
Energy-Aware Workload Consolidation on GPU

Dong Li§* Surendra Byna+* Srimat Chakradhar*
{lid, chak}@nec-labs.com, sbyna@lbl.gov
*NEC Laboratories America, Princeton, NJ
§ Oak Ridge National Lab, Oak Ridge, TN

+ Lawrence Berkeley National Lab, Berkeley, CA

Abstract—Enterprise workloads like search, data mining and
analytics, etc. typically involve a large number of users who are
simultaneously using applications that are hosted on clusters of
commodity computers. Use of GPUs for enterprise computing
is challenging because of poor performance and higher energy
consumption compared to running enterprise workloads on
CPUs. In this paper, we show that the GPU work consolidation
can improve system throughput and results in significant
energy savings over multicore CPUs. We develop a novel
runtime framework that dynamically consolidates instances
from different workloads from multiple user processes into a
single GPU workload. However, arbitrary consolidation of
GPU workloads does not always lead to better energy
efficiency. We use new GPU performance and power models to
make predictions for potential workload consolidation
alternatives and identify useful consolidations. Our
experiments on a variety of workloads (that perform poorly on
a GPU compared to well optimized multicore CPU
implementations) show that the proposed framework for GPU
can provide 2X to 22X energy benefit over a multicore CPU.

Keywords-Power aware computing, GPU computing, Workload
consolidation

I. INTRODUCTION
Many data parallel applications (especially scientific

computing applications) use general purpose graphical
processing units (GPGPUs or commonly known as GPUs) to
achieve impressive speedups, in the range of 100X for many
data parallel applications [25]. The three of the top five
supercomputers in the world today already mix CPUs with
GPUs to boost performance, and to make the supercomputers
energy efficient. However, use of GPUs for enterprise
computing is challenging because (a) each user request does
not usually have enough work to offset the overheads of off-
loading to a GPU, and (b) the GPU compute fabric and
memory architecture is also not a good fit for enterprise
kernels like search, sorting, encryption etc. Enterprise
workloads typically involve a large number of users who are
simultaneously making requests to applications that are
hosted on clusters of commodity computers. Since the user
requests typically have small amount of work, the execution
time of these workloads on a GPU is more than the execution
time on a multicore CPU. Moreover, the power consumption
of a typical GPU is also much higher than that of a multicore
CPU. For example, NVIDIA Tesla GPUs consume more
than 250 Watts at peak, more than twice the peak power
consumption of a multicore CPU [2]. Even though power-
related innovations by GPU vendors at the hardware level
may happen in the future, the relative big power

consumption of GPU will still prevent it from the adoption in
some cases, e.g., high-performance embedded environments
[29].

When the GPU is unable to provide impressive
acceleration for many popular enterprise workloads, the
question of whether the GPU is more energy-efficient than a
multicore CPU arises. In this paper, we answer this question
by developing a new GPU workload consolidation
framework that combines small GPU workloads from
multiple users (i.e., form multiple processes) into a single,
large workload. We show that consolidation strategy
achieves significant energy savings for a variety of enterprise
workloads executing on a GPU, as compared to a multicore
CPU and to a GPU without consolidation. We assume an
environment where there are many users who are
simultaneously sending their requests to a set of known
applications hosted on enterprise computing platforms. We
also assume that user requests collectively include sufficient
workload for GPU processing so that there is an opportunity
to combine workloads. These assumptions are valid in
typical enterprise computing scenarios.

The proposed workload consolidation strategy is
different from multi-kernel execution and from CUDA 4.0
GPU sharing features on NVIDIA’s Fermi GPUs [16]. The
Fermi GPUs can execute multiple kernels but these kernels
must be issued from the same process context. In other
words, multiple threads of the same process can share a
GPU. However, in data center environment, different
processes spawn GPU workloads that typically belong to
multiple users. Our proposed strategy can consolidate
workload instances from different contexts (i.e., processes
from different users).

The consolidation strategy is not limited to enterprise
computing. Any workloads, including from scientific
computing, can potentially benefit from our framework,
when GPUs have idle cores or if workloads are unevenly
distributed on GPU cores. For example, some workloads
(e.g., matrix computation) have scalability limitation [1],
where only a fraction of available streaming multiprocessors
(SMs) are required to achieve the best performance. These
SMs may be released by applications and stay idle wasting
energy. Some workloads unevenly utilize GPU resources
(e.g., distributing 45 thread blocks on 30 SMs of a GPU),
where the lightly-loaded SMs finish earlier and have to wait.
With judicious consolidation of these workloads, we can
improve system throughput while saving energy.

We develop a framework that dynamically consolidates
GPU workload instances from multiple users. Our
framework does not rely on CUDA driver and runtime. The

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.25

391

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.25

391

2011 International Conference on Parallel Processing Workshops

1530-2016/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPPW.2011.25

389

GPU workloads can be the instances of the same application
(homogenous) or different applications (heterogeneous).
Here, an instance means a workload in the ready state to run.
The number of workload kernels to be consolidated is not
restricted, if their total resource requirement is not higher
than GPU shared resources. The framework uses energy
awareness as the main criterion for making decisions on
consolidating workload instances. Consolidation has a
possibility of lowering throughput due to the contention for
shared GPU resources, such as GPU global memory
bandwidth, shared memory, register file, and constant
memory. Additionally, arbitrary consolidation of user
requests may have adverse effect on performance and may
lead to poor energy efficiency. Consolidation of workloads
leads to increased power due to increased requirement of
GPU resources. Since energy consumption is the product of
power and execution time, throughput improvement must be
higher enough to offset the increased power for achieving
energy efficiency. We propose new GPU power and
performance prediction models to identify an energy-
efficient consolidation of workloads.

