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Abstract—Enterprise workloads like search, data mining and 
analytics, etc. typically involve a large number of users who are 
simultaneously using applications that are hosted on clusters of 
commodity computers. Use of GPUs for enterprise computing 
is challenging because of poor performance and higher energy 
consumption compared to running enterprise workloads on 
CPUs. In this paper, we show that the GPU work consolidation 
can improve system throughput and results in significant 
energy savings over multicore CPUs. We develop a novel 
runtime framework that dynamically consolidates instances 
from different workloads from multiple user processes into a 
single GPU workload. However, arbitrary consolidation of 
GPU workloads does not always lead to better energy 
efficiency. We use new GPU performance and power models to 
make predictions for potential workload consolidation 
alternatives and identify useful consolidations. Our 
experiments on a variety of workloads (that perform poorly on 
a GPU compared to well optimized multicore CPU 
implementations) show that the proposed framework for GPU 
can provide 2X to 22X energy benefit over a multicore CPU. 

Keywords-Power aware computing, GPU computing, Workload 
consolidation   

I.  INTRODUCTION 
Many data parallel applications (especially scientific 

computing applications) use general purpose graphical 
processing units (GPGPUs or commonly known as GPUs) to 
achieve impressive speedups, in the range of 100X for many 
data parallel applications [25]. The three of the top five 
supercomputers in the world today already mix CPUs with 
GPUs to boost performance, and to make the supercomputers 
energy efficient. However, use of GPUs for enterprise 
computing is challenging because (a) each user request does 
not usually have enough work to offset the overheads of off-
loading to a GPU, and (b) the GPU compute fabric and 
memory architecture is also not a good fit for enterprise 
kernels like search, sorting, encryption etc. Enterprise 
workloads typically involve a large number of users who are 
simultaneously making requests to applications that are 
hosted on clusters of commodity computers. Since the user 
requests typically have small amount of work, the execution 
time of these workloads on a GPU is more than the execution 
time on a multicore CPU. Moreover, the power consumption 
of a typical GPU is also much higher than that of a multicore 
CPU. For example, NVIDIA Tesla GPUs consume more 
than 250 Watts at peak, more than twice the peak power 
consumption of a multicore CPU [2]. Even though power-
related innovations by GPU vendors at the hardware level 
may happen in the future, the relative big power 

consumption of GPU will still prevent it from the adoption in 
some cases, e.g., high-performance embedded environments 
[29].      

When the GPU is unable to provide impressive 
acceleration for many popular enterprise workloads, the 
question of whether the GPU is more energy-efficient than a 
multicore CPU arises. In this paper, we answer this question 
by developing a new GPU workload consolidation 
framework that combines small GPU workloads from 
multiple users (i.e., form multiple processes) into a single, 
large workload. We show that consolidation strategy 
achieves significant energy savings for a variety of enterprise 
workloads executing on a GPU, as compared to a multicore 
CPU and to a GPU without consolidation. We assume an 
environment where there are many users who are 
simultaneously sending their requests to a set of known 
applications hosted on enterprise computing platforms. We 
also assume that user requests collectively include sufficient 
workload for GPU processing so that there is an opportunity 
to combine workloads. These assumptions are valid in 
typical enterprise computing scenarios.  

The proposed workload consolidation strategy is 
different from multi-kernel execution and from CUDA 4.0 
GPU sharing features on NVIDIA’s Fermi GPUs [16]. The 
Fermi GPUs can execute multiple kernels but these kernels 
must be issued from the same process context. In other 
words, multiple threads of the same process can share a 
GPU. However, in data center environment, different 
processes spawn GPU workloads that typically belong to 
multiple users. Our proposed strategy can consolidate 
workload instances from different contexts (i.e., processes 
from different users).  

The consolidation strategy is not limited to enterprise 
computing. Any workloads, including from scientific 
computing, can potentially benefit from our framework, 
when GPUs have idle cores or if workloads are unevenly 
distributed on GPU cores. For example, some workloads 
(e.g., matrix computation) have scalability limitation [1], 
where only a fraction of available streaming multiprocessors 
(SMs) are required to achieve the best performance. These 
SMs may be released by applications and stay idle wasting 
energy. Some workloads unevenly utilize GPU resources 
(e.g., distributing 45 thread blocks on 30 SMs of a GPU), 
where the lightly-loaded SMs finish earlier and have to wait. 
With judicious consolidation of these workloads, we can 
improve system throughput while saving energy. 

We develop a framework that dynamically consolidates 
GPU workload instances from multiple users. Our 
framework does not rely on CUDA driver and runtime. The 
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GPU workloads can be the instances of the same application 
(homogenous) or different applications (heterogeneous). 
Here, an instance means a workload in the ready state to run. 
The number of workload kernels to be consolidated is not 
restricted, if their total resource requirement is not higher 
than GPU shared resources. The framework uses energy 
awareness as the main criterion for making decisions on 
consolidating workload instances. Consolidation has a 
possibility of lowering throughput due to the contention for 
shared GPU resources, such as GPU global memory 
bandwidth, shared memory, register file, and constant 
memory. Additionally, arbitrary consolidation of user 
requests may have adverse effect on performance and may 
lead to poor energy efficiency. Consolidation of workloads 
leads to increased power due to increased requirement of 
GPU resources. Since energy consumption is the product of 
power and execution time, throughput improvement must be 
higher enough to offset the increased power for achieving 
energy efficiency. We propose new GPU power and 
performance prediction models to identify an energy-
efficient consolidation of workloads. 

