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Abstract
Remote DMA (RDMA) enables high performance networks to re-
duce data copying between an application and the operating system
(OS). However RDMA operations in some high performance net-
works require communication memory explicitly registered with
the network adapter and pinned by the OS. Memory registration
and pinning limits the flexibility of the memory system and reduces
the amount of memory that user processes can allocate. These is-
sues become more significant on multicore platforms, since regis-
tered memory demand grows linearly with the number of processor
cores. In this paper we propose a new memory registration/dereg-
istration strategy to reduce registered memory on multicore archi-
tectures for HPC applications. We hide the cost of dynamic mem-
ory management by offloading all dynamic memory registration
and deregistration requests to a dedicated memory management
helper thread. We investigate design policies and performance im-
plications of the helper thread approach. We evaluate our frame-
work with the NAS parallel benchmarks, for which our registration
scheme significantly reduces the registered memory (23.62% on
average and up to 49.39%) and avoids memory registration/dereg-
istration costs for reused communication memory. We show that
our system enables the execution of problem sizes that could not
complete under existing memory registration strategies.

Categories and Subject Descriptors
C.3.2 [Computer-Communication Networks]: Network
Operations—Network Management; D.4.1 [Operating Systems]:
Process Management—Threads; D.4.4 [Operating Systems]:
Communication Management—Network Communication

General Terms
Design, Management, Performance

1. Introduction
Continuing progress in hardware technology enables the integra-
tion of multiple processor cores on a single chip. Chip multipro-
cessors (CMPs) bring opportunities and challenges to high per-
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formance applications, programming models, and operating sys-
tems (OSs). CMPs allow aggregation of multiple tasks within a
node in order to save system power and even to improve perfor-
mance [20]. CMPs also enable novel techniques that leverage idle
cores to boost performance [6, 32]. However, CMPs increase pres-
sure on shared resources at the node level, such as the network in-
terface and the memory hierarchy. Several software [29] and hard-
ware [31] schemes attempt to address this problem to achieve scal-
ing to a steadily increasing number of cores.

Many high performance networks, such as Infiniband [13] and
Myrinet [4], leverage remote direct memory access (RDMA) to
achieve high bandwidth transfers. RDMA enables data transfer
from the address space of an application process to a peer pro-
cess across the network fabric without requiring host CPU involve-
ment. With most interconnects, RDMA operations require memory
registration, which explicitly identifies the memory used in these
transfers. Further, every page of the communication buffer must
be pinned to prevent swapping by the OS. Pinning memory lim-
its adaptability of the memory system and reduces the amount of
memory that user processes can allocate. Unnecessarily pinning
pages can underutilize memory. Pinned memory is also a precious
resource: some systems constrain the maximum amount of memory
that a user process can lock and some network adapters, such as the
Infiniband Host Channel Adapter (HCA), limit the number of si-
multaneously pinned separate regions of contiguous virtual pages.
The increasing popularity of GPUs for HPC makes the memory
pinning problem even worse, since GPUs may also require pinning
host memory mapped into the GPU address space to perform mem-
ory copies concurrently with kernel execution.

CMPs further increase the challenge of the memory registration
problem since the demand for registered memory grows linearly
with the number of processes on the node. Some resource managers
like SLURM [18] and Torque [1] can limit the amount of memory
that jobs can pin. However, an HPC application can require a
large amount of pinned memory (see Section 6). If we attempt
to use more than one task per node on fewer nodes, aiming to
reduce power consumption or improve performance through shared
memory communication [20], the application can easily exceed the
pinned memory limit, which prohibits using the idle cores.

The naive option would be to deregister the communication
buffer after the RDMA operation completes. However, HPC ap-
plications often exhibit repeating communication patterns [8, 14].
Also, memory registration/deregistration is expensive [21, 24]
since it requires a system call and an overall linear cost in the num-
ber of pages [33]. Thus, this simple solution can incur a significant
performance loss by failing to reuse the buffer.

We propose a novel scalable memory registration strategy that is
sufficiently general to satisfy the most demanding RDMA require-
ments. Our approach hides the cost of dynamic memory manage-



ment by offloading all dynamic memory registration/deregistration
requests to a dedicated memory management helper thread, while
sustaining performance. Our solution makes more memory avail-
able to the application, which will be critical as systems come to
have less memory per core. Dynamic memory management via the
helper thread introduces several challenges. First, we must iden-
tify and extract parallelism that exists between the main applica-
tion thread and the helper thread in order to hide operation latency
through proactive memory registration and asynchronous deregis-
tration. Thus, the helper thread must predict when it should register
which memory locations. Second, we must minimize communica-
tion and synchronization between the main thread and the helper
thread to avoid increasing latencies on the communication critical
path. Third, a new memory registration scheme should be trans-
parent to the application and the programming API (e.g., MPI). A
fully transparent and dynamic solution should not require profil-
ing information, compiler support, programmer hints, source code
modification or hardware support. The helper thread mechanism
should apply to any memory registration/deregistration implemen-
tation and RDMA communication protocol.

This paper makes the following contributions:
• A novel helper thread strategy to reduce the size of registered

memory in high performance networks based on memory pin-
ning;

• A novel context-aware mechanism to predict when to register
specific memory regions for the purposes of communication;

• Time-oriented techniques that avoid increasing critical path la-
tencies when using a communication helper thread;

• An investigation of helper thread design policies that efficiently
leverage idle cores;

• Performance analysis of different memory registration schemes
and a detailed study of registered memory usage of large-scale
parallel applications under strong and weak scaling, including
aggregation of multiple tasks per node.
Our communication context-aware predictor achieves high ac-

curacy with a short learning process. We apply our helper thread
strategy and predictor to several NAS benchmarks, including com-
munication intensive applications. Our mechanisms reduce the reg-
istered memory size by up to 49.39% and by 23.62% on aver-
age, while avoiding memory registration/deregistration overhead
for reused communication memory.

