
A Localizing Directory Coherence Protocol

Collin McCurdy and Charles Fischer

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, WI 53706

{cmccurdy, fischer}@cs.wisc.edu

Abstract. User-controllable coherence revives the idea of cooperation
between software and hardware in an attempt to bridge the gap between
efficient small-scale shared memory machines and massive distributed
memory machines. It proposes a new multiprocessor architecture – which
has both a global address-space and multiple processor-local address-
spaces – with new memory instructions and a new coherence protocol to
manage the dual address-spaces.
The purpose of this paper is twofold. First, we solidify the semantics of
instruction set extensions that enable “localization” – the act of moving
data from the global address-space to a processor’s local address-space
– thus clearly defining the requirements for a localizing coherence pro-
tocol. Second, we demonstrate the feasibility of localizing coherence by
describing the workings of a full-scale directory-based protocol that we
have implemented and tested using an existing protocol specification
tool.

1 Introduction

More than ten years ago, work on Cooperative Shared Memory (CSM) [1] posited
that software and hardware working together can communicate data more effi-
ciently than either alone.

That work focused on cost -efficiency: it proposed 1) simplified coherence
hardware, leaving software to handle complex cases; and crucially, 2) semantics-
preserving directives – inserted by users or compilers, describing data usage
patterns – to help avoid the complex cases.

Since that time, two trends have emerged that have served to undermine the
influence of the CSM work. First, a distinction between the program structure
and computational requirements of scientific applications and those of commer-
cial applications has become evident. Second, the split between massively parallel
distributed architectures and much smaller-scale shared memory architectures
has become more defined.

These two trends have reinforced each other to create two distinct classes
of parallel machines and users. Because scientific applications tend to be more
structured than commercial applications, and because scientists require ever-
more computational power, scientific programming tends to be done on dis-
tributed architectures. Meanwhile, because commercial applications tend to be



less structured, with an emphasis on very fast transactions most efficiently han-
dled in shared memory, commercial applications tend to run on shared memory
platforms. This dichotomy is unfortunate because there are without question
scientific programs for which communication is more efficiently described and
executed in the shared memory paradigm.

Our work on user-controllable coherence [2] revives the idea of cooperation
between software and hardware in an attempt to bridge the gap between efficient
small-scale shared memory machines and massive distributed memory machines.
In contrast to CSM, the focus of our work is latency-efficient communication: we
extend efficient, though complex, cache-coherence protocols rather than striving
for a simpler protocol; and we introduce powerful, semantics-altering instructions
as opposed to semantics-preserving directives.

User-controllable coherence proposes a new multiprocessor architecture, which
has both a global address-space and multiple processor-local address-spaces. New
memory instructions enable “localization” – the act of moving data from the
global address-space to a processor’s local address-space – which yields three
benefits:

1. Lower-latency access to local memory.
2. Synchronization-less parallel accumulation computations through local ac-

cumulations followed by global reductions.
3. In the presence of caching, avoidance of redundant communication due to

cache size limitations and false sharing.

A new cache-coherence protocol manages the dual address-spaces and the
transition of data between them, incorporating an automatic reduction mecha-
nism somewhat similar to that described in [3], though without the drawbacks
of a cache-based implementation.

The purpose of this paper is twofold. First, in Section 2 we solidify the
semantics of our instruction set extensions, thus clearly defining the requirements
for a localizing coherence protocol.

Second, the rest of the paper demonstrates the feasibility of localizing co-
herence by describing the workings of a full-scale directory-based protocol that
we have implemented and tested using an existing protocol specification tool.
Section 3 describes the details of the protocol, including a discussion of transient
states and the reduction mechanism. Section 4 addresses correctness issues. We
briefly describe our implementation of the protocol in Section 5, and finally
conclude in Section 6 with a discussion of ongoing work.

2 Localizing Instructions

The existence of a local address-space requires a mechanism to get data in and
out of that address-space. For that purpose we have introduced two new “local-
izing” memory operations: ldL and stL. For ease of discussion, assume that the
operations apply to all types and sizes of operands.



As mentioned in the introduction, one feature of localization is that it enables
synchronization-less accumulation computations via reductions. To facilitate re-
duction operations, the general form for localized loads is ldL[op], where op is
either nop, or one of eight reduction operators.

The localizing processor requires the reduction operator when initially load-
ing the data because the data’s global value is not loaded; instead, since the local
accumulation will ultimately accumulate onto the old global value, the processor
initializes the data with the “identity element” particular to the operator.