In this paper, we make the following contributions: 
• We demonstrate that energy consumption of GPUs can 

be significantly lower than that of CPUs, even for those 
workloads that perform better on CPU than on GPU if they 
were run individually; 

• We propose a lightweight GPU power model that 
captures power-critical events for consolidated homogeneous 
and heterogeneous workloads; 

• We develop a GPU performance prediction model that 
considers the performance impact of thread blocks 
scheduling; 

• We introduce a framework that facilitates workload 
consolidation on NVIDIA GPUs. 

In the rest of the paper, we first provide related work and 
motivational examples before describing our dynamic 
framework and GPU performance and power models. We 
evaluate energy efficiency results of our framework and then 
conclude. 

II. RELATED WORK 
Workload Consolidation: The consolidation runtime 

explored by Guevara et al. [10] is the closely related work to 
our study. They propose an issue queue, called cusub that 
could be included in CUDA driver, to merge workloads and 
a prototype implementation shows throughput benefits in 
merging workloads. Our work differs from the issue queue 
approach for merging kernels in two major ways: (a) our 
process-level consolidation framework can consolidate 
multiple instances (i.e., homogeneous or heterogeneous 
instances of workloads) without imposing any constraints 
on CUDA driver and on CUDA runtime; and (b) we use 
new GPU power and performance models to consolidate 
workloads for energy savings over a multicore CPU rather 
than focusing on performance alone. These models are 
inevitable for the determination of performance and energy 
benefits. Our consolidated kernels can further take 

advantage of optimizations like an issue queue in the CUDA 
driver. 

Energy Efficiency on GPU: A few recent studies 
explored proving energy efficiency of running highly data 
parallel workloads on GPUs. Ren et al. [12] and Huang et 
al. [13] prove that energy efficiency of GPUs is high 
compared to CPUs for matrix multiplication kernels. The 
matrix multiplication kernels are highly data parallel and it 
is proven that these kernels achieve high speedups on GPUs 
compared to CPUs. Energy efficiency with such high 
speedups is obvious. Takizawa et al. [18] provide a simple 
GPU energy model for selecting either CPU or GPU to run 
a batch of workloads on a heterogeneous cluster, with the 
assumption that GPU power consumption is constant across 
tasks. However, this assumption is not true for many 
workloads. 

GPU Power Model: Nagasaka et al. [5] set up a power 
model based on the absolute access number of system 
components. Ma et al. [19] propose to record 5 specific 
runtime GPU power signals and apply statistical analysis to 
estimate GPU power. Hong and Kim [1] propose a power 
model based on the access rates of a large amount of 
components and the estimation of max power consumption 
of each system component. 

GPU Performance Model: There have been many recent 
efforts in predicting GPU performance. Ryoo et al. [21] used 
Pareto-optimal curve to prune the optimization space of 
application on GPU based on two metrics (efficiency and 
utilization). Hong et.al [8] proposed an analytical model to 
capture the cost of memory operations. Baghsorhki et al. [22] 
identify how the kernel exercises major microarchitecture 
features and uses workflow graphs to detect performance 
bottleneck, based on which they estimate the performance. 
Kerr et al. [23] leverage Ocelot dynamic compiler 
infrastructure to instrument applications to collect 37 
metrics. Then they use statistical analysis to derive the 
relationship between program behavior and performance. Liu 
et al. [24] classify applications into several categories. Based 
on the specific characteristics of each category, they 
establish a relationship between problem sizes and 
performance, taking into consideration the architecture and 
GPU programming primitives.  

All existing GPU power and performance models 
mentioned above are developed for the case where all SMs 
are executing identical workloads. With workload 
consolidation, different SMs may run different workloads 
and the amount of work by each thread block on the same 
SM may also be different. Hence, direct application of the 
existing models is not sufficient for our consolidation 
strategy. Our models, which work for variant workload 
combinations (homogeneous and heterogeneous), are a 
significant improvement to the previous work. 

III. MOTIVATION 
In this section, we discuss that workload consolidation is 

performance and energy efficient even for workloads that 
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Figure 1: Benefit with consolidating workloads 

Table 1. Poor GPU speedup over multicore CPU 

Name Input data size 
# of 

blocks 
/instance 

GPU 
speedup 

over CPU 

#threads/
block 

Encryption [26] 12K 3 0.84 256 
Encryption 6K 3 0.15 128 
Sorting [27] 6K 6 1.45 256 
Search [7] 10K 10 0.48 256 

BlackScholes 
[28] 4096K 1 1.68 256 

MonteCarlo [28] Steps=500K 1 7.0 128 

achieve poor performance on GPUs when compared to 
multicore CPU. We also show that workload consolidation 
must be performed judiciously based on the characteristics 
of workloads.  

