-
ter contents.

The idea is that instrumentation routines are called only a
few times since they are associated with the static executable,
and thus can afford to be broadly targeted (i.e., to every in-
struction), while analysis routines are associated with the in-
structions of interest, and are only called when those instruc-
tions are executed.

Essentially a “just-in-time” compiler, the Pin implemen-
tation works as follows:

1. Pin intercepts the execution of the first instruction of the
application.

2. Pin then generates code for the straight-line code se-
quence starting at this instruction, inserting any required
calls to analysis routines and ensuring that it regains
control when a branch exits the sequence.

3. Pin then transfers control to the generated sequence.

4. After regaining control, Pin generates more code for the
branch target and continues execution.

5. Translated and instrumented code is saved in a code
cache for future execution of the same sequence of in-
structions to improve performance.

3. Simulator Prototype

As discussed in the introduction, ensuring accurate mod-
eling of synchronization and cache coherency protocol state
requires that special care be taken to ensure that threads ex-
ecute instructions in an order that is consistent with a mul-
tiprocessor execution. This requirement imposes a need for
synchronization between the threads and the simulator. We
use semaphores to implement that synchronization.

3.1. Semaphores

Introduced by Dijkstra [1] as a mechanism to implement
critical sections, semaphores are essentially counters that
control access to resources. The interface to semaphores
consists of two components: wait and signal, also known
as down and up respectively. A typical implementation of
wait causes the initiating thread to sleep until it is signal’d
by another thread.

Semaphores provide a simple mechanism to synchronize
the producer/consumer relationship between the application
threads and the simulator:

1. Consumer waits for producer

2. Producer produces, then signals the consumer and waits
for consumer.

Unfortunately, in the absence of a lightweight thread li-
brary, the efficient implementation of semaphores is still
something of an open problem: because wait and signal re-
quire atomicity and an efficient sleep mechanism, they are
typically handled in the operating system kernel, implying a
costly context switch on every call.

3.2. Prototype Algorithm

Figure 1 demonstrates our algorithm stripped down to its
bare essentials.

Application threads run through the Pin tool created from
the code on the left-hand side of Figure 1: the instrumenta-
tion routine Instruction() associates the reference() analysis
routine with every memory reference: i.e., all ld and st in-
structions will call reference() before they execute. Mean-
while, all other instructions are instrumented to call the
incr cycle() analysis routine.

Not shown in the figure, the Pin tool makes use of another
Pin library routine to start a simulator thread before starting
the application threads. The prototype “simulator” simply
executes the code on the right-hand side of Figure 1.

The algorithm then proceeds as follows:

• Immediately after starting, the simulator waits on a
“multiple count” semaphore: the semaphore must be
signal’d multiple times – in this case once by each
thread – before the simulator can continue.

• All application threads are then started as normal by
Pin. When an application thread hits its first memory
instruction it signals the semaphore that the the simu-
lator is waiting on (modeled by the dotted arrow in the
figure) and then waits on its own semaphore.

• After all the threads have signal’d and wait’d, the sim-
ulator thread wakes up and “simulates”. The prototype
simulator does nothing, but the real simulator can now
safely simulate time up till the next completion of a ref-
erence.



void
reference(UINT64 tid, UINT64 pred, 
          UINT64 iaddr, UINT64 addr)
{
    if (pred == 0) {
        cycle[tid]++;
        return;

    

}

void 
incr_cycle(UINT64 tid, UINT64 iaddr) 
{
    cycle[tid]++;
}

void 
Instruction(INS ins, void *v)
{
    switch(INS_Category(ins)) {
    case TYPE_CAT_STORE:
    case TYPE_CAT_LOAD:
        PIN_InsertCall(IPOINT_BEFORE, ins, (AFUNPTR)reference, ...);
        break;
    default:
        PIN_InsertCall(IPOINT_BEFORE, ins, (AFUNPTR)incr_cycle, ...);
    }
}

    }

    sem_down(&thread_sem[tid]);

    sem_up(&sim_sem);

void
sim_loop(void* unused)
{
    int i;

    

        UINT64 min = MAX_UINT64, min_tid = 0;
        
        for (i = 0; i < max_threads; i++) {
            if (go[i] && cycle[i] < min) {

        

    }
}

    while (!done) {

                min = cycle[i];
                min_tid = i;

        sem_down(&sim_sem);

    sem_down_cnt(&sim_sem, max_threads);

        sem_up(&thread_sem[min_tid]);

            }
        }
        cycle[min_tid] += 1;

Figure 1. Prototype code.