In this paper, we make the following contributions:
• We demonstrate that energy consumption of GPUs can

be significantly lower than that of CPUs, even for those
workloads that perform better on CPU than on GPU if they
were run individually;

• We propose a lightweight GPU power model that
captures power-critical events for consolidated homogeneous
and heterogeneous workloads;

• We develop a GPU performance prediction model that
considers the performance impact of thread blocks
scheduling;

• We introduce a framework that facilitates workload
consolidation on NVIDIA GPUs.

In the rest of the paper, we first provide related work and
motivational examples before describing our dynamic
framework and GPU performance and power models. We
evaluate energy efficiency results of our framework and then
conclude.

II. RELATED WORK
Workload Consolidation: The consolidation runtime

explored by Guevara et al. [10] is the closely related work to
our study. They propose an issue queue, called cusub that
could be included in CUDA driver, to merge workloads and
a prototype implementation shows throughput benefits in
merging workloads. Our work differs from the issue queue
approach for merging kernels in two major ways: (a) our
process-level consolidation framework can consolidate
multiple instances (i.e., homogeneous or heterogeneous
instances of workloads) without imposing any constraints
on CUDA driver and on CUDA runtime; and (b) we use
new GPU power and performance models to consolidate
workloads for energy savings over a multicore CPU rather
than focusing on performance alone. These models are
inevitable for the determination of performance and energy
benefits. Our consolidated kernels can further take

advantage of optimizations like an issue queue in the CUDA
driver.

Energy Efficiency on GPU: A few recent studies
explored proving energy efficiency of running highly data
parallel workloads on GPUs. Ren et al. [12] and Huang et
al. [13] prove that energy efficiency of GPUs is high
compared to CPUs for matrix multiplication kernels. The
matrix multiplication kernels are highly data parallel and it
is proven that these kernels achieve high speedups on GPUs
compared to CPUs. Energy efficiency with such high
speedups is obvious. Takizawa et al. [18] provide a simple
GPU energy model for selecting either CPU or GPU to run
a batch of workloads on a heterogeneous cluster, with the
assumption that GPU power consumption is constant across
tasks. However, this assumption is not true for many
workloads.

GPU Power Model: Nagasaka et al. [5] set up a power
model based on the absolute access number of system
components. Ma et al. [19] propose to record 5 specific
runtime GPU power signals and apply statistical analysis to
estimate GPU power. Hong and Kim [1] propose a power
model based on the access rates of a large amount of
components and the estimation of max power consumption
of each system component.

GPU Performance Model: There have been many recent
efforts in predicting GPU performance. Ryoo et al. [21] used
Pareto-optimal curve to prune the optimization space of
application on GPU based on two metrics (efficiency and
utilization). Hong et.al [8] proposed an analytical model to
capture the cost of memory operations. Baghsorhki et al. [22]
identify how the kernel exercises major microarchitecture
features and uses workflow graphs to detect performance
bottleneck, based on which they estimate the performance.
Kerr et al. [23] leverage Ocelot dynamic compiler
infrastructure to instrument applications to collect 37
metrics. Then they use statistical analysis to derive the
relationship between program behavior and performance. Liu
et al. [24] classify applications into several categories. Based
on the specific characteristics of each category, they
establish a relationship between problem sizes and
performance, taking into consideration the architecture and
GPU programming primitives.

All existing GPU power and performance models
mentioned above are developed for the case where all SMs
are executing identical workloads. With workload
consolidation, different SMs may run different workloads
and the amount of work by each thread block on the same
SM may also be different. Hence, direct application of the
existing models is not sufficient for our consolidation
strategy. Our models, which work for variant workload
combinations (homogeneous and heterogeneous), are a
significant improvement to the previous work.

III. MOTIVATION
In this section, we discuss that workload consolidation is

performance and energy efficient even for workloads that

392392390

Figure 1: Benefit with consolidating workloads

Table 1. Poor GPU speedup over multicore CPU

Name Input data size
of

blocks
/instance

GPU
speedup

over CPU

#threads/
block

Encryption [26] 12K 3 0.84 256
Encryption 6K 3 0.15 128
Sorting [27] 6K 6 1.45 256
Search [7] 10K 10 0.48 256

BlackScholes
[28] 4096K 1 1.68 256

MonteCarlo [28] Steps=500K 1 7.0 128

achieve poor performance on GPUs when compared to
multicore CPU. We also show that workload consolidation
must be performed judiciously based on the characteristics
of workloads.

Throughout this paper, we use a heterogeneous compute
node with dual socket Intel Xeon E5520 quad-core
processors (8 cores in total) and a NIVDIA Tesla C1060
GPU, which has 30 SMs, 4GB global memory. The GPU
code is executed with CUDA driver and runtime version
3.0. Except where specifically indicated, the energy reported
in the paper refers to the whole system energy consumption.
The performance of GPU includes the GPU computation
time and data transfer time between host memory and GPU
device memory. The performance of CPU refers to the CPU
time doing the same computation as GPU. The execution
time is the time duration of concurrently running multiple
instances, from the point where all instances get started to
the point where all instances are finished. Given a fixed
number of instances to execute, the execution time also
reflects the system throughput. The smaller execution time
is, the larger is the system throughput. All the CPU
implementations are parallelized and optimized for their
best memory access performance.