Throughout this paper, we use a heterogeneous compute 
node with dual socket Intel Xeon E5520 quad-core 
processors (8 cores in total) and a NIVDIA Tesla C1060 
GPU, which has 30 SMs, 4GB global memory. The GPU 
code is executed with CUDA driver and runtime version 
3.0. Except where specifically indicated, the energy reported 
in the paper refers to the whole system energy consumption. 
The performance of GPU includes the GPU computation 
time and data transfer time between host memory and GPU 
device memory. The performance of CPU refers to the CPU 
time doing the same computation as GPU. The execution 
time is the time duration of concurrently running multiple 
instances, from the point where all instances get started to 
the point where all instances are finished. Given a fixed 
number of instances to execute, the execution time also 
reflects the system throughput. The smaller execution time 
is, the larger is the system throughput. All the CPU 
implementations are parallelized and optimized for their 
best memory access performance.  

Table 1 summarizes execution times of various enterprise 
workloads we used in this paper. Performance of these 
workloads is either comparable or worse on the GPUs than 
on the CPUs. Note that these workloads can achieve 
speedups on the GPU compared to optimized and 
parallelized CPU implementations, if data sizes are much 
larger, but the data sizes shown in Table 1 are representative 
of enterprise computing scenarios.  

We now show performance and energy efficiency using 
workload consolidation. Figure 1 compares the total 
execution time and energy in running multiple instances of 
encryption. A single encryption instance (using AES 
algorithm) with input file of 12KB on the GPU has worse 
performance (16% lower) than on the CPU. The energy 
consumption of using the GPU in running one instance is 
1.5 times more than that of using the CPU. When multiple 
instances are run on the CPU, they are scheduled by the OS 
to run on different cores. The execution time and total 
energy consumption increase for more number of instances. 
When we run these multiple instances on GPU in 
conventional fashion (i.e., serially one after another), the 

execution time and energy consumption increase almost 
linearly, which is very energy inefficient. If we consolidate 
multiple instances into one large GPU kernel, then we 
observe a significant reduction in total execution time and 
total energy consumption. In the best case (9 encryption 
instances), workload consolidation finishes in 68% less 
execution time with 29% energy savings, compared to the 
CPU. 

Further analysis reveals that a single encryption instance 
uses only 3 thread blocks and the GPU scheduler distributes 
thread blocks between SMs in a round-robin fashion. 
Therefore, an encryption instance uses only three SMs. 
When we consolidate more instances, GPU power 
consumption is not linearly increased, as one would expect. 
Rather, power consumption increases much slowly. This 
behavior is consistent with a recent study [1]. Also, 
execution time stays relatively steady as we increase the 
number of SMs used, because additional encryption 
instances utilize SMs that were previously idle. Moreover, 
the additional load on SMs does not introduce resource 
contention on the shared resources. Consequently, the 
energy consumption, which is the product of power and 
execution time, decreases significantly.  

Workload consolidation on the CPU does not translate to 
better performance because of contention for shared 
resources such as L2 and L3 cache memories. In addition, 
when a processor core is overloaded with multiple 
workloads, the CPU suffers from large context switch 
overhead due to operating system’s time slicing between 
workloads. The GPU has less of these performance 
concerns, because of its very small caches and unique 
design of scheduling a large amount of threads to cover any 
access latency. In addition, our framework merges the 
workloads from multiple contexts into a single context and 
thus avoids any context switch overhead.   
    While consolidation on GPUs offers benefits, 
consolidating arbitrary workloads will not automatically 
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result in improvement in energy consumption or throughput. 
For example, consider the following two scenarios.  
Scenario 1: Table 2 shows execution time and energy 
consumption of a single Monte Carlo (MC) instance (45 
thread blocks and 50 computation iterations), a single 
encryption instance (15 thread blocks and 1.0E+5 
computation iterations), and a consolidated workload with 
one instance of each of MC and encryption on GPU.   
Scenario 2: Table 3 shows execution time and energy 
consumption of a BlackScholes instance (45 thread blocks 
and 1000 computation iterations), a search instance (15 
thread blocks, 6E+6 computation iterations), and a 
consolidated workload consisting of one instance each of 
search and BlackScholes.  

From these two scenarios, we can observe conflicting 
execution time and energy consumption trends for the 
consolidated workloads. In Scenario 1, the execution time of 
consolidated kernel (84.6s) is larger than the sum of the 
execution times of both (MC and encryption) instances. The 
energy consumption is larger than the sum of the individual 
consumptions. We do not see any energy benefit of this 
workload consolidation and lost some throughput. In 
Scenario 2, the execution time of consolidated workload 
(58.7s) is smaller than the sum of the execution time of two 
workloads and a little longer than that of the larger workload 
(i.e., Search), which results in energy savings. The energy 
consumption of consolidated kernel is also less than the sum 
of the individual consumptions. Hence, consolidation of 
random instances does not guarantee energy savings or 
higher throughput. Hence, it is necessary to judiciously 
consolidate kernels taking into account important factors like 
execution time and power consumption of the different 
instances. 