• The prototype simulator then releases the thread with
the oldest reference which executes until it reaches a
memory instruction, wakes up the simulator, and so on.

4. Full-Scale Simulator

As noted in the Introduction, the Itanium2 does not block
on many memory operations, but rather on instructions that
depend on the results of those operations. In this section we
describe how we modified the prototype to more accurately
model the Itanium2 processor. Though our primary inter-
est is not accurate microarchitectural simulation, certain mi-
croarchitectural features must be taken into account to ensure
the accurate timing of reference generation.

4.1. Handling Multiple Outstanding Loads

Since reads do not necessarily block, the placement of
semaphores to synchronize with the simulator is no longer
obvious: blocking is not associated with the ld instruction
that initiated the request, but rather with another, arbitrary,
instruction that uses the register into which the value is read
from memory.

Our approach to this problem is to use indirection:
semaphores are associated with a table of outstanding re-
quests, and each register use is preceded by a lookup into
the table to determine whether the register is associated with
an entry in the table; if it is then the thread blocks on the asso-
ciated semaphore. Our Pin tool’s analysis routines maintain
two structures to help implement the task:

1. MemQueue, with an entry for each outstanding request,
keeps track of outstanding requests: each request is

given a slot in the MemQueue and each slot in the
MemQueue has an associated semaphore.

2. RegReady, with an entry for each CPU register, keeps
track of when that register is ready to be read. Instruc-
tions that write registers use the structure to indicate the
cycle at which the register will be ready for reading.
For example, arithmetic operations that write a register
would update the RegReady entry with the current cy-
cle plus 1 for integer operations or 4 for floating point
operations. Ld instructions, on the other hand, insert a
pointer to a reserved MemQueue slot into the RegReady
entry. The thread then continues processing instruc-
tions.

If an issuing instruction depends on a register whose
RegReady entry contains a pointer to an entry in the
MemQueue, then the thread returns control to the simulator
and blocks on the semaphore associated with the MemQueue
entry. When time has been simulated up till the reference
completes, the simulator replaces the pointer in the Re-
gReady entry with the current cycle value and returns control
to the thread.

Virtual Registers. The discussion above has so far left out
an element of the Itanium architecture which significantly
complicates our efforts: Itanium instructions refer to virtual
registers rather than physical registers. Virtual registers serve
two purposes: as a mechanism for implementing a register
stack for procedure calls, and as a mechanism for generating
more efficient software pipelining code.

At procedure calls, Itanium compilers allocate a set of
fresh local registers for use in the procedure and to pass pa-



rameters. The new procedure always thinks that its local reg-
isters begin at r32. Under the covers hardware maps the vir-
tual registers to new physical registers, essentially sliding a
window of virtual register names forward over the physical
register file. Upon return from the procedure, hardware pops
the stack, sliding the window back so that the logical regis-
ters map back to the physical registers they mapped to before
the call.

Virtual registers are also used to implement a rotating reg-
ister mechanism, which enables compilers to generate ex-
tremely compact software pipelining code, as in the follow-
ing example:

loop:
(p17) st4 [r11]=r33,4

...
(p16) adds r32=100,r36

...
br.ctop.sptk.few loop

The value written to r32 by the adds instruction in one itera-
tion of the loop is read by the st4 instruction on the next iter-
ation, though the store lexically precedes the add. Predicate
registers also rotate, facilitating pipeline startup and wind-
down.

Fortunately, both of these cases are marked in the instruc-
tion stream by the use of specialized branch instructions: call
and ret mark procedure calls, while ctop and wtop indicate
rotation points.

In our implementation, the RegReady structure is actually
associated with an “infinite” array of physical registers, and
we keep track of where virtual registers point in the physical
registers after pushes, pops, and rotations, via pointers. We
can then use a FindReg() routine to map a virtual register to
physical register in order to set or read the ready time for
the physical register. Since we assume an infinite number
of physical registers we do not model the spilling of register
contents to memory necessary when hardware runs out of
physical registers.