In the remainder of this paper we use ldL to indicate that “op == nop,” and
ldLop when “op != nop.”

The existence of localizing memory operations implies the need for comple-
mentary “globalizing” memory operations, as a mechanism for moving data back
into the global address-space. Normal ld and st instructions, which we now refer
to as “global” memory operations, serve this purpose.

The following sections detail the operation of each type of localizing and
globalizing memory instruction.

2.1 Localizing Instruction Semantics

Localizing memory instructions serve two purposes. Naturally, they load or store
data in the local address-space of the issuing processor. They also serve to move
data from the global address-space to the local address-space of the issuing
processor if it is not already there. The semantics of the localizing instructions
reflect this dual purpose:

– ldL r1 = [r2]:

1) If the address in r2 has not been localized already then move the data at
the address in r2 from the global address-space to the local address-space of
this processor.

2) Fetch the data from local memory at the address in r2 and store it in r1.

– ldLop r1 = [r2]:

1) If the address in r2 is in the global address-space then fill the local memory
at the address in r2 with the identity elements particular to the operator op:
0 for “+”, 1 for “*”, and so on.

2) Fetch the data from local memory at the address in r2 and store it in r1.

– stL [r2] = r1:

1) If the address in r2 is in the global address-space then fetch the data at
that address from the global memory and store it in local memory. 1

2) Store the data in r1 into local memory at the address in r2.

1 Fetching data only to overwrite it may appear wasteful, but this step is necessary
if the size of the data block transferred between the address-spaces may be larger
than the size of the store target.



S S S

R Dir

1.Request

2.Data
O

R Dir

1.Request

3.Data

2.Fwd

R Dir

1.Request

2.Fwd

3.Data
S S S

R Dir

1.RequestOLD

Type 5

R Dir

1.Request

2.Fwd
3.Data

4.Data

3.Acks

3.Data

2.Inv

Type 2Type 1 Type 3

NEW

Type 4

Fig. 1. Pictorial descriptions of the complete set of transactions necessary to maintain
coherence in the four protocol phases described in the text. Types 1, 2 and 3 may be
familiar as standard transactions in a sequentially consistent protocol, while types 4
and 5 are new.

2.2 Globalizing Instruction Semantics

Global ld and st instructions also serve two purposes: First, they move addresses
in the local address-space to the global address-space, and second, they load or
store data in the global address-space.

– ld r1 = [r2]:
1) If the address in r2 is not currently valid in the global address-space, move
the data at the address in r2 from local memory to global memory.
2) Fetch data from global memory at the address in r2 and store it in r1.

– st [r2] = r1:
1) If the address in r2 is not currently valid in the global address-space, move
the data at the address in r2 from local memory to global memory. 2

2) Store the data in r1 into local memory at the address in r2.

3 Protocol

The traditional role of a cache-coherence protocol is to maintain a global address-
space in the presence of caching – that is, to ensure that one processor’s modifi-
cations to global memory are visible to all processors. State machines for every
block in memory, collectively called the directory, in conjunction with state ma-
chines for every block in each cache, maintain the following invariant: multiple

processors can read a cached block at the same time, but only a single processor

2 Again, this step is necessary when the transfer size is larger than the store target.



Table 1. State machines that maintain coherence during each of the four phases of the
protocol. Each table entry is a pair describing the transaction (from Figure 1) and next
state that results for each possible cache-state/directory-state/event-type combination
in a given protocol phase

State Event
Cache Directory ld st

I 1/S 1/M
I S 1/S 2/M

M 3/S 3/M

S S -/S 2/M

M M -/M -/M

(a) Global.

State Event
Cache Directory ldL ldLop stL

I 1/SL 1/ML 1/ML

I S 2/SL 2/ML 2/ML

M 3/SL 3/ML 3/ML

S S 2/SL 2/ML 2/ML

M M 4/SL 4/ML 4/ML

(b) Global to local.

State Event
Cache Directory ldL ldLop stL

I SL 1*/SL, 1*/ML 1*/ML

ML 1*/{SL,ML} 1*/ML 1*/ML

SL SL -/SL error 1/ML

ML -/SL error 1/ML

ML ML -/ML -/ML -/ML

(c) Local.