IV. ENERGY-AWARE WORKLOAD CONSOLI-
DATION FRAMEWORK 

This section describes our energy-aware consolidation 
framework. The main functions of the framework, shown in 
Figure 2, are to receive GPU workloads from multiple users, 
to consolidate them into a large kernel, and then to execute 
the consolidated kernel on the GPUs. The framework uses 
performance and power prediction models (described in 
Sections V and VI) to estimate the execution time and the 
power consumption of consolidation. If the framework 
determines that consolidation is not beneficial, then the 

instances are executed either on CPU or on GPU 
individually based on their individual performance and 
energy consumption. We assume that CPU performance and 
energy profiles are available for such comparison. If 
estimated beneficial, a precompiled consolidated template is 
selected to run combinations of workloads on GPU.  
    A precompiled template is a CUDA kernel that 
implements a set of consolidated workloads. The templates 
are manually pre-designed after detailed performance 
analysis of workload kernels, their frequency of usage and 
typical data size from data center traces. The templates are 
parameterized to run multiple instances of consolidated 
workloads. A template is independent of block partitioning 
between workloads. They are able to handle the workloads, 
which are reused often but with different grid 
configurations. Typically a template is implemented by 
renaming variables to prevent name collisions, updating the 
indexes for data accesses, and adding if-else control flow to 
distribute blocks between SMs. The generation of templates 
can be automated with a source-to-source compiler. 
    We consolidate workloads at the granularity of thread 
blocks. In particular, two or more instances of multiple 
workloads are executed by the sum of the number of blocks 
in each kernel request. Multiple workloads can be executed 
in parallel if their blocks are mapped to different SMs. 
Multiple workloads can also be interleaved at the block 
level, if their corresponding blocks are scheduled on the 
same SM. We do not consolidate workload at the thread 
level to avoid violating the SIMD lockstep execution of 
threads in the same warp by inserting control flow 
divergence. Note that, workload consolidation is not feasible 
under certain situations, especially, if consolidated workload 
exceeds the limitation of shared resources, such as the 
number of registers and shared memory provided to each 
SM. 
    The frontend is a shared library, loaded into applications 
to intercept specific CUDA Runtime API calls. The frontend 
also sets up a communication channel with the backend, 
through which the frontend informs the backend of API type 
and arguments. The backend is a daemon, launched before 
any workload execution. The backend listens for connection 
requests from frontend instances and then communicates 
with the frontends to receive CUDA API information. It is 

Table 2. Workload consolidation results with scenario 1 
Workload Time (s) Energy (KJoule) 
Single MC 62.4 25.6 

Single encryption 19.5 7.03 
MC+encryption 84.6 33.5 

 
Table 3. Workload consolidation results with scenario 2 

Workload Time (s) Energy (KJoule) 
Single BlackScholes 26.4 12.2 

Single search 49.2 19.2 
BlackScholes+Search 58.7 26.7 

 

 
Figure 2: An overview of Energy-aware consolidation framework
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the backend that really conducts the CUDA API calls and 
kernel calls.  
    When a memory operation of CUDA API is called from 
the workload, the front-end related to that kernel intercepts 
it and passes the API arguments to the backend. The 
backend carries out the API operations and return the results 
(e.g., a pointer pointing to the allocated memory region). 
For the memory copy operations (either from host memory 
to device global memory, or vice versa), the backend cannot 
directly copy data between the frontend process context and 
the device global memory, because the backend and the 
frontend belong to different process contexts. So the 
backend copies the data into a local pre-allocated buffer, 
and then copies the data from the buffer to the destination. 

The frontend instances have to be independent of 
workload implementation so that the frontend can be easily 
used by any workload without changes. To do this, the 
frontend intercepts CUDA driver API calls, including (1) 
cudaConfigureCall, where the backend can obtain the 
execution configuration, such as block and grid dimensions; 
(2) cudaSetupArgument, where the backend can obtain 
argument information for the workload kernel calls; (3) 
cudaLaunch, where multiple frontends inform the backend 
of launching the template. It also intercepts GPU memory 
related operations, such as memory memory allocation 
(cudaMalloc) and memory copy (cudaMemcpy). Note that 
since all memory operations are conducted by the backend, 
the kernel call arguments are completely valid in the context 
of the backend. 

Our run-time consolidation does have overheads. The 
main overhead comes from the memory copy operations 
between the frontends and the backend pre-allocated buffer, 
the communication costs between the frontends and the 
backend, and synchronization costs between multiple 
frontends. To mitigate the impact of overheads, we 
introduce several optimizations to reduce or offset the 
overhead.  

To reduce communication costs and synchronization 
costs, we introduce coordination among frontends in 
consolidating homogeneous workloads. In particular, the 
framework randomly selects a leader frontend for 
homogeneous workloads. Then only the leader frontend 
communicates with the backend. This strategy reduces 
severe communication overhead.  