2. Background
High performance networks combine DMA engines in the network
adapter with user level communication protocols to achieve low
CPU utilization, high bandwidth, and low latency. In all widely
used interconnection technologies, the DMA engine transfers data
from physical addresses in main memory to the network adapter.
Virtual addresses of communication buffers must be translated into
physical addresses. The memory pages corresponding to these ad-
dresses must be pinned for the duration of the transfer to prevent
the OS from paging them to disk. Memory registration refers to the
process of address translation and pinning. We now outline com-
mon memory registration strategies.

Bounce Buffer: MPICH [22], MVAPICH [12] and Open
MPI [11] use the bounce buffer method in which the connection set-
up phase pre-registers a set of RDMA buffers and exchanges their
addresses and associated keys between communication peers. MPI
communication then copies from/to the user’s buffer in user space
to/from the bounce buffers and uses RDMA on the bounce buffers
to transfer the data. This method limits the registered memory size
to the size of bounce buffers. It incurs registration costs only at
startup, which potentially amortizes them over many RDMA oper-
ations. However, this method incurs significant memory copy costs,
particularly for large messages. Thus, it best suits small messages,

/∗ Sender : ∗/

/∗The s e n d e r and t h e r e c e i v e r b e g i n
communica t ion a t t h e same t i m e∗/

M P I B a r r i e r ( . . . ) ;

f o r ( i t e r =0 ; i t e r <10; i t e r ++)
{

MPI Send ( . . . , b u f f e r 1 , . . . ) ;
random comp ( ) ; /∗ l a s t i n g 1 s e c∗/
MPI Send ( . . . , b u f f e r 2 , . . . ) ;
random comp ( ) ;
MPI Send ( . . . , b u f f e r 3 , . . . ) ;
random comp ( ) ;

}

/∗ R e c e i v e r : ∗/

/∗The s e n d e r and t h e r e c e i v e r b e g i n
communica t ion a t t h e same t i m e∗/

M P I B a r r i e r ( . . . ) ;

f o r ( i t e r =0 ; i t e r <10; i t e r ++)
{

MPI Recv ( . . . , b u f f e r 1 , . . . ) ;
random comp ( ) ; /∗ l a s t i n g 1 s e c∗/
MPI Recv ( . . . , b u f f e r 2 , . . . ) ;
random comp ( ) ;
MPI Recv ( . . . , b u f f e r 3 , . . . ) ;
random comp ( ) ;

}

Figure 1: Microbenchmark pseudocode

including messages for protocol control. We could apply our helper
thread strategy to small messages to eliminate the bounce buffers.
However searching preregistered buffers and identifying the com-
munication call site, as with our helper threads (see section 3),
entails high enough overhead for small messages that the bounce
buffers are preferable. Thus, we only use helper threads for mes-
sages larger than a threshold (16KB in our experiments).

Registering Memory on Demand: Many RDMA libraries reg-
ister memory on demand [11, 12, 22]. This alternative scheme
registers user buffers at the communication call site, which adds
the overhead of memory registration to the communication critical
path. Some implementations [11, 22] leave user buffers pinned after
the communication, which can amortize the cost if the user buffer
is reused often. However, this choice increases registered memory
size, even if the buffer is only used once.

Hardware-Assisted Memory Registration: Quadrics [25]
combines a hardware TLB in the network adapter with a tuned vir-
tual memory subsystem to allow hardware to pin pages, to initiate
page faults and to track page table changes. This approach avoids
memory registration overhead and minimizes pinned memory size.
However, it increases hardware complexity and cost and requires
platform and OS-specific modifications.

Figure 1 depicts a microbenchmark that captures the limitations
of prior memory registration schemes that our helper thread ap-
proach overcomes. In this common execution pattern of HPC appli-
cations, point-to-point communication repeatedly exchanges data
between locations. Figure 2 shows the registered memory size over
time on the top and the communication time on the bottom when
we run the microbenchmark on two nodes connected with Infini-
band using Open MPI 1.4 and two memory registration schemes
(section 6 describes additional hardware configuration details). We
measure sender side time for a 5MB message. The bounce buffer
occupies region 1 of registered memory, while memory registered
for communication with large messages occupies region 2. With
the “leave pinned” registration on demand approach, the registered
memory increases steadily and later remains constant. The “no
leave pinned” approach registers less memory, but takes 25.83%
longer. Our helper thread approach breaks this dichotomy.

As further motivation, one of our experimental platforms has 8
cores and 8GB of physical memory per node. If we limit the reg-
istered memory size per process to 3GB, using just two MPI pro-
cesses per node consumes 75% of the available physical memory,
leaving very little physical memory available to run realistic ap-
plications and services. On a system with paging, physical memory
limitations would entail a large performance loss, whereas on a sys-
tem without paging (e.g., uClinux), applications would be limited
to using 2 GB of physical memory, which amounts to 256 MB per
core. Furthermore, even with a large memory registration limit of
3 GB for communication purposes, we cannot meet the memory
demand of some communication-intensive applications. For exam-
ple, we cannot run problem size D of NAS PB FT with a 2×16 2D
processor layout and the standard Open MPI installation. As Fig-
ure 3 shows, a single FT task requires 3.58GB of pinned memory.