State Event
Cache Directory ld st

I SL 2*/S 2/M
ML 5/S 5/M

SL SL 2*/S 2/M
ML 5/S 5/M

ML ML 5/M 5/M

(d) Local to global.

can write a cached block at a time. This system of state machines preserves coher-
ence by producing for each input – a read or write operation on a block by some
processor – the sequence of messages between caches and directory necessary to
maintain the invariant for that block, collectively referred to as a transaction.

That is only part of the job for a protocol that supports localization, how-
ever. Such a protocol must in addition maintain a local address-space for every
processor and facilitate the transitions between the two address-spaces.

Local Address-space Maintenance. There are two significant ways in which
supporting a local address-space is different from supporting a global address-
space. First, uncached localized blocks reside in local memory: localized blocks
purged from the cache go to local memory, and local memory must be searched
first for blocks not found in cache. Second, localized blocks can be both read
and written by multiple processors, requiring a mechanism that resolves both
accumulations to the same address and multiple writes to different parts of the
same block.

Transitions Between Address-spaces. If we consider the transitions from
global to local address-space and back as distinct phases, then there are a total
of four phases in a localization cycle for an address: 1) a global phase, during
which time modifications are visible globally, 2) a transition phase from global to
local, 3) a local phase, during which time modifications are only visible locally,
and 4) a transition phase back to global.



With the aid of Figure 1 and Table 1, the remainder of this section describes
a protocol that handles each of these phases. Figure 1 presents the full arsenal of
transactions necessary to maintain coherence. The first three, types 1, 2 and 3,
may be familiar as standard transactions from a sequentially consistent protocol,
while types 4 and 5 are new.

Tables 1(a)-(d) summarize the workings of the protocol state-machine dur-
ing each of the four phases identified above. Each table entry is a pair describ-
ing the Figure 1 transaction and next-state output that results for each cache-
state/directory-state/event-type input combination possible in the phase.

3.1 Global Phase

Global coherence is maintained by a standard, sequentially consistent, directory-
based MSI 3 protocol, very similar to that presented in [4], and summarized in
Table 1(a). The global nature of this phase is reflected in the specification of
global states and global instructions.

As noted in the table, no transaction is necessary when a processor executes
a load and finds the block already cached. Similarly, if a processor has already
modified a block in its cache, no transaction is necessary to perform further reads
or writes.

When a transaction is necessary, its type is determined by two factors:
whether the instruction modifies the block, and whether the block has already
been modified. Simple request-response transactions (type 1 in Figure 1) are
possible when data has not already been, and will not be, written. Type 2 trans-
actions are required when data is going to be written: other processors that have
cached the data must be informed, through an invalidation message, so that they
do not read stale data. Finally, type 3 transactions are necessary when data that
has been written is going to be read or written by another processor: the direc-
tory forwards the request to the writer, which replies to the requester with the
data.

3.2 Localization Phase

Table 1(b) describes how the protocol handles the transition – initiated by a
localizing instruction – of a block from the global address-space to the requesting
processor’s local address-space.

In this phase, every event requires a transaction, whether or not the data to
be localized is already cached. The directory must be informed of the block’s
localization.

The transaction type is determined exclusively by the current state of the
block. Simple type 1 request-response transactions are possible only in the event
that no other processor is caching the block. Type 2 transactions are necessary
to invalidate sharing processors, even if the requesting processor will be using the

3 While for clarity of presentation we have chosen to extend the MSI protocol, we
believe the ideas are equally applicable to other MOESI-based protocols.



data read-only, since a future global read must cause a globalizing transaction.
Finally, type 3 and 4 transactions are necessary if the data is modified in some
processor’s cache.

Transaction type 4 is actually a degenerate form of the type 3 transaction,
where the requester is also the owner. While it might seem possible to simplify
the transaction by sending the data with the initial request, as we will explain
in some detail in Section 3.5, doing so would lead to an explosion in the number
of protocol states. In the interest of keeping the number of states to a minimum,
the requester sends a simple request and awaits the forward of its own request.

3.3 Local Phase

Table 1(c) describes the transactions that can occur while a block is localized
in one or more processors’ memory. The entirely local nature of this phase is
reflected in the table’s use of both local states and local instructions.

In most cases, if the block is cached, no transaction is necessary. However,
if a block localized read-only is subsequently written, a transaction is necessary
to inform the directory that it does not have a valid copy of the block and that
multiple writes may need to be resolved upon globalization of the block.