We also implemented enforcing application specific 
optimizations in the backend when possible. For example, 
AES encryption algorithm has large amount of constant data 
[11] that can be reused by any of its kernels. We provide an 
API to load reusable data to the GPU memory only once and 
let multiple kernels use that data.  

There are other possible optimizations to reduce 
communication costs. For example, to transfer the kernel 
call arguments from the frontend to the backend, instead of 
transferring them one by one whenever cudaSetupArgument 
is intercepted, the frontend can hold them until cudaLaunch 
is triggered. This optimization reduces the number of 

interactions between the frontend and backend, which is the 
most significant overhead for small workload consolidation. 

We now describe the analytical models the backend uses 
in making judicious decisions on consolidation. 

V. GPU PERFORMANCE MODEL 
We classify workload consolidation scenarios into two 

types, taking into consideration how thread blocks are 
distributed between SMs.  

In the first type, each SM executes at most one thread 
block. For example, in encryption workload described 
above, thread blocks are distributed in round-robin fashion.  
Since each encryption instance occupies 3 SMs out of 30 
SMs in Tesla C1060 GPU, consolidation of 6 instances 
occupies 18 SMs. Since each thread block goes to different 
SM, the thread blocks do not overlap with each other. For 
this type of consolidation, there is no need to consider how 
the thread blocks are scheduled within and across SMs and 
the performance model just needs to capture performance of 
single workload and the resource sharing effects of 
consolidation, in particular global memory bandwidth 
sharing.  

In the second type of consolidation, more than one thread 
block are scheduled into each SM. In this case, thread 
blocks scheduled onto an SM either come from the same 
workload or from different workloads. For this type, the 
performance model must consider the GPU scheduling 
strategy across SMs, besides the concerns of resource 
sharing effects. 

We extend a recent GPU performance model [8] to 
estimate the performance of consolidated workloads on 
GPU. The previous model designed for single workloads 
cannot directly be applied to predict consolidated kernel 
performance since the model is based on the implicit 
assumption that SMs are either idle or executing the same 
type of workload. This assumption is not true for the case of 
consolidation. In addition, the previous work does not 
consider the performance impact of thread blocks 
scheduling that is an important factor to determine 
performance of consolidated workloads. In the following, 
we will briefly review our model due to the space limitation, 
but a detailed model description can be found in [30].       

For the first type of consolidation, we apply the existing 
model to each single kernel, but with a simple extension of 
considering global memory bandwidth sharing. We apply 
our model extension to two consolidated workloads of the 
first category. Figure 3 compare predicted performance with 
measured performance using our extended model. Our 
prediction captures potential performance variances due to 
workload consolidation and is accurate. 

For the second type of consolidated workloads, different 
SMs may have different thread blocks. The SMs that 
finishes its workload latest determines the execution time. 
We call this SM as “critical SMs”. To estimate the 
execution time of consolidated workloads, we first identify 
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Figure 3: Execution time prediction for the first category of 
consolidated workloads (i.e, at most one thread block is 
allocated per SM)

 
Figure 4: Execution time prediction for the second category 
of consolidated workloads (i.e., more than one thread 
blocks are allocated per SM) 

the critical SMs and then estimate the execution time of 
thread blocks scheduled on the critical SMs. 

To identify the critical SMs, we need to know how the 
GPU schedules thread blocks to SMs. To explain why this 
matters to performance, we use the same scenarios shown in 
Tables 2 and 3 in Section III.  

In both scenarios, the thread blocks are initially 
distributed between SMs in a round-robin fashion. In the 
first scenario (Table 2), since the encryption instance is 
much shorter than MC (Monte Carlo), it is possible that the 
first 15 SMs finish the encryption instance while the second 
15 SMs are still working on the MC blocks. To balance 
workload between SMs, some untouched MC blocks will 
then be redistributed to the first 15 SMs by the GPU 
scheduler. Therefore the critical SMs, i.e. the first 15 SMs, 
are allocated with one encryption thread block plus 2 MC 
thread blocks. In the second scenario (Table 3), the warps 
from the BlackScholes thread blocks in the first 15 SMs are 
executed interleaving with the warps from the Search 
instance. Hence, the BlackScholes thread blocks in the first 
15 SMs finish no earlier than any BlackScholes thread 
blocks in the second 15 SMs. Therefore, the critical SMs in 
this example, i.e first 15 SMs, are allocated with 1 Search 
block and 1 BlackScholes block.    

In general, thread block distribution among SMs depends 
on execution time of a workload and the load balance 
principle of the GPU scheduler. Sometimes, the thread 
block re-distribution can happen in the middle of execution. 
We can determine critical SMs based on analyzing 
execution time of a workload and thread block distribution.  

After identifying the thread blocks assigned to the critical 
SMs, we estimate execution time. SM schedules warps of 
thread blocks based on warp type, instruction type, and 
“fairness” to all warps executing in the SM [9].  To 
maximize system output, it is possible that SM interleaves 
different warps (i.e., the warps belonging to different 
workloads) to improve parallelism. We regard different 
types of workloads whose warps are scheduled into the 
same SM as one single big workload and estimate the 
execution time for this big workload.  