Figure 2: Traditional memory registration sizes and communication times

Figure 3: Memory registration limit prevents application execution

As we show in section 6, our approach enables the execution of this
application even with the memory registration limit.

3. Design
HPC applications interleave communication and computation and
attempt to overlap communication with computation using tech-
niques such as non-blocking send-receive operations and progress
threads [29]. Our helper thread scheme offloads memory registra-
tion overhead to overlap it with computation. Thus, we register and
deregister memory outside of communication phases. We adopt a
prediction-based approach. Our design attempts to predict execu-
tion points that require memory based on iterative execution pat-
terns in HPC applications [8].

3.1 Context-Aware Predictor
We present a time-based, context-aware predictor that attempts to
identify iterative usage patterns of each specific registered memory
region from MPI message streams and to predict the future regis-
tration time of each region. The predictor must dynamically detect
the registration period of each region, which we then use to predict
the next registration time.

Alternatively, we could leverage temporal patterns in MPI mes-
sages [8], thus saving registered memory without considering the
time between communication operations. Specifically, we could
register a set of recently referenced memory regions, similarly to
an LRU cache. However, this method cannot minimize registered
memory size. An application may have large time gaps between
RDMA communication operations, during which we can deregis-
ter previously registered memory. We require the time information
to design an effective strategy to minimize registered memory size
throughout the lifetime of an application.

A simple predictor design would record the registration time
for each memory region and then use the time between consecutive

main c o m p u t a t i o n loop
{

. . .
i n n e r loop1
{

. . .
MPI Comm1 ( . . . , buf1 , . . . ) ;
. . .

}
. . .
i n n e r loop2
{

. . .
MPI Comm2 ( . . . , buf2 , . . . ) ;
. . .

}
}

Figure 4: Loop nests Figure 5: Prediction accuracy comparison

registrations. However, this design cannot handle complex memory
access patterns. Different control paths may use the same memory
region with different periods. Thus, we associate call site informa-
tion with each registered memory region to detect the periodicity,
instead of only identifying the memory region. We hash the call
site stack frame addresses and the registered memory region ad-
dress in a call site’s signature. This solution distinguishes between
uses of the same memory region with different registration periods.
To minimize the impact on the application, the hashing operations
are performed by the helper thread leaving only the recording of
stack frame addresses in the critical path.

Using call site addresses may poorly predict the registration
period for cases such as the nested loops shown in Figure 4. We
cannot predict the registration time of the communication call site
of the first iteration of inner loop 1 from the per iteration time
of that loop. However, that time is the registration period of all
other instances of that call site. The first iteration of inner loop 1
follows a full execution of loop 2 except for when it is part of the
first iteration of the outer loop. This call site has three different
registration periods. Thus, we extend the communication context
information to include the previous communication point to handle
call sites with multiple periods. By hashing call site information
from the previous (i.e., communication type and memory address)
and current (i.e., stack frame addresses and the registered memory
address) communication call sites in the signature, we distinguish
between communications with the same stack frame addresses but
different registration periods due to control flow differences.

We use a communication context window to record communica-
tion streams (Section 4.2). We analyze the sensitivity to the window
length (i.e., how many adjacent call sites we consider) for the NAS
CG benchmark, as Figure 6(a) shows. “Win Len=0” indicates that
we only use current call site information, which decreases the per-
centage of predictions with error less than 0.5% by 20%. Thus, we
must consider previous call sites although accuracy increases little
if we use more than the immediately preceding one. Based on this
and similar results for five other NPB benchmarks, we use a win-
dow length of two, which incurs little additional cost for potentially
greater accuracy in rare cases, for the rest of the paper.

We compare our predictor with a periodicity-based predictor
that records a window of communication streams to detect itera-
tive patterns [8]. It compares a communication subsequence with
another subsequence shifted by m samples, where m is a parame-
ter that is less than the window size. It detects an iterative pattern
with period m if the two subsequences are identical. We apply this
technique to detect patterns and their time periods to predict mem-
ory registration time. We analyzed the sensitivity of this predictor
to its window length. We found that it is highly sensitive to this pa-
rameter at any desired accuracy, as Figure 6(b) shows. Further, it
has a long learning process that requires a full window and a com-
plete pattern. Our predictor has a short learning process since its
context window is short and its predictions are independent of the
pattern frequency.



(a) Context-aware predictor

(b) Periodicity-based predictor

Figure 6: Sensitivity analysis of the two predictors

Figure 5 compares results of our predictor with the periodicity-
based one for six NAS parallel benchmarks. Both approaches are
accurate: 84.93% of periodicity-based and 94.68% of our predic-
tions are within 5% of the observed period. However, 74.89% of
our predictions have error less than 0.5% while only less than 40%
of the periodicity-based predictions achieve error that low.

Discussion: Our approach so far assumes that the workload per
iteration is stable and, therefore, memory registration is periodic.
Some HPC applications (e.g., AMG in the Sequoia benchmark
suite [17]) do not have a constant workload across iterations. Al-
though these applications do exhibit iterative memory registration
patterns, the registrations may not be periodic. In this case, we use
the shortest time between registrations in the same context.

3.2 Helper Thread Design
General Description: Given the predicted registration time, we
can design an algorithm for the helper thread. This design must
balance between registering a memory region before a communi-
cation operation uses it and delaying memory registration as long
as possible. If we do not register memory before a communication
uses it, the main thread must register it on demand at the cost of
additional latency; registering memory too soon increases the peak
memory registration size.