It is is also possible that no global transaction is required even if the block
is not found cached, since it may have been localized and subsequently evicted
to local memory. Therefore, in those cases marked with “*”, local memory must
be searched before a global transaction is initiated.

3.4 Globalization Phase

Finally, Table 1(d) describes how the protocol – prompted by a globalizing in-
struction – transitions a block from one or more processors’ local address-space
back to the global address-space.

As in the localization phase, transactions are always necessary, whether or
not the data to be globalized is already cached, since it is imperative that the
directory be informed of the change in status of the block.

If the data was not written while localized then a simple invalidating type 2
transaction can be used. In the cases marked with “*”, when the data is going
to be used read-only, sharers can be “globalized” – i.e., they can keep the data
as long as they change its state from SL to S – rather than invalidated.

On the other hand, if the data was written while localized, then a type 5
reduction transaction is necessary. This transaction is similar to a type 2 trans-
action except that, rather than sending acknowledgments, all sharers send their
data contributions to the requester. The requester reduces the data according
to the algorithm described in Section 3.6.

3.5 Transient States

To this point we have conveniently ignored race conditions. Race conditions
arise in a request/response protocol when there are requests for blocks for which



requests are already outstanding. Transient states – intermediate states in which
a request has been made, but a response has not yet been received – allow a
protocol to explicitly handle race conditions, since intermediate states can be
backed out of if necessary.

However, because extra states complicate both the verification of a protocol
design and testing once it is implemented [5], it is important to keep the number
of transient states to a minimum. We have taken great pains to limit the total
number of states in our protocol to less than twice the total number in the
original protocol.

We have already noted, in Section 3.2, one instance where given a choice
between adding transient states or adding latency to a transaction, we decided
to avoid adding states. Recall that in the situation where a processor had a block
modified and was making a localizing request, we observed that sending the data
to the directory at that point would result in a protocol state explosion.

The problem with this situation is the potential for a race if some other
processor makes a request for the block. That potential requires the use of a
transient state to enable the localizing cache to back out of the localization if it
loses the race. Since there are two potential destination states, SL and ML, two
transients would be required, call them MSL and MML. In addition, each of
those two states requires two more transient states to handle the situation when
the localizing processor loses the race. In that event, it must await two messages
from the directory in any order: a busy-ack acknowledging (and refusing) the
original request, and the forwarded request from the other processor. The odd-
looking transaction type 4 in Figure 1, then, is the result of avoiding the addition
of six new protocol states.

Another example arises from a similar situation going in the other direction,
globalizing a localized block. In this case a processor has a block localized, in
either state SL or ML, and issues a global operation. Again, the potential for
race conditions requires the use of transient states. Rather than adding four new
transients – i.e., SLS, SLM , MLS, MLM – we have chosen to reuse existing
transients from the global protocol: IS and IM. Fortunately, most requests are
not ambiguous since they can be divided between those that are only applicable
to localized data and those that are only applicable to global data. Other saved
state serves to disambiguate the few remaining requests.

3.6 Reductions and Multiple Writers

The cache on the receiving end of a reduction transaction, the type 5 transaction
in Figure 1, executes the algorithm listed in Figure 2. Inputs to the algorithm
come from three sources: 1) the processor’s own cache or local memory (blk-in-

my-cache), 2) the directory, which has the original block (dir-blk), and 3) other
processors that have modified the block. The action taken by the cache depends
on the reduction operator, as well as the type and size of the operands, informa-
tion carried as part of the data message in which the block is sent. No matter
what the operator, the overall goal is to take the contribution from each processor
and accumulate it onto the block that had been stored at the directory.



1 wrk-blk := blk-in-my-cache;
2

3 foreach incoming block blk
4 if OP == NOP then
5 if is-from-dir(blk) then

6 dir-blk := blk;
7 else if is-invalid(wrk-blk) then

8 wrk-blk := blk;
9 else

10 xor-blk := xor-blk | (wrk-blk ^ blk);
11 endif
12

13 if is-last-blk(blk) then
14 if is-zero(xor-blk) != true then

15 wrk-blk := xor-blk ^ dir-blk;
16 endif
17 endif

18 endif
19

20 else if OP == ADD_INT_1 then
21 foreach byte in blk and wrk-blk

22 wrk-blk += blk;
23 end
24 endif

25
26 else if OP == ADD_INT_2 then

27 foreach double-byte in blk and wrk-blk
28 wrk-blk += blk;

29 end
30 endif
31

32 [etc...]
33

34 end

Fig. 2. Reduction algorithm.