We compare predicted performance with our model for 
the two scenarios with measured times (Figure 4) The 
prediction error is less than 12%. A prediction error is likely 
due to uneven distributed between SMs, where some SMs 
finish their work earlier and alleviate the memory 
bandwidth contention, while our model assumes bandwidth 
sharing always happens. We plan on investigating the 
reasons further.   

VI.    GPU POWER MODEL 
In this section, we discuss predicting GPU Power for 

consolidated workloads. The GPU power model should 
capture execution properties of each workload that is being 
consolidated. The existing work in predicting GPU power 
[1] cannot be applied directly on consolidated workloads.  

Typically, power consumption of a GPU (P) is the sum of 
static power, dynamic power, and the impact of 
temperature: 

 P = Pstatic + PT (�T) + Pdyn                  (10) 
Pstatic is static power, PT is the temperature impact on power 
and Pdyn is dynamic power. Static power depends on chip 
layout and circuit technology, and is independent of 
workload execution. Chip temperature has an impact on 
power (PT). The leakage current and thermal voltages for a 
transistor vary as temperature changes, which in turn leads 
to leakage power changes [3]. Dynamic power (Pdyn) results 
from transistors switching overhead.  

Static power is measured when no workload is executed 
and while none of the GPU resources is turned off. The 
power consumed by leakage current and thermal voltages is 
measured using the linear relationship between various 
temperature changes (�T) as shown in [1]. We obtain the 
equation coefficients by running a set of training 
benchmarks. While the static and the thermal powers are 
independent of workload, dynamic power is dependent on 
actual usage of GPU hardware resources by a workload. The 
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resources include floating point units, global memory, 
constant memory, shared memory, etc.  

The dynamic power is the total power consumed by all 
GPU hardware components. If ei is the event rate on 
component i, then the total dynamic power is: 

 | |

1

s

d yn i i
i

P a e λ
=

= +�                 (11)  

cyclesexecution
ieventtheofsoccurrenceofnumberTheei =  (12) 

Event rate is the access rate of hardware component i in a 
single SM. ei is the ratio of number of instructions that 
access a hardware component and the total number of 
execution cycles. The number of instructions that access a 
hardware component is calculated by analyzing PTX code 
that CUDA compiler generates. From our analysis, we 
observe that the two main components that contribute to the 
dynamic power the highest are: global memory accesses and 
computation instructions. We use the performance model 
described in the previous section for obtaining the total 
number of execution cycles and calculate the event rate.  

The remaining model coefficients in Eq. 11 (�i and �) are 
obtained through empirical analysis while running a set of 
training benchmarks. In specific, we measure power and 
event rate (ei) of each training benchmark and then derive 
the coefficients by performing linear regression. We train 
our model using 6 GPU benchmarks from Rodinia 
benchmark suite [7] (10 GPU kernels). To measure GPU 
power consumption, we first measure the whole system idle 
power (Pidle) that includes GPU static power (Pstatic). Then 
we measure the average system power (Psys) when GPU is 
leveraged to run workloads. We fix cooling fans speed 
inside the machine to eliminate their power effects. We 
assume that when GPU is executing the workload, the other 
system components consume almost the same power as 
when the system is idle. Therefore, GPU power (PT (�T) + 
Pdyn) can be estimated by (Psys – Pidle).  Our assumption is 
valid because the major power consumption contributors 
(CPU, host memory, fans, and disk) [14] use almost the 
same power as when the system is idle. 

For heterogonous workload consolidation, different SMs 
may be executing different workloads, which leads to 
different event rates across SMs. The workload may also be 

distributed unevenly on SMs. Using the event rates from a 
specific SM cannot capture the power consumption of the 
other SMs. It is incorrect to simply estimate dynamic power 
for each SM based on their individual event rates and then 
add them up to obtain total dynamic GPU power. For 
instance, prediction error with such adding for the 
consolidation of encryption and MC is 9X times different 
from the actual measurement). That indicates power 
consumption estimated for one SM is in fact consumed by 
multiple SMs. To solve this power model problem, we 
assume a “virtual” SM whose event rates is the average 
event rates of all SMs. We estimate the power based on this 
virtual SM. We test our model with 14 variations of 
consolidated workloads. The prediction error of the GPU 
power model is less than 10% and achieve 6.4% on average 
(Figure 5). 