Our design uses two queues: a deregistration queue (DQ) and a
registration queue (RQ). The helper thread processes these queues
in turn and switches between them based on a cost estimate for
processing items from each. We use fine-grained time control to
ensure that we achieve the necessary balance.

Memory Deregistration: The main thread places information
about registered memory (registration time, address, size and adja-
cent communication point information) into the DQ, after the com-
pletion of a communication operation. The helper thread removes
this information and computes its signature, which it uses to ex-
tract information from the call site hash table. The call site hash
table stores predicted registration periods for call sites. The helper

thread must complete the registration of each call site before its reg-
istration deadline, which is its last registration time plus its period.

The helper thread uses the registration deadline to determine if it
should deregister a memory region, which multiple communication
call sites may use. We deregister a memory region and insert it into
the RQ with its registration time set to the registration deadline if a
deregistration condition is satisfied. This condition requires that the
current time plus the estimated processing delay for memory regis-
tration is not later than the earliest registration deadline associated
with the region. The helper thread finds the nearest future registra-
tion time for a region in the RQ after registering it and updates the
earliest registration time. The first time we register a memory re-
gion, we do not have a predicted registration period for it. Thus, we
always deregister it, which saves registered memory from those op-
erations that register regions only once. After processing one item
from the DQ, the helper thread switches to the RQ to check regis-
tration requests, in case any registration deadline is near.

Memory Registration: the RQ is ordered based on the regis-
tration time of each item in the list. The helper thread processes
the RQ starting from the item with the earliest registration time. It
delays registering a memory region and switches to DQ process-
ing if the following registration condition is satisfied: the current
time plus the estimated time for processing one DQ item plus the
estimated processing delay for memory registration is earlier than
the region’s registration deadline. Otherwise, the helper thread reg-
isters the memory and updates its associated earliest registration
time. We track registered memory information in a registration
cache for fast reference.

Adjusting Registration Deadlines: Some HPC applications
have communication-intensive phases in which multiple commu-
nication sites have similar registration deadlines. Since the helper
thread tries to delay memory registration until the deadline, it may
not be able to register all memory regions on time, in which case
we incur additional latency on the communication critical path. We
avoid this cost by adjusting deadlines when we insert a new item
into the RQ. The registration time gap between any two items must
be longer than the cost of processing one RQ item plus the cost
of processing one DQ item, so that we can process both the DQ
and the RQ in time to make the registration deadlines. We decrease
registration deadlines when necessary to meet this condition.

Time Control and Estimation: Our design critically depends
on estimated DQ and RQ processing times. The following inequal-
ity describes our registration and deregistration conditions:

tc + tp ≤ td (1)

Where tc is the current time, tp is the processing time by the helper
thread and td is the registration deadline.

We can perform deregistration if the inequality is true. For the
deregistration condition, tp includes: (1) the deregistration cost
(tderegister); (2) the cost of inserting the registration request into
the RQ (tinsert); (3) the registration cost (tregister); and (4) the
cost of updating the earliest registration time for a memory region
(tupdate). Similarly, we can delay registration and switch to pro-
cessing the DQ if the inequality is true. For the registration condi-
tion, tp includes: (1) the cost of searching the hash table and updat-
ing call site information (thash); (2) the cost of searching the regis-
tration cache (tcache); (3) tderegister; (4) tinsert; (5) tregister; and
(6) tupdate.

We model the memory (de)registration cost with t(de)register =
a ∗ p + b, where a is the (de)registration cost per page, b is the
overhead per operation, and p is the size of the memory region in
pages [24]. We determine a and b through linear regression. The
RDMA library or device driver may include other optimizations to
improve the performance of (de)registration. While these optimiza-
tions can make the cost of (de)registration irregular, we attempt to



Figure 7: An illustration of the helper thread implementation

keep our algorithm independent of these optimizations by estimat-
ing the maximum potential cost. Alternatively, we could use a more
complex (de)registration model.

The number of queue items that we must compare in each
step impacts tinsert and tupdate, which represent the time for
queue operations. Each comparison has a nearly fixed number of
instructions, which is easy to estimate. We conservatively assume
that we compare every item in the queue for the insert/update
operation to simplify the overall estimates, although an algorithm
like binary insertion may involve fewer items. We can also easily
estimate thash if we assume that hash collisions are rare. We
estimate tcache, which is related to the number of cache items that
the algorithm must compare, similarly to tinsert and tupdate.

4. Implementation
Figure 7 illustrates our helper thread implementation, which we
discuss in this section.

4.1 Synchronization Issues
Thread synchronization latency is an important design considera-
tion for helper thread software. We implement the DQ as a shared,
lock-less circular queue. The main thread moves the head pointer
when inserting an item and the helper thread moves the tail pointer
when removing an item. Initially, the head pointer and the tail
pointer point to the same position. The helper thread compares the
two pointers to determine if the DQ has new items. If so, it moves
the tail pointer forward and dequeues one item for processing.