Table 1 summarizes execution times of various enterprise
workloads we used in this paper. Performance of these
workloads is either comparable or worse on the GPUs than
on the CPUs. Note that these workloads can achieve
speedups on the GPU compared to optimized and
parallelized CPU implementations, if data sizes are much
larger, but the data sizes shown in Table 1 are representative
of enterprise computing scenarios.

We now show performance and energy efficiency using
workload consolidation. Figure 1 compares the total
execution time and energy in running multiple instances of
encryption. A single encryption instance (using AES
algorithm) with input file of 12KB on the GPU has worse
performance (16% lower) than on the CPU. The energy
consumption of using the GPU in running one instance is
1.5 times more than that of using the CPU. When multiple
instances are run on the CPU, they are scheduled by the OS
to run on different cores. The execution time and total
energy consumption increase for more number of instances.
When we run these multiple instances on GPU in
conventional fashion (i.e., serially one after another), the

execution time and energy consumption increase almost
linearly, which is very energy inefficient. If we consolidate
multiple instances into one large GPU kernel, then we
observe a significant reduction in total execution time and
total energy consumption. In the best case (9 encryption
instances), workload consolidation finishes in 68% less
execution time with 29% energy savings, compared to the
CPU.

Further analysis reveals that a single encryption instance
uses only 3 thread blocks and the GPU scheduler distributes
thread blocks between SMs in a round-robin fashion.
Therefore, an encryption instance uses only three SMs.
When we consolidate more instances, GPU power
consumption is not linearly increased, as one would expect.
Rather, power consumption increases much slowly. This
behavior is consistent with a recent study [1]. Also,
execution time stays relatively steady as we increase the
number of SMs used, because additional encryption
instances utilize SMs that were previously idle. Moreover,
the additional load on SMs does not introduce resource
contention on the shared resources. Consequently, the
energy consumption, which is the product of power and
execution time, decreases significantly.

Workload consolidation on the CPU does not translate to
better performance because of contention for shared
resources such as L2 and L3 cache memories. In addition,
when a processor core is overloaded with multiple
workloads, the CPU suffers from large context switch
overhead due to operating system’s time slicing between
workloads. The GPU has less of these performance
concerns, because of its very small caches and unique
design of scheduling a large amount of threads to cover any
access latency. In addition, our framework merges the
workloads from multiple contexts into a single context and
thus avoids any context switch overhead.
 While consolidation on GPUs offers benefits,
consolidating arbitrary workloads will not automatically

393393391

result in improvement in energy consumption or throughput.
For example, consider the following two scenarios.
Scenario 1: Table 2 shows execution time and energy
consumption of a single Monte Carlo (MC) instance (45
thread blocks and 50 computation iterations), a single
encryption instance (15 thread blocks and 1.0E+5
computation iterations), and a consolidated workload with
one instance of each of MC and encryption on GPU.
Scenario 2: Table 3 shows execution time and energy
consumption of a BlackScholes instance (45 thread blocks
and 1000 computation iterations), a search instance (15
thread blocks, 6E+6 computation iterations), and a
consolidated workload consisting of one instance each of
search and BlackScholes.

From these two scenarios, we can observe conflicting
execution time and energy consumption trends for the
consolidated workloads. In Scenario 1, the execution time of
consolidated kernel (84.6s) is larger than the sum of the
execution times of both (MC and encryption) instances. The
energy consumption is larger than the sum of the individual
consumptions. We do not see any energy benefit of this
workload consolidation and lost some throughput. In
Scenario 2, the execution time of consolidated workload
(58.7s) is smaller than the sum of the execution time of two
workloads and a little longer than that of the larger workload
(i.e., Search), which results in energy savings. The energy
consumption of consolidated kernel is also less than the sum
of the individual consumptions. Hence, consolidation of
random instances does not guarantee energy savings or
higher throughput. Hence, it is necessary to judiciously
consolidate kernels taking into account important factors like
execution time and power consumption of the different
instances.

IV. ENERGY-AWARE WORKLOAD CONSOLI-
DATION FRAMEWORK

This section describes our energy-aware consolidation
framework. The main functions of the framework, shown in
Figure 2, are to receive GPU workloads from multiple users,
to consolidate them into a large kernel, and then to execute
the consolidated kernel on the GPUs. The framework uses
performance and power prediction models (described in
Sections V and VI) to estimate the execution time and the
power consumption of consolidation. If the framework
determines that consolidation is not beneficial, then the

instances are executed either on CPU or on GPU
individually based on their individual performance and
energy consumption. We assume that CPU performance and
energy profiles are available for such comparison. If
estimated beneficial, a precompiled consolidated template is
selected to run combinations of workloads on GPU.
 A precompiled template is a CUDA kernel that
implements a set of consolidated workloads. The templates
are manually pre-designed after detailed performance
analysis of workload kernels, their frequency of usage and
typical data size from data center traces. The templates are
parameterized to run multiple instances of consolidated
workloads. A template is independent of block partitioning
between workloads. They are able to handle the workloads,
which are reused often but with different grid
configurations. Typically a template is implemented by
renaming variables to prevent name collisions, updating the
indexes for data accesses, and adding if-else control flow to
distribute blocks between SMs. The generation of templates
can be automated with a source-to-source compiler.
 We consolidate workloads at the granularity of thread
blocks. In particular, two or more instances of multiple
workloads are executed by the sum of the number of blocks
in each kernel request. Multiple workloads can be executed
in parallel if their blocks are mapped to different SMs.
Multiple workloads can also be interleaved at the block
level, if their corresponding blocks are scheduled on the
same SM. We do not consolidate workload at the thread
level to avoid violating the SIMD lockstep execution of
threads in the same warp by inserting control flow
divergence. Note that, workload consolidation is not feasible
under certain situations, especially, if consolidated workload
exceeds the limitation of shared resources, such as the
number of registers and shared memory provided to each
SM.
 The frontend is a shared library, loaded into applications
to intercept specific CUDA Runtime API calls. The frontend
also sets up a communication channel with the backend,
through which the frontend informs the backend of API type
and arguments. The backend is a daemon, launched before
any workload execution. The backend listens for connection
requests from frontend instances and then communicates
with the frontends to receive CUDA API information. It is

