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Abstract—Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-
memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that
energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the
power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization
for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge,
increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless,
with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel
applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of
dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models.
Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time
requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks
and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to
13.8%) with some performance gain (up to 7.5%) or negligible performance loss.
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1 INTRODUCTION

As core counts on processors increase exponentially,
high-end computing systems built with multicore pro-
cessors will provide unprecedented thread-level paral-
lelism. To exploit multiple cores on a cache-coherent
shared memory node, programmers tend to use pro-
gramming models such as OpenMP [1]. At the same
time, programmers tend to use message passing pro-
gramming models, such as MPI [2], to achieve efficient
execution of parallel applications on clusters of compute
nodes with disjoint memories. With the trend towards
high-end computing systems with tens of thousands of
multicore, multisocket nodes, more programs will use
hybrid programming models, such as MPI/OpenMP [3].

This accelerating adoption of hybrid programming
models, will require improved resource management
of hybrid applications. However, hybrid programming
models impose great challenges on energy efficient re-
source management. The potential solution space in-
creases substantially when optimizing hybrid models,
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since the possible resource configurations increase from
one dimension (i.e., single programming model) to two
dimensions (i.e., hybrid programming model). Further,
different runtime systems implement each one aspect of
these hybrid programming models. Lack of coordination
between the runtimes and their contention for common
hardware resources create inefficiencies. Modeling inef-
ficiencies and then avoiding them is challenging.

Software-controlled power-aware execution of shared-
memory applications leverages dynamic concurrency
throttling (DCT) [4], [5] to provide energy savings.
DCT controls the number of active threads that exe-
cute parallel regions to tune power and performance
simultaneously [6]. Since the scalability of the regions
can vary significantly due to system bottlenecks (e.g.,
memory bandwidth) or lack of concurrency, DCT of-
ten reduces both execution time and power consump-
tion [6]. Alternatively, software-controlled power-aware
execution can exploit different forms of slack to save
energy. Slack can arise from an imbalanced workload
between tasks, differences in the scalability of parallel
workloads, different node capabilities, communication
latency or any type of non-overlapped latency. Software-
controlled power management algorithms leverage slack
by dilating computation into slack intervals. Many state-
of-the-art algorithms dilate computation into slack that
occurs between MPI communication events, using dy-
namic voltage and frequency scaling (DVFS) [7], [8], [9],
[10]. Similar algorithms can exploit slack in OpenMP, at
barriers or other global synchronization points [11].
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In this paper, we integrate DCT and DVFS to pro-
vide energy-efficient resource management for hybrid
MPI/OpenMP programs. Since the runtime systems are
uncoordinated and the parameter space for energy sav-
ing is large, we must redesign DCT and DVFS based
algorithms to consider the programming paradigm and
the power-aware execution capabilities of the system.
We must also carefully design strategies for applying
these power-saving techniques, so that energy saving
opportunities can be exposed and better leveraged. We
make the following contributions:
• A model of hybrid MPI/OpenMP execution under

varying degrees of shared-memory concurrency and
waiting interval frequencies;

• The design of three DCT+DVFS strategies;
• An algorithm that aggregates OpenMP phases to

reduce the implicit penalty of DCT on last-level
cache misses and a novel DCT coordination scheme
that mitigates the impact of throttling thread con-
currency across MPI tasks in hybrid programs;

• A power estimation method that predicts system
power consumption for workloads with variant con-
currency and frequency configurations;

• A method to classify hybrid applications in order to
facilitate the identification of slack time and char-
acterizes the slack available for DVFS, considering
both intra-node and inter-node interactions.

• A study of energy saving opportunities in both
strong scaling and weak scaling using realistic paral-
lel applications on system scales of up to 1024 cores.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the hybrid MPI/OpenMP program-
ming model. We discuss DCT and DVFS in Section 3.
Section 4 presents our combined DCT/DVFS strategies
while Section 5 presents their methods to predict execu-
tion time and power. We provide implementation details
in Section 6 and performance results in Section 7.

2 BACKGROUND

The hybrid MPI/OpenMP programming model exploits
parallelism at the MPI task level and at the OpenMP loop
level. Its hierarchical decomposition closely matches
most large-scale HPC systems, which are clusters of
multicore, multisocket nodes. We consider programs that
use the THREAD MASTERONLY model [3] in which a
master thread invokes all MPI communication outside
of OpenMP parallel regions. Almost all MPI implemen-
tations support the THREAD MASTERONLY model.