A circular queue needs a lock to prevent the head pointer from
overwriting unused data. However, most HPC applications inter-
leave communication with computation. Since the computation
phase is usually much longer than the processing of a queue item
in the helper thread, we usually move the tail much faster than the
head so overwriting is unlikely. Further, if an application has short
(or no) computation phases, so that we move the head pointer more
quickly then the time between the communication call sites is too
small to perform memory deregistration and registration without
performance loss. Thus, we can safely overwrite and, as a result,
skip old queue entries. Currently, we only use one helper thread and
hence we do not need a lock for the tail pointer. We also do not need
a lock for the head pointer if the MPI implementation does not pro-
vide MPI THREAD MULTIPLE support, which ensures only one
thread will access it at any time. Since the helper thread reads the
head pointer, read after write (RAW) and write after read (WAR)
hazards may happen. In our case, a RAW hazard only temporar-
ily delays the processing of a new item, which does not add any
latency to the critical path. A WAR hazard also has no negative im-
pact since the helper thread tests the difference between the head
and the tail pointers.

The main thread and the helper thread share the registration
cache as well as the DQ. The helper thread puts registered mem-
ory information (address, size and a pointer to the registered mem-
ory region) into the cache prior to communication. The main thread

obtains the registered memory region pointer from the cache. Thus,
we must lock the memory region pointer. We use atomic instruc-
tions (compare and swap) to implement a lightweight lock and spin
if it is held. With this lock, the synchronization latency is 0.072µs
when two threads contend for the lock and 0.018µs without con-
tention. This lock overhead is low since MPI communication la-
tency for large messages (larger than our 16KB threshold) is at least
tens of microseconds with state-of-art hardware [16, 30].

4.2 Predictor Implementation
The predictor must collect context information by using a sliding
window with length equal to the number of communication call
sites for which it constructs signatures. Each call site adds infor-
mation to the window. When the predictor computes a call site sig-
nature, it obtains data for adjacent call sites from the window. We
associate each call site leading to memory registration with a call
site hash table entry. The hash table entry records the last mem-
ory registration time and the predicted period. We update the last
memory registration time when we begin memory registration for
the call site. We also compute the time between the current mem-
ory registration time and the last one, which we record as the new
prediction if it is less than the current predicted period. We use the
shortest observed time because effects such as networking pertur-
bation, OS noise and computation workload vibration may make
the period irregular. Choosing the shortest period reduces the prob-
ability that we miss the real registration deadline.

4.3 Overhead Analysis
We introduce four operations on the critical path of the main thread.
First, we read the time stamp counter at the RDMA communication
call sites, which typically costs between 150 and 200 clock cycles
— or less than 1µs on a 1 GHz processor. Second, we acquire a
synchronization lock for a registered memory pointer, which takes
less than 0.1µs, as discussed in Section 4.1. Third, we record the
communication type and the buffer address in the context window,
which is negligible compared to the cost of the actual MPI im-
plementation and communication operation. Fourth, we record the
stack frame address at the RDMA communication call site, which
involves a few accesses of the frame pointer register and copying
several bytes of data. This overhead is also small compared to the
communication time of large messages. Nonetheless, we can over-
lap these overheads, other than collecting the context window in-
formation, with computation of the main thread for nonblocking
MPI communication.

We measure our scheme’s overhead with the microbenchmark
shown in Figure 1. We use a 17KB message size (marginally larger
than the minimum size at which we use our helper thread). We
disable the helper thread, but keep the above four operations in the
main thread, so that any performance benefit of the helper thread
does not offset its overhead. We compare performance with the
original implementation without the four operations. We run the
test 100 times and compute the average communication time at the
sender site and find that the overhead is 14.02%, which primarily
comes from recording stack frame addresses. This test gives an
upper bound on overhead since real applications are likely to be less
communication-intensive or to use larger message sizes. The same
microbenchmark finds much lower overhead with larger messages
(4.58% for 1MB messages and 1.22% for 4MB messages).

5. Leveraging Idle Cores Efficiently
So far, we have assumed that each MPI task uses one helper thread
for memory registration. In principle, helper threads use idle core
cycles that are not used for computation or communication. We do
not want to sacrifice application performance by dedicating cores to



No helper thread Conservative policy Aggressive policy
SP.D.36 18.60 18.60 18.62
CG.D.32 17.08 17.09 17.09

Table 1: Execution time (s) with different distribution policies.

helper threads. If no idle core is available, we do not use the helper
thread. However, with an increasing number of cores per node in
high-end computing environments, idle cores are often available
due to application scalability limits [20]. In this section, we explore
design alternatives for using idle cores to run helper threads.

When we have at least as many idle cores as helper threads,
each helper thread solely occupies a core. This unshared core dis-
tribution allows each helper thread to explore registered memory
reduction opportunities fully. We show in Section 6.3 how helper
threads reduce the registered memory size for each MPI task under
this distribution.

When we have fewer idle cores than helper threads, distributing
helper threads across the idle cores becomes more challenging; we
explore two possible policies. The aggressive policy tolerates the
excess helper threads. Each task spawns a helper thread, without
considering resource consumption. Helper threads that reside on
the same core take turns conducting memory operations, depend-
ing on the OS scheduler. The conservative policy restricts helper
threads to at most one per idle core through the coordinated elimi-
nation of helper threads in some processes if necessary.

The aggressive policy must adjust the registration/deregistration
condition (Section 3.2) to consider concurrent helper threads. As-
suming a round robin scheduling policy with a time slice of length
tslice for helper threads on the same core, we change the registra-
tion/deregistration condition as follows:

tc + tp + n(tslice + tcs) ≤ td (2)

where n is the number of helper threads on the core and tcs is the
context switch overhead. We assume that an active helper thread
does not know when its current time slice will end. We guarantee
that we do not miss deadlines by requiring td to be no earlier than
the thread’s next time slice to meet the (de)registration condition.
This conservative assumption ensures that we can safely deregister
any item for which the inequality holds now and register it again
in a future time slice (the deregistration condition), or delay its
registration to a future time slice (the registration condition).