Table 2. Workload consolidation results with scenario 1
Workload Time (s) Energy (KJoule)
Single MC 62.4 25.6

Single encryption 19.5 7.03
MC+encryption 84.6 33.5

Table 3. Workload consolidation results with scenario 2

Workload Time (s) Energy (KJoule)
Single BlackScholes 26.4 12.2

Single search 49.2 19.2
BlackScholes+Search 58.7 26.7

Figure 2: An overview of Energy-aware consolidation framework

394394392

the backend that really conducts the CUDA API calls and
kernel calls.
 When a memory operation of CUDA API is called from
the workload, the front-end related to that kernel intercepts
it and passes the API arguments to the backend. The
backend carries out the API operations and return the results
(e.g., a pointer pointing to the allocated memory region).
For the memory copy operations (either from host memory
to device global memory, or vice versa), the backend cannot
directly copy data between the frontend process context and
the device global memory, because the backend and the
frontend belong to different process contexts. So the
backend copies the data into a local pre-allocated buffer,
and then copies the data from the buffer to the destination.

The frontend instances have to be independent of
workload implementation so that the frontend can be easily
used by any workload without changes. To do this, the
frontend intercepts CUDA driver API calls, including (1)
cudaConfigureCall, where the backend can obtain the
execution configuration, such as block and grid dimensions;
(2) cudaSetupArgument, where the backend can obtain
argument information for the workload kernel calls; (3)
cudaLaunch, where multiple frontends inform the backend
of launching the template. It also intercepts GPU memory
related operations, such as memory memory allocation
(cudaMalloc) and memory copy (cudaMemcpy). Note that
since all memory operations are conducted by the backend,
the kernel call arguments are completely valid in the context
of the backend.

Our run-time consolidation does have overheads. The
main overhead comes from the memory copy operations
between the frontends and the backend pre-allocated buffer,
the communication costs between the frontends and the
backend, and synchronization costs between multiple
frontends. To mitigate the impact of overheads, we
introduce several optimizations to reduce or offset the
overhead.

To reduce communication costs and synchronization
costs, we introduce coordination among frontends in
consolidating homogeneous workloads. In particular, the
framework randomly selects a leader frontend for
homogeneous workloads. Then only the leader frontend
communicates with the backend. This strategy reduces
severe communication overhead.

We also implemented enforcing application specific
optimizations in the backend when possible. For example,
AES encryption algorithm has large amount of constant data
[11] that can be reused by any of its kernels. We provide an
API to load reusable data to the GPU memory only once and
let multiple kernels use that data.

There are other possible optimizations to reduce
communication costs. For example, to transfer the kernel
call arguments from the frontend to the backend, instead of
transferring them one by one whenever cudaSetupArgument
is intercepted, the frontend can hold them until cudaLaunch
is triggered. This optimization reduces the number of

interactions between the frontend and backend, which is the
most significant overhead for small workload consolidation.

We now describe the analytical models the backend uses
in making judicious decisions on consolidation.

V. GPU PERFORMANCE MODEL
We classify workload consolidation scenarios into two

types, taking into consideration how thread blocks are
distributed between SMs.

In the first type, each SM executes at most one thread
block. For example, in encryption workload described
above, thread blocks are distributed in round-robin fashion.
Since each encryption instance occupies 3 SMs out of 30
SMs in Tesla C1060 GPU, consolidation of 6 instances
occupies 18 SMs. Since each thread block goes to different
SM, the thread blocks do not overlap with each other. For
this type of consolidation, there is no need to consider how
the thread blocks are scheduled within and across SMs and
the performance model just needs to capture performance of
single workload and the resource sharing effects of
consolidation, in particular global memory bandwidth
sharing.

In the second type of consolidation, more than one thread
block are scheduled into each SM. In this case, thread
blocks scheduled onto an SM either come from the same
workload or from different workloads. For this type, the
performance model must consider the GPU scheduling
strategy across SMs, besides the concerns of resource
sharing effects.

We extend a recent GPU performance model [8] to
estimate the performance of consolidated workloads on
GPU. The previous model designed for single workloads
cannot directly be applied to predict consolidated kernel
performance since the model is based on the implicit
assumption that SMs are either idle or executing the same
type of workload. This assumption is not true for the case of
consolidation. In addition, the previous work does not
consider the performance impact of thread blocks
scheduling that is an important factor to determine
performance of consolidated workloads. In the following,
we will briefly review our model due to the space limitation,
but a detailed model description can be found in [30].

For the first type of consolidation, we apply the existing
model to each single kernel, but with a simple extension of
considering global memory bandwidth sharing. We apply
our model extension to two consolidated workloads of the
first category. Figure 3 compare predicted performance with
measured performance using our extended model. Our
prediction captures potential performance variances due to
workload consolidation and is accurate.