Stores. We have chosen not to model the complexity of a
store buffer. Instead we simply use a “write” semaphore to
handle the synchronization between threads and the simula-
tor on st instructions: on a st a thread gives control to the
simulator and blocks on the write semaphore. The simula-
tor returns control to the thread after it has time simulated
time up until the cycle that the write completes. Acquire and
release memory operations are handled in a similar fashion.

4.2. Other Microarchitectural Considerations

Instruction issue and counting cycles. The Itanium archi-
tecture has very strict requirements on the number of, and
order in which, instructions may issue each cycle. The com-
piler groups instructions into “bundles” which obey these
constraints. One of the runtime values that an analysis rou-
tine can receive as a parameter from the instrumentation rou-
tine is the value of a stop bit which indicates whether the

4 16 64
barnes

Bodies 16K 64K 256K
Insns/Proc (Million) 251 287 313
Refs/Proc (Million) 28 33 36

fmm
Bodies 16K 64K 256K

Insns/Proc (Million) 822 901 871
Refs/Proc (Million) 36 39 39

moldyn
Bodies 2K 8K 32K

Insns/Proc (Million) 50 54 59
Refs/Proc (Million) 5 5 6

Table 1. Benchmark statistics.

current instruction is the last instruction of a bundle. With
that information our analysis routines can ensure that at most
two bundles are issued before incrementing a cycle counter.

The cycle counter is also incremented 1) when an issuing
instruction depends on a register whose RegReady value is
greater than the current cycle, and 2) when control returns to
a thread after a st instruction completes.

Features not modeled. In not completely modeling the
microarchitecture we are of course making some assump-
tions about our workload:

• We do not model the instruction stream coming from
memory, so we are assuming that: 1) L1 instruction
cache misses are rare and do not affect performance,
and 2) instructions do not conflict with data in the L2
and L3 caches.

• We do not model branch prediction hardware so we are
assuming that most branches are predicted correctly.

• Finally, we do not model finite functional units so we
are assuming that in our workload, structural hazards
are rare and do not affect performance.

5. Accuracy and Performance Evaluation

In this section we present results from experiments with
our simulator. The experiments were performed using por-
tions of three applications relevant to our research into the
performance of irregular scientific applications on parallel
hardware: barnes, fmm and moldyn. All three perform N-
body simulations, the difference is in the way the algorithms
avoid the O(n2) complexity of the all-pairs algorithm: mol-
dyn uses a “cut-off” heuristic, while both barnes and fmm
make use of a tree data structure to reduce the complexity to
O(nlogn) and O(n) respectively.

Table 1 presents some vital statistics from the runs: the
number of bodies simulated, the number of instructions sim-
ulated on each processor and the number of references in that
instruction stream.

All measurements for simulated runs were obtained from
dual-processor Itanium2 systems on the Teragrid at NCSA,
running a version 2.4 Linux kernel. Data for hardware
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Figure 3. Simulator Performance.

comparisons was gathered from runs on the 64 processor
Itanium2-based HP Superdome at the University of Ken-
tucky.

5.1. Accuracy

The first set of results, presented in Figure 2, demon-
strate the accuracy of our simulator, including the back-end
memory system simulator, relative to the hardware that it is
attempting to model. Our goal here is not to provide in-
depth analysis of the accuracy of the simulator, but simply
to demonstrate, through the implementation of the ideas pre-
sented in Sections 3 and 4, that our approach is feasible, and
that reasonable accuracy is possible.

In support of that claim, Figure 2 shows that in almost all
cases the simulated cycle count is within 10% of the actual
hardware count as measured with Itanium2 CPU counters.
We believe that the one case that’s worse, moldyn at 16p, is
due to the fact that our simulator does not currently simu-
late system calls: the benchmark features a relatively large
number of print statements and there is likely contention for
resources as the processor count increases that we are not
modeling.

5.2. Performance

Figure 3 presents results describing the performance of
the simulator.