The conservative policy uses our original registration/deregis-
tration condition since it still has only one helper thread per idle
core. Instead, we must coordinate tasks to decide which ones retain
helper threads. We chose to provide helper threads for the tasks
that register the most memory. We implement task coordination
in shared memory, where each helper thread posts the registered
memory size after finishing a fixed number of communication oper-
ations. We continue running the threads associated with the largest
memory registrations and stop all others (we randomly break ties).

We apply both polices to NPB benchmarks SP and CG; Figure 8
and Table 1 show the results. Our test platform has 8 cores per node
(see Section 6 for more details). We use 6 nodes with 6 tasks per
node for SP. For 32 CG tasks, we use 6 nodes total: 2 with 6 tasks
and 4 with 5 tasks (the task distribution is unbalanced because CG
requires a power of 2 task count and we require that each node
has at least 5 tasks so that we have fewer idle cores than tasks).
Figure 8 shows results from the nodes with 6 tasks per node. We
display only two time steps or two computation iterations in order
to illustrate the variance clearly. We report the registered memory
size for the entire node. Under the aggressive policy, we distribute
the helper threads as evenly as possible between the available idle
cores so each idle core hosts 3 helper threads.

The results show that the aggressive policy saves more regis-
tered memory on average than the conservative policy for SP. For

Figure 8: Registered memory sizes with different distribution policies

CG, the aggressive policy does not save memory, while the conser-
vative policy does. SP does not generally interleave communication
with computation and has a relatively long time between commu-
nication calls. Thus, the aggressive policy does not miss memory
saving opportunities even though the helper threads share cores.
The conservative policy saves less memory since only a third of the
tasks have helper threads. Alternatively, CG is communication in-
tensive so the aggressive policy cannot deregister memory without
introducing latency into the communication critical path.

In general, performance of the distribution policies depends
on application characteristics and OS scheduling. The aggressive
policy assumes round robin scheduling with identical time slices.
Linux determines the time slice length based on process priority.
Although helper threads may have the same static priority, the dy-
namic priority may change, depending on how often the threads
submit and wait on I/O requests. Thus, helper threads may not be
scheduled round robin since the OS attempts to schedule threads
with higher priority earlier. Our design also critically depends on
time information. Unfortunately, a helper thread may be desched-
uled immediately after reading the clock, making the time stale
when it resumes execution. Since the thread has no knowledge of
OS scheduling decisions, it computes an inaccurate (de)registration
condition. The conservative policy does not have these challenges,
but cannot save as much memory when they are not relevant,
as with applications that are not communication intensive. Since
memory registration sizes are likely to be more significant for com-
munication intensive applications, we favor the conservative policy.

6. Performance
We implement our memory registration scheme in Open MPI 1.4
and evaluate its performance with microbenchmarks and the NAS
parallel benchmarks. Our evaluation system has 320 nodes, each
with two 2.8GHz Intel Xeon quad-core processors, 8GB of physical
memory and a Mellanox Infiniband ConnectX HCA. Each proces-
sor has two 6MB L2 caches (two cores share each L2). Each core
has a 64KB L1 cache. Our registration scheme provides a helper
thread per MPI task. The helper thread shares the L2 cache with
the associated task. In particular, the task and helper thread share
the 5.6KB DQ data structure, which easily fits in the L2 cache.

6.1 Microbenchmark Tests
Our first set of experiments uses the benchmark that Figure 1
shows. We compare the performance of the memory registration
scheme using helper threads, the Open MPI 1.4 default scheme and
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Figure 9: Buffer reuse tests

the RDMA pipeline protocol [33]. The Open MPI 1.4 default set-
ting registers the memory on demand and leaves registered mem-
ory pinned for future use (our charts label this scheme “Default”),
which many communication libraries use. The RDMA pipeline
protocol represents a technique to reduce memory registration over-
head. We leave memory both pinned and unpinned with the pipeline
protocol to capture its full potential range. We conduct tests with
both buffer reuse and no buffer reuse. In these tests “buffer reuse”
means that we use the same user buffer for communication across
loop iterations; “no buffer reuse” means the opposite. We report the
average value of 100 runs of each test.

Figure 9 depicts the results for the buffer reuse tests. Our helper
thread approach performs similarly to Default, which demon-
strates the low helper thread overhead. With message sizes larger
than 1MB, the overhead is less than 5%. Also, the helper thread
scheme reduces the registered memory size compared to Default
by 24.75%. The pipeline protocol implementation outperforms the
other schemes for message sizes less than 256KB. Open MPI does
not register memory for these messages with this protocol. Instead,
it uses the bounce buffer and avoids registration and deregistration
costs. Default and our helper thread scheme do not perform as well
because they search a memory registration cache to find prereg-
istered memory locations and have a longer function call chain.
However, these schemes outperform the pipeline protocol for mes-
sage sizes of 512KB and 1MB, despite the latter still using bounce
buffers, which incurs data copying overhead. The pipeline protocol
registers memory regions for larger message sizes. The pipeline
protocol has low performance if it does not leave memory pinned
since it repeatedly pays registration and deregistration costs. How-
ever, the pipeline protocol does not clearly benefit from its memory
registration optimization if it leaves memory pinned. In terms of
registered memory size, the helper thread saves more memory than
the pipeline protocol (by 3.84% for no leave pinned and 21.04% for
leave pinned). The pipeline protocol (leave pinned) uses less regis-
tered memory than Default and uses more registered memory than
the helper thread, because the pipeline protocol registers an extra
bounce buffer that it leaves pinned to transfer a message data seg-
ment for the first communication. This buffer reduces the registered
memory for later communication.