For the second type of consolidated workloads, different
SMs may have different thread blocks. The SMs that
finishes its workload latest determines the execution time.
We call this SM as “critical SMs”. To estimate the
execution time of consolidated workloads, we first identify

395395393

Figure 3: Execution time prediction for the first category of
consolidated workloads (i.e, at most one thread block is
allocated per SM)

Figure 4: Execution time prediction for the second category
of consolidated workloads (i.e., more than one thread
blocks are allocated per SM)

the critical SMs and then estimate the execution time of
thread blocks scheduled on the critical SMs.

To identify the critical SMs, we need to know how the
GPU schedules thread blocks to SMs. To explain why this
matters to performance, we use the same scenarios shown in
Tables 2 and 3 in Section III.

In both scenarios, the thread blocks are initially
distributed between SMs in a round-robin fashion. In the
first scenario (Table 2), since the encryption instance is
much shorter than MC (Monte Carlo), it is possible that the
first 15 SMs finish the encryption instance while the second
15 SMs are still working on the MC blocks. To balance
workload between SMs, some untouched MC blocks will
then be redistributed to the first 15 SMs by the GPU
scheduler. Therefore the critical SMs, i.e. the first 15 SMs,
are allocated with one encryption thread block plus 2 MC
thread blocks. In the second scenario (Table 3), the warps
from the BlackScholes thread blocks in the first 15 SMs are
executed interleaving with the warps from the Search
instance. Hence, the BlackScholes thread blocks in the first
15 SMs finish no earlier than any BlackScholes thread
blocks in the second 15 SMs. Therefore, the critical SMs in
this example, i.e first 15 SMs, are allocated with 1 Search
block and 1 BlackScholes block.

In general, thread block distribution among SMs depends
on execution time of a workload and the load balance
principle of the GPU scheduler. Sometimes, the thread
block re-distribution can happen in the middle of execution.
We can determine critical SMs based on analyzing
execution time of a workload and thread block distribution.

After identifying the thread blocks assigned to the critical
SMs, we estimate execution time. SM schedules warps of
thread blocks based on warp type, instruction type, and
“fairness” to all warps executing in the SM [9]. To
maximize system output, it is possible that SM interleaves
different warps (i.e., the warps belonging to different
workloads) to improve parallelism. We regard different
types of workloads whose warps are scheduled into the
same SM as one single big workload and estimate the
execution time for this big workload.

We compare predicted performance with our model for
the two scenarios with measured times (Figure 4) The
prediction error is less than 12%. A prediction error is likely
due to uneven distributed between SMs, where some SMs
finish their work earlier and alleviate the memory
bandwidth contention, while our model assumes bandwidth
sharing always happens. We plan on investigating the
reasons further.

VI. GPU POWER MODEL
In this section, we discuss predicting GPU Power for

consolidated workloads. The GPU power model should
capture execution properties of each workload that is being
consolidated. The existing work in predicting GPU power
[1] cannot be applied directly on consolidated workloads.

Typically, power consumption of a GPU (P) is the sum of
static power, dynamic power, and the impact of
temperature:

 P = Pstatic + PT (�T) + Pdyn (10)
Pstatic is static power, PT is the temperature impact on power
and Pdyn is dynamic power. Static power depends on chip
layout and circuit technology, and is independent of
workload execution. Chip temperature has an impact on
power (PT). The leakage current and thermal voltages for a
transistor vary as temperature changes, which in turn leads
to leakage power changes [3]. Dynamic power (Pdyn) results
from transistors switching overhead.

Static power is measured when no workload is executed
and while none of the GPU resources is turned off. The
power consumed by leakage current and thermal voltages is
measured using the linear relationship between various
temperature changes (�T) as shown in [1]. We obtain the
equation coefficients by running a set of training
benchmarks. While the static and the thermal powers are
independent of workload, dynamic power is dependent on
actual usage of GPU hardware resources by a workload. The

396396394

resources include floating point units, global memory,
constant memory, shared memory, etc.

The dynamic power is the total power consumed by all
GPU hardware components. If ei is the event rate on
component i, then the total dynamic power is:

 | |

1

s

d yn i i
i

P a e λ
=

= +� (11)

cyclesexecution
ieventtheofsoccurrenceofnumberTheei = (12)

Event rate is the access rate of hardware component i in a
single SM. ei is the ratio of number of instructions that
access a hardware component and the total number of
execution cycles. The number of instructions that access a
hardware component is calculated by analyzing PTX code
that CUDA compiler generates. From our analysis, we
observe that the two main components that contribute to the
dynamic power the highest are: global memory accesses and
computation instructions. We use the performance model
described in the previous section for obtaining the total
number of execution cycles and calculate the event rate.

The remaining model coefficients in Eq. 11 (�i and �) are
obtained through empirical analysis while running a set of
training benchmarks. In specific, we measure power and
event rate (ei) of each training benchmark and then derive
the coefficients by performing linear regression. We train
our model using 6 GPU benchmarks from Rodinia
benchmark suite [7] (10 GPU kernels). To measure GPU
power consumption, we first measure the whole system idle
power (Pidle) that includes GPU static power (Pstatic). Then
we measure the average system power (Psys) when GPU is
leveraged to run workloads. We fix cooling fans speed
inside the machine to eliminate their power effects. We
assume that when GPU is executing the workload, the other
system components consume almost the same power as
when the system is idle. Therefore, GPU power (PT (�T) +
Pdyn) can be estimated by (Psys – Pidle). Our assumption is
valid because the major power consumption contributors
(CPU, host memory, fans, and disk) [14] use almost the
same power as when the system is idle.