The most interesting case occurs when the operator is nop, which means that
different parts of the block have been written by different processors: the code
in lines 4-18 merges the writes into a single block. The code uses the fact that
((A xor B) xor A) == B. Since it is illegal for multiple processors to write at
the same address of a localized block, we can assume that if two versions of
block B – call them B1 and B2 – are both modified, the modifications do not
overlap. Further, we know that in locations not modified, each is equivalent to
the original block A stored at the directory. Therefore (B1 xor B2) is equivalent
to (B xor A) – where B contains the modifications of both B1 and B2 – and B

can be recovered by xor’ing the result of (B1 xor B2) with the directory entry A.
The algorithm works by accumulating a series of these (B1 xor B2) computations
in xor-blk and then recovering B through a final xor with dir-blk.

The implementation of the accumulation for other operators is much more
straightforward. The only complication is ensuring that correctly sized operands
are used in the computations. For example, byte-sized operands are formed in
line 21 of the algorithm, while double-byte-sized operands are formed at line 27.



4 Correctness

We divide our discussion of the correctness of our protocol into two sections.
First, we discuss new correctness issues that arise due to the addition of a local
address-space. Then we discuss the more standard correctness issues that must
be addressed by any new coherence protocol: consistency, deadlock, livelock, and
starvation.

4.1 Program Correctness

The power that our scheme gives programmers and compilers over coherence
protocols comes with extra responsibility: more correctness issues are left to the
author of the localizing program. New responsibilities for correctness come in
two different categories: same address and same block.
Same address – As in any parallel program, the programmer or compiler must
ensure that data dependences are honored. In addition, programmers must be
aware that writes to a localized address will not be visible on other proces-
sors until the address is re-globalized, and that the results of (non-reduction)
writes by different processors to the same address will be indeterminate upon
re-globalization.
Same block – An additional burden on the programmer/compiler is the need
to worry about groupings of data into cache blocks. For example, care must
be taken to avoid placing data that should not participate in a reduction in
the same cache block with data that will be reduced. Also, global data should
not be co-located in a block with localized data, since a global reference could
prematurely re-globalize the block.

Since it is known at compile-time which references will be localized in a
program, compilers can help manage these kinds of issues by laying out statically
allocated data appropriately. Libraries can be modified to be made localization-
aware for dynamically allocated data.

4.2 Consistency

Localization gives rise to a dual consistency model: data is either in the global
address-space, and therefore kept consistent by the original, global, coherence
protocol, or it is localized and not kept consistent, because it has been removed
from the domain of the global coherence protocol.

An implementation must take care to ensure that there is no in-between:
that there is no time in the transition between global to local, or back, that an
address is in an undetermined state relative to the consistency model. Our imple-
mentation does so by extending the atomicity-of-transactions invariant present
in the original, sequentially consistent, protocol.

Sequentially consistent protocols must ensure that modifications to an ad-
dress occur in program order and atomically – that is, as if the effects of a write
were globally evident instantaneously. In practice, directory protocols achieve



atomicity by forcing the directory, and affected caches, to await the entire ex-
change of data and acknowledgments resulting from one transaction before pro-
ceeding with the next transaction.

In extending the original protocol, our protocol carefully maintains the atom-
icity of transactions. Thus, when an address is localized, the protocol ensures
that address is removed from the coherence domain completely (invalidated at
all sharers) before it is used by the localizing processor. Conversely, when an ad-
dress is re-globalized by one processor, the protocol ensures that it is globalized
at all processors before it is used by the globalizing processor, whether or not a
reduction is performed.

So there is no in-between state: at any given moment an address is either
globally visible – in which case consistency is the providence of the coherence
protocol – or localized at a subset of the processors, in which case consistency
must be maintained by the programmer or compiler.