Figure 10 depicts the results for the no buffer reuse tests. Fig-
ure 10 shows that the registered memory size for Default grows
throughout the no buffer reuse test. The peak registered memory
is 4.62× more than with the helper thread scheme, while the two

(a) Registered memory size (4MB messages)

(b) Message latency

Figure 10: No buffer reuse tests

schemes have comparable performance. Also, the helper thread
scheme and Default both register memory on the critical path since
the memory access pattern is random and, therefore, irregular. Their
performance is worse than the pipeline protocol, which demon-
strates that the pipeline protocol effectively reduces registration
costs. However, the pipeline protocol (no leave pinned and leave
pinned) uses more registered memory (3.84% and 3.31× more re-
spectively) than the helper thread scheme. The pipeline protocol
(leave pinned) uses less registered memory than Default, due to the
bounce buffer mentioned above.

To summarize, the helper thread scheme has the minimum regis-
tered memory size in all cases. With predictable memory usage, as
HPC applications often exhibit, the helper thread performs compa-
rably to the scheme with the best performance for large messages.
Even with irregular memory usage, the helper thread achieves per-
formance similar to the Default scheme typically used in most com-
munication libraries.

6.2 NAS Parallel Benchmarks
We apply the helper thread scheme for memory registration to
the NAS parallel benchmarks. Figure 11 shows registered mem-
ory variance from MPI Init to MPI Finalize for Leave Pinned and
our helper thread scheme. We only show two time steps or two it-
erations of the main computation loop (except FT with the 1D pro-
cessor layout, where we show all iterations) to display the variance
clearly. The other time steps or computation iterations have similar
variance. We run one MPI task per node with four nodes total.

Our helper thread scheme reduces registered memory by
16.13%, 18.43% and 8.68% for BT, LU and SP. These benchmarks
have communication phases before/after long computation phases,
which exhibit repeating patterns that the registered memory vari-
ance clearly shows. Our predictor captures these patterns and di-
rects the helper thread to register/deregister memory on time, which
reduces the peak registered memory size. CG and FT are both com-
munication intensive applications that interleave computation with
frequent communication. The helper thread scheme does not reduce
the peak registered memory size for CG, due to its communication
intensity. However, it does reduce the average registered memory
size compared to Leave Pinned. Collective operations consume sig-
nificant registered memory with FT, for which we reduce the peak
registered memory size by 31.0%. We incur negligible performance
loss or marginal performance gain for all benchmarks (Table 2).
Proactive memory deregistration (instead of leaving memory regis-



BT.D.4 LU.D.4 SP.D.4 CG.D.4 FT.B.4
Helper thread 265.98 219.39 140.59 200.04 79.47
Leave Pinned 266.87 218.80 141.10 202.31 79.50

Table 2: Execution time (s) for 5 NAS benchmarks.

(a) Test 1

(b) Test 2

Figure 12: Task aggregation tests

Test 1 Test 2
Helper thread 102.62 102.64
Leave Pinned 104.05 103.36

Table 3: Execution time (s) for FT.C.16 aggregation tests

tered until MPI Finalize) slightly improves performance (1.12%)
for CG. On a system with a higher deregistration cost, such as
Myrinet/GM [7], we expect a larger performance improvement.

Figure 11(f) displays the scenario we have shown in section 1.
Without the helper thread, the application cannot continue exe-
cution since a single task pins 3.58GB memory; with the helper
thread, we can constrain the registered memory size beneath the
memory registration limit so that the application completes.

6.3 Task Aggregation Tests
This section examines the impact of dynamic memory registration
via helper threads when aggregating multiple MPI tasks per node
to save power or to improve performance [20]. We conduct exper-
iments with four tasks per node that we randomly group before
assigning them to nodes. Figure 12 depicts the performance of FT,
problem size C with a 2×8 2D processor layout. We compare the
performance of our helper thread scheme to Leave Pinned. We re-
port the registered memory size per node from two tests with dif-
ferent random task groupings.

The helper thread approach reduces registered memory size
significantly (49.39% and 41.70%), while also improving perfor-
mance slightly (Table 3). We also find that the registered memory
size between the two tests varies substantially with “Leave Pinned”,
while it is consistent with helper threads. Further analysis reveals
that different task groupings change the characteristics of inter-
node communication. Registered memory size varies substantially
with “Leave Pinned” when the volume and frequency of internode
communication changes due to poor task placement. By managing
memory through helper threads, we can reduce registered memory
independently of how tasks are grouped.

Strong Scaling (node number)
16 32 64

Helper thread 2082.73 1055.95 519.57
Leave Pinned 2085.86 1056.00 518.53

Weak Scaling (node number)
16 32 64

Helper thread 1041.58 1055.95 1093.16
Leave pinned 1039.46 1056.00 1092.23

Table 4: Execution time (s) of FT scaling tests.