For heterogonous workload consolidation, different SMs
may be executing different workloads, which leads to
different event rates across SMs. The workload may also be

distributed unevenly on SMs. Using the event rates from a
specific SM cannot capture the power consumption of the
other SMs. It is incorrect to simply estimate dynamic power
for each SM based on their individual event rates and then
add them up to obtain total dynamic GPU power. For
instance, prediction error with such adding for the
consolidation of encryption and MC is 9X times different
from the actual measurement). That indicates power
consumption estimated for one SM is in fact consumed by
multiple SMs. To solve this power model problem, we
assume a “virtual” SM whose event rates is the average
event rates of all SMs. We estimate the power based on this
virtual SM. We test our model with 14 variations of
consolidated workloads. The prediction error of the GPU
power model is less than 10% and achieve 6.4% on average
(Figure 5).

VII. USAGE OF MODELS IN THE FRAMEWORK
We describe usage of our models to decide judicious

workload consolidation for verifying energy efficiency at
runtime. Figure 6 shows an overview of the decision making
process. The backend keeps track of the number of
workloads that issue GPU kernels. When the number
reaches a certain threshold, the backend considers the
workload consolidation; otherwise GPU kernels are
executed as if there is no consolidation framework. We set
the threshold to 10 times the number of available GPUs to
represent a large number of GPU requests. This number can
be adjusted based on further observation. When the number
of workloads is large enough, the backend randomly
chooses workload candidates according to the available
consolidation templates. The backend then calculates
performance and power by using the parameterized models
described in Sections V and VI. The backend calculates
energy consumption of the chosen consolidation kernel
based on the number of chosen workload instances, and
their parameters (i.e., numbers of thread blocks for each
workload, number of computation instructions per thread,
number of coalesced/uncoalesced memory type instructions
per thread and total number of synchronization instructions
per thread), and hardware architecture parameters (i.e.,
DRAM access latency, delay between two uncoalesced and

Figure 5: Comparison of predicted average power with measured average power

397397395

Figure 6: Integrating the models with the runtime
systems

Figure 8: Results for running multiple instances of Sorting
workloads

Figure 7: Results for running multiple instances of
encryption workloads

coalesced memory transactions, clock frequency of the SM
processor, and bandwidth between the DRAM and cores).
Most of the model parameters, except the number of
instances and the number of threads blocks for each
workload, are obtained offline. Hence, the overhead of
calculating performance and energy benefits is low.

If the backend determines that consolidation of the
chosen workloads is not beneficial, it lets the kernels run
normally and chooses other workload candidates for
consolidation. Since we assume to have enough workloads
to schedule, it would be easier to overlap workload
computation with energy benefit verification for reducing
runtime overhead.

VIII. PERFORMANCE EVALUATION
We test our dynamic consolidation framework to verify

throughput and energy consumption of various consolidated
workloads. We execute various combinations of workloads
listed in Table 1 on a machine with Intel Xeon E5520 quad-
core CPU and Nvidia Tesla C1060 GPU. We compare GPU
and CPU performance and energy consumption to
demonstrate energy efficiency of consolidation.
Furthermore, we investigate mitigation of consolidation
framework overhead.

We measure the whole system power with the WattsUp?
PRO ES power meter in the same way as described in [13].
For CPU power measurements, we turned off the GPU by
disconnecting power to it. For GPU measurements, power
consumption includes CPU power and GPU power. To
measure the power for a workload whose execution time is
small (less than 5 seconds), we run the workload multiple
times and measure the average system power.

To evaluate the performance of consolidated workloads
on CPU, we launch multiple workloads on the CPU
concurrently and rely on the scheduling policy of OS
(Ubuntu Server 9.10, Linux 2.6.31-22-server kernel) to
distribute workloads among processor cores. To make a fair
comparison, the CPU code is parallelized using OpenMP
and is optimized for best memory accesses. In our
implementations, most of CPU kernels perform better than
GPU kernels.

We compare total execution time and total energy
consumed for four execution setups. The first is running
multiple instances on multicore CPU (labeled CPU in the

graphs). The next setup is running each instance of GPU
workload serially without consolidation (labeled serial).
This is the way current GPUs are typically used, where the
CUDA scheduler issues one execution after another.
Manual setup refers to manual implementation of
consolidating instances of multiple instances. Although
manual consolidation is not possible in a data center
situation, we are simply using it as a reference since it does
not include the overheads caused by intercepting user
requests and extra data copying from different contexts into

398398396

Table 5: Execution time (second) for running Search (S) and
BlackScholes (B) workload instances

Benchmarks CPU Manual Dynamic Serial
1S+1B 60.3 36.6 38.1 69.4
1S+10B 218.4 37.4 40.2 377.2
2S+10B 220.5 38.1 41.1 412.5
1S+20B 401.7 38.4 43.4 719.2

 Table 6: Total energy consumption (Joule) for running Search (S) and
BlackScholes (B) workload instances

Benchmarks CPU Manual Dynamic Serial
1S+1B 24532.93 13572.59 14139.86 25730.32
1S+10B 95184.05 15061.74 16197.95 151902.1
2S+10B 89718.45 15568.41 16788.66 168271.2
1S+20B 176763.3 15736.89 17786.41 294683.6

 Table 7: Execution time (second) for running Encryption (E) and
MonteCarlo (M) workload instances