4.3 Deadlock, Livelock and Starvation

In a similar manner, we have ensured that our protocol deals with deadlock, live-
lock, and starvation by extending the mechanisms that deal with these problems
in the underlying global protocol.
Deadlock. Deadlock prevention is ensured in the original protocol by dividing
protocol message-types into groups, one group per hardware virtual channel, in
such a way that forward progress is always possible. Three virtual channels are
required, one for normal requests, one for responses, and a third for requests
forwarded by the directory to owning processors. Our extended protocol uses
those same channels for the new message types, each of which has a function
analogous to an existing message type. GETSL, GETXL, REDL, INVL and
DWNL are all requests, and belong on the request channel. Like GETS and
GETX requests, GETSL and GETXL requests can be forwarded by the direc-
tory, in which case they belong on the forwarded request channel. Finally, data
responses – for example, data from processors involved in a reduction – belong
on the response channel.
Livelock. The original protocol handles potential livelock conditions through
the use of negative acknowledgments (NACKs). For example, if multiple proces-
sors are trying to write a block at the same time, there is potential for livelock
if each request is granted but the data is invalidated by the next request before
the write has time to complete. These kinds of situations are prevented in the
original protocol by only acknowledging a single request at a time, and NACKing
the rest. Our extended protocol follows the same practice.
Starvation. The use of NACKs to prevent livelock opens the original protocol
to the possibility of starvation, since in the worst case a particular processor
could always lose an infinite race, and be NACKed forever. Our protocol, like
the original, relies on random system delays to prevent such an occurrence. There
are other means of ensuring that starvation never happens, such as introducing
timeouts or random delays, that are equally applicable to the original protocol
and our extended version of it.



Table 2. Characteristics of the inputs to SLICC

Cache Directory Local Mem

orig new total orig new total orig new total

stable states 3 2 5 3 2 5 0 2 2
transient states 8 5 13 3 3 6 0 0 0
total states 11 7 18 6 5 11 0 2 2

events 17 16 33 5 2 7 0 5 5

actions 24 16 40 19 9 28 0 6 6

5 Implementation

To demonstrate the feasibility of our ideas in practice, we have used an existing
table-based protocol specification tool (SLICC), developed at the University of
Wisconsin [6], to implement our protocol. As input, the tool accepts descriptions
of state machines as they might be presented in a table: a list of states; a list
of events; a list of atomic actions; and finally, for each possible state and event
pair, the next state and set of actions that are performed by the state machine.

Our input to SLICC consists of three state machine descriptions, the char-
acteristics of which are summarized in Table 2. As described in the previous
section, we were able limit the description size of the new machines to roughly
twice the size of the original machines. (The local memory excepted, since there
was no local memory in the original protocol.)

As output, the tool provides the source-code for a memory-system simulator
module that can be plugged into either a full-system simulator, or into a test-
bench that can be used to help detect flaws in a protocol. The test consists of
sets of references designed to create race conditions, stretching the protocol to
its limit. While not a verification of the protocol, after being submitted to these
tests for a sizable number of instructions, one can be assured that the proto-
col will work under realistic operating conditions. We have successfully tested a
16 processor system using our protocol with a million references, a substantial
number according to the testbench authors.

6 Conclusion

In this paper we have demonstrated the feasibility of localizing instruction set
extensions and a directory protocol that implements them. In future work we
will demonstrate how we have extended the IA64 instruction set to provide lo-
calizing instructions and how we have extended Intel’s Open Research Compiler
for IA64 so that it takes in programs with high-level, OpenMP-like localization
directives and produces IA-64 binaries with our extensions. We will then show
performance improvements of localized applications on simulated hardware using
our localizing directory protocol.



References

[1] M. Hill, J. Larus, S. Reinhardt, and D. Wood. Cooperative Shared Memory: Soft-
ware and Hardware for Scalable Multiprocessors. ACM Transactions on Computer
Systems, 1993.

[2] C. McCurdy and C. Fischer. User-Controllable Coherence for High Performance
Shared Memory Multiprocessors. In Proceedings of the Principles and Practice of
Parallel Programming (PPoPP), 2003.

[3] M. Garzaran, M. Prvulovic, Y. Zhang, A. Jula, H. Yu, L. Rauchwerger, and J. Tor-
rellas. Architectural Support for Parallel Reductions in Scalable Shared-Memory
Multiprocessors. In Proceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2001.

[4] M. Plakal, D. Sorin, A. Condon, and M. Hill. Lamport Clocks: Verifying a Directory
Cache-Coherence Protocol. In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 1998.

[5] D. Culler and J. Singh. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufman, 1999.

[6] D. Sorin, M. Plakal, A. Condon, M. Hill, M. Martin, and D. Wood. Specifying and
Verifying a Broadcast and a Multicast Snooping Cache Coherence Protocol. IEEE
Transactions on Parallel and Distributed Systems, 2002.