Simulators are not created equally: even if they simulate
the same hardware and they are likely doing so at different
levels of accuracy. This makes performance comparisons
with other simulators difficult. Furthermore, our focus in this
work is really only the front-end reference generator as op-
posed to the entire simulator; in particular, we are interested
in determining the cost of using semaphores to perform syn-
chronization.

To that end, in our results we first separate out the time
spent in the back-end memory system simulator by contrast-
ing the run times of the prototype Pin tool presented in Sec-
tion 3 with the times of the full-scale simulator including the
back-end. Then, to focus in on the cost of semaphores, we
normalize all results to the performance of the prototype Pin
tool with semaphores disabled (i.e., the implementations of
sem up() and sem down() simply return control to the caller
rather than performing operations on semaphores).

In addition, the figure presents results for two ver-
sions of the prototype1, the first using standard System V
semaphores, and the second using futex (“fast userspace
mutexes”) based semaphores [2]. Counter increments and
decrements of futex-based semaphores are implemented at
the user-level with the aid of atomic fetch-and-add instruc-
tions, so a system call is only required when a thread needs

1We were unable to use pthread semaphores due to compatibility issues
with Pin. However, it is our understanding that pthread threads are actually
implemented as processes in Linux, so we would not expect a substantial
performance difference relative to the two implementations of semaphores
we tested.



to be put to sleep or awakened.
Figure 3 clearly indicates that a large percentage of to-

tal simulation time is spent in the front-end, generating ref-
erences: the full-scale simulation, including the back-end
memory simulation, only takes at most 50% longer than the
System V semaphore prototype. In other words, reference
generation takes about two-thirds of the entire simulation
time of the full-scale simulator.

While the performance of the prototype futex implemen-
tation appears promising for low thread counts, as the num-
ber of threads increases performance degrades to the level
of the System V semaphores. This would appear to point to
poor scalability of futexes. However, we note that futexes are
native to the 2.6 linux kernel, and the version we are using
has been back-patched into the 2.4 kernel present on the ma-
chines at NCSA. It is thus possible that we are not seeing the
full performance potential of futexes.

Interestingly, while barnes takes almost 100X longer than
the non-semaphore version at 64 processors, fmm only takes
about 50X. We attribute this to the higher percentage of
memory references – and subsequent increased semaphore
usage – in barnes. Oddly, moldyn takes relatively less time at
high processor counts compared to the non-semaphore ver-
sion: this is likely due to the I/O mentioned earlier. I/O is
relatively much more expensive for the non-semaphore ver-
sion since it accounts for a much larger percentage of the
total runtime; the effect is enhanced by the fact that our Pin
tools do not instrument system calls.

6. Conclusions

We have described our implementation of a multithreaded
front-end reference generator for an existing back-end mem-
ory system simulator using the dynamic instrumentation tool
Pin.

In Sections 3 and 4, we demonstrated how our use of
semaphores to synchronize instrumented application threads
with the memory system simulator, in conjunction with care-
ful modeling of a few necessary components of the Itanium2
microarchitecture, enables the accurate timing of memory
reference generation, both within a thread and between
threads.

Then in Section 5 we showed that while cycle-accurate
multithreaded simulation is possible using our approach, cur-
rent semaphore implementations make it an expensive alter-
native, perhaps prohibitively so. Our experiments indicate
that reference generation takes two-thirds of the total time for
simulation with our full-scale simulator, including the mem-
ory system back-end.

Perhaps with more effort we could find a better implemen-
tation of semaphores, or a more clever alternative. However,
our experience of frustratingly long waits for simulations of a
relatively small number of processors on smallish input sets
has led us to conclude that, even if we were able to com-
pletely eliminate semaphore overhead, this approach is not
viable for the kind of research we want to do. Simulating

thousands of processors for billions of instructions is simply
not practical on a uniprocessor.

We are currently looking at several alternative ap-
proaches. The simplest is to locate application problem areas
through runs on hardware, with the aid of CPU and network
performance counters, and then simulate large numbers of
processors on just that area. The hope is that this approach
would considerably reduce the number of instructions that
need to be simulated. A more long-term goal is to parallelize
the simulator. Synchronization of threads with the memory
system simulator might be more efficient, however it is un-
clear at this point how well the back-end simulator will par-
allelize.
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