Benchmarks CPU Manual Dynamic Serial
1E+1M 387.7 57.2 57.2 88.9
3E+3M 605.5 57.4 57.5 266.8

4E+12M 976.6 57.7 57.8 701.5
5E+15M 1163.4 57.8 59.9 876.9

 Table 8: Total energy consumption (Joule) for running Encryption (E)
and MonteCarlo (M) workload instances

Benchmarks CPU Manual Dynamic Serial
1E+1M 162443 20617.81 20648.01 32058.44
3E+3M 263853.8 21697.55 21746.46 100838.4

4E+12M 427091.8 22309.35 22380.19 271439.5
5E+15M 511666.9 22451.37 23263.51 340546.2

one buffer. The manual version also does not include the
optimizations performed by our dynamic framework.
Finally, dynamic refers to results with our runtime
consolidation backend proposed in this paper.

Figure 7 shows two graphs, one with total execution time
and the other with total energy consumption for executing
various instances of the encryption workload. Each instance
encrypts 12KB of data. We can see that serial execution on
GPU has the worst performance in all cases as the execution
of instances is serialized. Runtime consolidation leads to
energy savings of up to 29% and performance benefit of up
to 68% compared to CPU, although a single GPU instance
performs worse in terms of both execution time and energy
consumption. Optimizations such as reusing data required
by multiple instances led to our consolidation framework’s
better performance than manual implementation when the
number of instances is less than 3. Beyond that, data transfer
overhead causes the performance to drop slightly. Even for
these cases, runtime consolidation performs better than
CPU. As we increase the number of instances to more than
9, the data transfer overheads become overwhelming and
achieves neither high throughput nor energy savings. Note
that the data transfer overheads can be estimated based on
memory bandwidth and data size. Therefore, our framework
in a real environment avoids choosing this case of too many
instances for consolidation.

Figure 8 shows the results for various instances of sorting
workload, each instance with 6K input elements. As we
increase the number of instances, performance benefit of
GPU with consolidation increases further from 1.4X to 2X
(at 9 instances), compared to CPU. With serial execution,
the GPU performance benefit is lost since multicore CPU
can schedule multiple instances on different cores to fully
utilize the hardware resources while GPU with serial
execution cannot. GPU execution time with manual
consolidation stays almost constant as we pack more
instances of sorting workload on GPU, because the
workloads are distributed evenly into separate SMs and do
not introduce global memory access overhead. In other
words, the GPU hardware utilization is improved without
any performance loss. This is in contrast with the encryption
workload where GPU execution time is slightly increased as
we consolidate more instances. Our dynamic consolidation
framework has similar performance as the manual
consolidation up to 5 instances. As we increase the number
of instances further, the overheads catch up and some
performance is lost. Overall, runtime consolidation is still
better than CPU for all numbers of instances. CPU
execution time also increases significantly when the number
of instances is larger than 4. As a result, CPU energy
consumption starts to increase significantly.

Tables 5 and 6 show the total execution time and energy
consumption for running multiple heterogeneous instances
of Search workload and BlackScholes workload. In these
tables, xS means x instances of Search workload and yB
means y instances of BlackScholes workload. Similar

notation is applied in describing the remaining
heterogeneous workload consolidation results. Execution
time of a single Search instance on CPU and GPU are 17
seconds and 35.2 seconds respectively, i.e., CPU
performance is better. Execution time of a single
BlackScholes instance on CPU and GPU are 57.4 seconds
and 34.2 seconds, respectively, i.e., GPU performance is
better. After we consolidate them together into one kernel
on GPU, the consolidation effect leads to both performance
and energy benefits on GPU compared to CPU. This result
is interesting, since we can consolidate a workload that is
performing well on GPU with a workload that is achieving
worse performance on GPU than on CPU and improve their
combined performance. In addition, we notice that
(1S+20B) case, which has more workloads than the other
cases, performs best in all cases (9.3X performance speedup
and 9.9X energy savings, compared to CPU), which
demonstrates the advantage of workload consolidation. We
also notice that with our runtime workload consolidation,
the performance is only slightly worse than with manual
consolidation, due to small communication and data copy
overhead incurred between the frontends and backend. Also,
serial execution performance of these benchmarks for all
cases is the worst as expected.

Tables 7 and 8 show the results for consolidating
multiple heterogeneous instances of MonteCarlo workload
and Encryption workload. Execution time of a single
Encryption instance on CPU and GPU are 7.2 seconds and
45.7 seconds, respectively, i.e. CPU performance is better.

399399397

A single MonteCarlo instance finishes in 306 seconds on
CPU and in 43.2 seconds on GPU, i.e. MonteCarlo’s GPU
performance is multiple times better than CPU. Serial
execution on GPU gets the worst performance. Compared to
CPU, consolidation on GPU manually and using our
runtime framework performs significantly better. The
overhead caused by our framework is negligible in this case.
Workload consolidation achieves up to 19X performance
speedup and 22X energy savings (using 5E+15M),
compared to execution on CPU.

IX. CONCLUSIONS
This paper presents a case for energy-efficient use of

GPUs in enterprise computing. We presented motivating
examples to illustrate the benefits of energy-aware
consolidation and to show the need for judicious
consolidation. We have described power and performance
prediction models for workload consolidation on GPUs and
used them in our dynamic consolidation framework. We
developed optimizations to reduce the overhead caused by
our framework. For various benchmarks usage of our
framework achieves energy savings in the range of 2X to
22X, and performance benefits in the same range. Despite
upcoming technical advances in GPUs, our process-level
consolidation is an energy efficient strategy and can
complement future GPU architectures.