VII. USAGE OF MODELS IN THE FRAMEWORK 
We describe usage of our models to decide judicious 

workload consolidation for verifying energy efficiency at 
runtime. Figure 6 shows an overview of the decision making 
process. The backend keeps track of the number of 
workloads that issue GPU kernels. When the number 
reaches a certain threshold, the backend considers the 
workload consolidation; otherwise GPU kernels are 
executed as if there is no consolidation framework. We set 
the threshold to 10 times the number of available GPUs to 
represent a large number of GPU requests. This number can 
be adjusted based on further observation. When the number 
of workloads is large enough, the backend randomly 
chooses workload candidates according to the available 
consolidation templates. The backend then calculates 
performance and power by using the parameterized models 
described in Sections V and VI. The backend calculates 
energy consumption of the chosen consolidation kernel 
based on the number of chosen workload instances, and 
their parameters (i.e., numbers of thread blocks for each 
workload, number of computation instructions per thread, 
number of coalesced/uncoalesced memory type instructions 
per thread and total number of synchronization instructions 
per thread), and hardware architecture parameters (i.e., 
DRAM access latency, delay between two uncoalesced and 

Figure 5:  Comparison of predicted average power with measured average power 
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Figure 6: Integrating the models with the runtime 
systems

 
Figure 8: Results for running multiple instances of  Sorting 
workloads

 
Figure 7: Results for running multiple instances of  
encryption workloads 

coalesced memory transactions, clock frequency of the SM 
processor, and bandwidth between the DRAM and cores). 
Most of the model parameters, except the number of 
instances and the number of threads blocks for each 
workload, are obtained offline. Hence, the overhead of 
calculating performance and energy benefits is low.  

If the backend determines that consolidation of the 
chosen workloads is not beneficial, it lets the kernels run 
normally and chooses other workload candidates for 
consolidation. Since we assume to have enough workloads 
to schedule, it would be easier to overlap workload 
computation with energy benefit verification for reducing 
runtime overhead. 

VIII.     PERFORMANCE EVALUATION 
We test our dynamic consolidation framework to verify 

throughput and energy consumption of various consolidated 
workloads. We execute various combinations of workloads 
listed in Table 1 on a machine with Intel Xeon E5520 quad-
core CPU and Nvidia Tesla C1060 GPU. We compare GPU 
and CPU performance and energy consumption to 
demonstrate energy efficiency of consolidation. 
Furthermore, we investigate mitigation of consolidation 
framework overhead.  

We measure the whole system power with the WattsUp? 
PRO ES power meter in the same way as described in [13]. 
For CPU power measurements, we turned off the GPU by 
disconnecting power to it. For GPU measurements, power 
consumption includes CPU power and GPU power. To 
measure the power for a workload whose execution time is 
small (less than 5 seconds), we run the workload multiple 
times and measure the average system power.  

To evaluate the performance of consolidated workloads 
on CPU, we launch multiple workloads on the CPU 
concurrently and rely on the scheduling policy of OS 
(Ubuntu Server 9.10, Linux 2.6.31-22-server kernel) to 
distribute workloads among processor cores. To make a fair 
comparison, the CPU code is parallelized using OpenMP 
and is optimized for best memory accesses. In our 
implementations, most of CPU kernels perform better than 
GPU kernels.  

We compare total execution time and total energy 
consumed for four execution setups. The first is running 
multiple instances on multicore CPU (labeled CPU in the 

graphs). The next setup is running each instance of GPU 
workload serially without consolidation (labeled serial). 
This is the way current GPUs are typically used, where the 
CUDA scheduler issues one execution after another. 
Manual setup refers to manual implementation of 
consolidating instances of multiple instances. Although 
manual consolidation is not possible in a data center 
situation, we are simply using it as a reference since it does 
not include the overheads caused by intercepting user 
requests and extra data copying from different contexts into 
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Table 5:  Execution time (second) for running Search (S) and 
BlackScholes (B) workload instances 

Benchmarks CPU Manual Dynamic Serial
1S+1B 60.3 36.6 38.1 69.4
1S+10B 218.4 37.4 40.2 377.2
2S+10B 220.5 38.1 41.1 412.5
1S+20B 401.7 38.4 43.4 719.2

 Table 6: Total energy consumption (Joule) for running Search (S)  and 
BlackScholes (B) workload instances 

Benchmarks CPU Manual Dynamic Serial 
1S+1B 24532.93 13572.59 14139.86 25730.32 
1S+10B 95184.05 15061.74 16197.95 151902.1
2S+10B 89718.45 15568.41 16788.66 168271.2
1S+20B 176763.3 15736.89 17786.41 294683.6

 Table 7: Execution time (second) for running Encryption (E) and 
MonteCarlo (M) workload instances 

Benchmarks CPU Manual Dynamic Serial
1E+1M 387.7 57.2 57.2 88.9 
3E+3M 605.5 57.4 57.5 266.8 

4E+12M 976.6 57.7 57.8 701.5 
5E+15M 1163.4 57.8 59.9 876.9 

 Table 8: Total energy consumption (Joule) for running Encryption (E) 
and MonteCarlo (M) workload instances 

Benchmarks CPU Manual Dynamic Serial 
1E+1M 162443 20617.81 20648.01 32058.44 
3E+3M 263853.8 21697.55 21746.46 100838.4 

4E+12M 427091.8 22309.35 22380.19 271439.5 
5E+15M 511666.9 22451.37 23263.51 340546.2

one buffer. The manual version also does not include the 
optimizations performed by our dynamic framework. 
Finally, dynamic refers to results with our runtime 
consolidation backend proposed in this paper.  