6.4 Scaling Tests
We extend our analysis to larger system scales to investigate
how our memory registration scheme behaves as the node count
changes. Figure 13 displays the results of FT with a 1D layout and
one task per node under strong scaling (maintaining the same total
problem size for all node counts). Although the registered memory
size decreases as we increase the process count, as expected, our
memory registration scheme achieves proportional memory sav-
ings in all cases. We save 33.19% for 16 nodes, 34.08% for 32
nodes and 31.70% for 64 nodes. Figure 14 displays results with
weak scaling, which adjusts the input problem size to keep the
workload per task approximately constant. Unlike the strong scal-
ing tests, the weak scaling tests have an almost constant registered
memory size as we increase the process count. We save 33.05%,
34.08%, and 33.09% for 16 nodes, 32 nodes and 64 nodes. Be-
cause the workload per task is approximately stable, each task has
approximately the same amount of data to communicate across all
scales. In all cases, our scheme reduces registered memory size at
slightly better performance (Table 4).

7. Related Work
Exploring the Predictability of HPC Applications: Many prior
efforts have studied common communication patterns in HPC ap-
plications [5, 15, 34]. HPC applications often exhibit spatial local-
ity [15] (i.e., a small number of communication partners) and tem-
poral locality [10] (i.e., iterative patterns). Researchers have pro-
posed prediction techniques to leverage these characteristics to op-
timize communication performance. Afsahi et al. [2] propose sev-
eral heuristics to predict MPI activity. They use these heuristics
to cache incoming messages before posting the corresponding re-
ceive calls. Freitag et al. [9, 10] propose a periodicity-based predic-
tor based on the computation of distances between patterns in data
streams. They apply the predictor to prepare the receiver memory
to guarantee enough resources for message reception. Other work
leverages time delay neural networks and Markov models [27] to
detect memory access patterns. These methods tend to require long
training times. Ratn et al. [26] enable timed replay of communica-
tion events by distinguishing histograms with call stack and path
sequence. Their approach does not consider the runtime overhead
due to the nature of the approach’s performance analysis, while the
overhead can be comparable to communication time.

Our work has two primary differences from prior work on
communication predictability. First, we use a time-based predictor.
Time information is important for prediction-based memory man-
agement in order to meet registration deadlines while minimizing
registered memory sizes. Prior work focuses on iterative memory
access patterns while ignoring time information, thus missing op-
portunities to reduce registered memory sizes. Second, our predic-
tor is lightweight and has a short training process, which makes it
appropriate for online optimization.

Memory Registration Optimization: Woodall et al. [33] de-
scribed a pipeline protocol to overlap memory registration with
RDMA operations. Their work changes the RDMA communication
protocol, while our work is independent of the RDMA communi-
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Figure 11: Memory registration sizes of the NAS parallel benchmarks
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Figure 13: Strong scaling tests
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Figure 14: Weak scaling tests

cation implementation. Zhou et al. [35] combined memory pinning
and allocation to eliminate pinning and unpinning from the regis-
tration and deregistration paths. They also batch deregistrations to
reduce the average cost. Farreras et al. [7] proposed a pin-down
cache for Myrinet. They delay deregistration and cache registra-
tion information for future accesses to the same memory region.
Bell and Bonachea [3] proposed an RDMA algorithm for a shared
memory system that determines the largest amount of memory that
remote machines can share and then registers all shared memory
regions and links them to a firehose interface, to which remote ma-
chines can write and read shared memory at any time. Unlike our
scheme, the above work, when applied to reduce registered mem-
ory sizes, cannot completely remove registration and deregistration
overhead from the communication critical path.

Shipman and Brightwell [28] investigated network buffer uti-
lization and introduced a new protocol to increase the efficiency of
receiver buffer utilization for Infiniband. The protocol uses buckets
of receive buffers of different sizes, instead of consuming buffers

regardless of the actual incoming message size. They target opti-
mization of bounce buffers, while our work aims to reduce regis-
tered user buffer sizes. We register memory based on the real size
of user buffers instead of a matched bucket size of network buffers.

Using Helper Threads: With the advent of multicore proces-
sors, several studies have proposed using idle cores to offload man-
agement tasks to helper threads. Tiwari et al. [32] perform dynamic
memory allocation with a helper thread. They use prediction for
memory preallocation of objects of a specific size. They only pre-
allocate memory at the first allocation or after observing several al-
location requests. Their prediction lacks time information and can-
not be applied to minimize registered memory. Helper threads have
also been used to perform branch prediction [23], prefetching [19]
and adapting application execution to CPU availability [6]. We use
a time-oriented design to direct helper thread operations, which dis-
tinguishes our contribution from prior work.



8. Conclusions
Efficiently managing the physical memory required for communi-
cation enables parallel application developers to solve larger prob-
lems in-core. This paper presented a novel scalable memory reg-
istration/deregistration scheme to reduce registered memory sizes
for RDMA-based communication on HPC clusters based on mul-
ticore processors. We leverage a helper thread to register and to
deregister user buffers according to a registration time prediction.
Our approach reduces the amount of registered memory while
avoiding memory registration/deregistraton overhead, a result that
prior methods cannot achieve. We design a context-aware predictor
to provide highly accurate time prediction. We presented a time-
oriented helper thread design. Our design delays memory registra-
tion and avoids the accumulation of registered memory. We dis-
cussed design issues, such as synchronization, how to minimize
the latency introduced to the communication critical path, and how
to reduce the resource requirements of helper threads. We inves-
tigate how to distribute helper threads between limited idle cores
to minimize registered memory size. We applied our framework
to the NAS parallel benchmarks and reduced registered memory
by 23.62% on average and up to 49.39%. Our mechanisms outper-
form existing memory efficient solutions and achieve similar per-
formance while using much less memory than existing high perfor-
mance solutions.
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