REFERENCES
[1] S. Hong and H. Kim, “An Integrated GPU Power and

Performance Model,” ISCA, 2010.
[2] S. Collange, D. Defour, and A. Tisserand, “Power

Consumption of GPUs from a Software Perspective,” Lecture
nodes in Computer Science, 2009, Volumn 5544/2009, 914-
923

[3] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan, “Hotleakage: a temperature-aware model of
subthreshold and gate leakage for architects,” Tech Report,
University of Virignia, 2003

[4] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S.
Velusamy, and D. Tarjan, “Temperature-aware
microarchitecture: modeling and implementation,” ACM
Trans. Architecture. Code Optimization., 2004.

[5] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S.
Matsuoka, “Statistical power modeling of GPU kernels using
performance counters,” The first international green
computing conference, 2010.

[6] Cubin utilities—decuda, http://wiki.github.com/laanwj/decuda.
[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S-H. Lee,

and K. Skadron, “Rodinia: a benchmark suite for
heterogeneous computing,” IEEE International Symposium on
Workload Characterization, 2009.

[8] S. Hong and H. Kim, “An analytical model for a GPU
architecture with memory-level and thread-level parallelism,”
In proceedings of the 36th International Symposium on
Computer Architecture, Austin, TX, 2009.

[9] E. Lindholm, J. Nickolls, S. Qberman, and J. Montrym.
“NVIDIA Tesla: a unified graphics and computing
architecture,” IEEE Micro, Vol 28, issue 2, page 39-55, 2008.

[10] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron.
“Enabling Task Parallelism in the CUDA Scheduler,”
Workshop on Programming Models for Emerging
Architectures, Sep. 2009.

[11] Federal Information Processing Standard, “FIPS PUB 197: the
official AES standard,”
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[12] D. Ren, R. Suda, “Power Efficient Large Matrices
Multiplication by Load Scheduling on Multi-core and GPU
Platform with CUDA,” vol. 1, pp.424-429, International
Conference on Computational Science and Engineering, 2009

[13] S. Huang, S. Xiao, and W. Feng, “On the Energy Efficiency of
Graphics Processing Units for Scientific Computing,” HP-
PAC-2009.

[14] X. Feng, R. Ge, and K. W. Cameron, “Power and Energy
Profiling of Scientific Applications on Distributed Systems,”
IPDPS ’05, 2005.

[15] cuobjdump, Nvidia developer website,
http://developer.nvidia.com/page/home.html

[16] Fermi Compute Architecture White Paper,
http://www.nvidia.com/content/PDF/fermi_white_papers/NVI
DIA_Fermi_Compute_Architecture_Whitepaper.pdf

[17] S. Collange, D. Defour, and A. Tisserand, “Power
Consumpiton of GPU from a Software Perspective,” Lecture
notes in computer science, volume 5544, page 914-923, 2009.

[18] H. Takizawa, K. Sato, and H. Kobayashi, “SPRAT: Runtime
Processor Selection for Energy-aware Computing,” IEEE
International Conference on Cluster Computing, 2008.

[19] X. Ma, M. Dong, L. Zhong and Z. Deng, “Statistical Power
Consumption Analysis and Modeling for GPU-based
computing,” Hotpower workshop, 2009.

[20] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, M.
Sarrafzadeh, “Energy-aware High Performance Computing
with Graphic Processing Units,” Conference on power aware
computing and systems, 2008.

[21] S. Ryoo, C. Rodrigues, S. Stone, and S. Baghsorkhi, S. Ueng,
J. Stratton and W. W. Hwu, “Prorgram Optimization Space
Pruning for a Multithreaded GPU,” International Sysmposium
on Code Generation and Optimization, 2008.

[22] S. Baghsorkhi, M. Delahaye, S. Patel, W. Gropp and W. Hwu,
“An Adaptive Performance Modeling Tool for GPU
Architecture,” In ACM PPoPP, 2010.

[23] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling GPU-
CPU Workloads and Systems,” In GPGPU workshop, 2010.

[24] W. Liu, W. Muller-Wittig, B. Schmidt, “Performance
Prediction for General-Purpose Computations on GPUs,” In
ICPP, 2007.

[25] Nvidia CUDAZone, CUDA Community Showcase,
http://www.nvidia.com/object/cuda_apps_flash_new.html

[26] Michael Kipper, Joshua Slavkin, Dmitry Denisenko,
“Implementing AES on GPU”,
http://www.eecg.toronto.edu/~moshovos/CUDA08/arx/AES_
ON_GPU_report.pdf

[27] A. Kaatz, Parallel Sorting Speed competition,
http://courses.ece.illinois.edu/ece498/al/HallOfFame.html

[28] Nvidia CUDA SDK Code Samples,
http://developer.download.nvidia.com/compute/cuda/sdk/webs
ite/samples.html

[29] T. Scogland, H. Lin, and W. Feng. “A First Look at Integrated
GPUs for Green High-Performance Computing,” International
Conference on Energy-Aware High Performance Computing,
2010

[30] D. Li, S. Byna, and S. Chakradhar, “Energy-Aware Workload
Consolidation on GPU”, Virginia Tech technical report, 2011

[31] V. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar,
“Supporting GPU Sharing in Cloud Environment with a
Transparent Runtime Consolidation Framework”, the
International Symposium on High-Performance Parallel and
Distributed Computing, 2011

400400398