Figure 7 shows two graphs, one with total execution time 
and the other with total energy consumption for executing 
various instances of the encryption workload. Each instance 
encrypts 12KB of data. We can see that serial execution on 
GPU has the worst performance in all cases as the execution 
of instances is serialized. Runtime consolidation leads to 
energy savings of up to 29% and performance benefit of up 
to 68% compared to CPU, although a single GPU instance 
performs worse in terms of both execution time and energy 
consumption. Optimizations such as reusing data required 
by multiple instances led to our consolidation framework’s 
better performance than manual implementation when the 
number of instances is less than 3. Beyond that, data transfer 
overhead causes the performance to drop slightly. Even for 
these cases, runtime consolidation performs better than 
CPU. As we increase the number of instances to more than 
9, the data transfer overheads become overwhelming and 
achieves neither high throughput nor energy savings.  Note 
that the data transfer overheads can be estimated based on 
memory bandwidth and data size. Therefore, our framework 
in a real environment avoids choosing this case of too many 
instances for consolidation. 

Figure 8 shows the results for various instances of sorting 
workload, each instance with 6K input elements. As we 
increase the number of instances, performance benefit of 
GPU with consolidation increases further from 1.4X to 2X 
(at 9 instances), compared to CPU. With serial execution, 
the GPU performance benefit is lost since multicore CPU 
can schedule multiple instances on different cores to fully 
utilize the hardware resources while GPU with serial 
execution cannot. GPU execution time with manual 
consolidation stays almost constant as we pack more 
instances of sorting workload on GPU, because the 
workloads are distributed evenly into separate SMs and do 
not introduce global memory access overhead. In other 
words, the GPU hardware utilization is improved without 
any performance loss. This is in contrast with the encryption 
workload where GPU execution time is slightly increased as 
we consolidate more instances. Our dynamic consolidation 
framework has similar performance as the manual 
consolidation up to 5 instances. As we increase the number 
of instances further, the overheads catch up and some 
performance is lost. Overall, runtime consolidation is still 
better than CPU for all numbers of instances. CPU 
execution time also increases significantly when the number 
of instances is larger than 4. As a result, CPU energy 
consumption starts to increase significantly.  

Tables 5 and 6 show the total execution time and energy 
consumption for running multiple heterogeneous instances 
of Search workload and BlackScholes workload. In these 
tables, xS means x instances of Search workload and yB 
means y instances of BlackScholes workload. Similar 

notation is applied in describing the remaining 
heterogeneous workload consolidation results. Execution 
time of a single Search instance on CPU and GPU are 17 
seconds and 35.2 seconds respectively, i.e., CPU 
performance is better. Execution time of a single 
BlackScholes instance on CPU and GPU are 57.4 seconds 
and 34.2 seconds, respectively, i.e., GPU performance is 
better. After we consolidate them together into one kernel 
on GPU, the consolidation effect leads to both performance 
and energy benefits on GPU compared to CPU. This result 
is interesting, since we can consolidate a workload that is 
performing well on GPU with a workload that is achieving 
worse performance on GPU than on CPU and improve their 
combined performance. In addition, we notice that 
(1S+20B) case, which has more workloads than the other 
cases, performs best in all cases (9.3X performance speedup 
and 9.9X energy savings, compared to CPU), which 
demonstrates the advantage of workload consolidation. We 
also notice that with our runtime workload consolidation, 
the performance is only slightly worse than with manual 
consolidation, due to small communication and data copy 
overhead incurred between the frontends and backend. Also, 
serial execution performance of these benchmarks for all 
cases is the worst as expected.  

Tables 7 and 8 show the results for consolidating 
multiple heterogeneous instances of MonteCarlo workload 
and Encryption workload. Execution time of a single 
Encryption instance on CPU and GPU are 7.2 seconds and 
45.7 seconds, respectively, i.e. CPU performance is better. 
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A single MonteCarlo instance finishes in 306 seconds on 
CPU and in 43.2 seconds on GPU, i.e. MonteCarlo’s GPU 
performance is multiple times better than CPU. Serial 
execution on GPU gets the worst performance. Compared to 
CPU, consolidation on GPU manually and using our 
runtime framework performs significantly better. The 
overhead caused by our framework is negligible in this case. 
Workload consolidation achieves up to 19X performance 
speedup and 22X energy savings (using 5E+15M), 
compared to execution on CPU.    

IX. CONCLUSIONS 
This paper presents a case for energy-efficient use of 

GPUs in enterprise computing. We presented motivating 
examples to illustrate the benefits of energy-aware 
consolidation and to show the need for judicious 
consolidation. We have described power and performance 
prediction models for workload consolidation on GPUs and 
used them in our dynamic consolidation framework. We 
developed optimizations to reduce the overhead caused by 
our framework. For various benchmarks usage of our 
framework achieves energy savings in the range of 2X to 
22X, and performance benefits in the same range. Despite 
upcoming technical advances in GPUs, our process-level 
consolidation is an energy efficient strategy and can 
complement future GPU architectures. 
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