Iterative parallel computations dominate execution
time in scientific applications. Hybrid programming
models exploit this iterative structure. Figure 1 depicts
an iterative hybrid MPI/OpenMP computation that par-
titions the data space into subdomains, each handled by
an MPI task. The MPI communication phase exchanges
subdomain boundary data or computation results be-
tween tasks. OpenMP computation phases, or more sim-
ply OpenMP phases, follow the communication phase.

Fig. 1: Simplified typical MPI/OpenMP scheme

While, realistic hybrid MPI/OpenMP applications, such
as AMG and IRS used in Section 7, can be far more
complicated than Figure 1, we can abstract their program
flows and simplify them to match that scheme.

MPI operations delineate multiple OpenMP phases
with no MPI operations into OpenMP phase groups, as
Figure 1 shows. Typically, MPI collective operations
(e.g., MPI Allreduce and MPI Barrier) or grouped point-
to-point completions (e.g., MPI Waitall) separate these
groups. MPI operations can incur slack since the wait
times of different tasks can vary due to load imbalance.
The critical task, which relates to critical path analysis, is
the task upon which all other tasks wait.

Our energy saving methods dynamically adjust con-
figurations of OpenMP phases of hybrid MPI/OpenMP
applications. A configuration includes CPU frequency
settings and concurrency configurations. The concurrency
configuration specifies how many OpenMP threads to
use for a given OpenMP phase and how to map these
threads to processors and cores. We use OpenMP mech-
anisms to control the number of threads. We set the
CPU affinity of threads using system calls. We select
configurations so as to avoid performance loss while
saving energy. We use execution time, energy and power,
instead of the energy-delay product, to present results
and to investigate any performance impact due to con-
figuration selection. In the following sections, we first
investigate the two energy saving techniques that we
consider (DCT, DVFS) in isolation and then discuss
strategies to apply them together.

3 APPLYING POWER SAVING TECHNIQUES
Both DCT and DVFS are common and effective: they
can be implemented in user-level software with only
rudimentary support from the operating system; they
can be optimized to adapt to application characteristics
dynamically; and they are suitable for high performance
computing applications that often exhibit waiting peri-
ods due to synchronization, communication, or memory
latency [4], [10], [8], [6], [12], [13], [14], [15], [16], [17].
Though widely studied, we must revisit DCT and DVFS
strategies for use in hybrid programming models, a topic
that we explore further in this section.

3.1 Applying DCT
DCT can reduce dynamic power consumption by putting
cores that do not improve application execution time in
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Fig. 2: AMG phase performance

a low-power state. DCT can also save execution time
by alleviating contention for shared resources. Uncoor-
dinated use of DCT for OpenMP phases of multiple MPI
tasks may introduce load imbalance between tasks, thus
creating more slack than the application would other-
wise exhibit due to load imbalance at communication
waiting points. In this section, we study how to apply
DCT effectively in hybrid MPI/OpenMP applications.

To guide the discussion, we run the AMG benchmark
from the ASC Sequoia Benchmark suite [18] on two
nodes, each of which has four AMD Opteron 8350
quad-core processors. We report mean values for five
trials of each test. An MPI_Waitall separates the two
groups of AMG’s solve phase. Each group consists of
two OpenMP phases. We describe AMG in detail in
Section 7. We run the benchmark with input parameters
P=[2 1 1], n=[512 512 512] with two tasks. Figure 2
shows the results of profiling the OpenMP phases under
different concurrency configurations; stripes indicate the
fastest configuration for each task and OpenMP phase.
Scalability varies within each MPI task across phases and
within each phase across MPI tasks, due to workload
differences between phases and tasks.

We profile an entire AMG run under each configura-
tion to determine our baseline, the best static mapping,
which is the mapping that yields the lowest execution
time, when applied throughout program execution for
all program phases. The best static mapping, which is
the first bar in each group in Figure 3, uses 4 processors
and 2 threads per processor on each node.

Fig. 3: Impact of different DCT policies on AMG

Fig. 4: Phase profiles of task 0 under DCT policies

3.1.1 Profile-Driven Static Mapping

The best static mapping may not use the best concur-
rency configurations for individual OpenMP phases. For
example, AMG Phases 3 and 4 do not achieve their best
performance with the best static mapping. Intuitively, the
profile-driven static mapping, which uses the best concur-
rency configuration for each individual OpenMP phase,
should minimize the computation time of each MPI task.

We use the results of Figure 2 to determine the profile-
driven static mapping. The second bar in each group in
Figure 3 shows the execution time is longer overall than
that of the best static mapping. We profile each OpenMP
phase to determine the source of this performance loss.
Figure 4 shows the results. Three of the four OpenMP
phases lose performance with the profile-driven static
mapping despite using the best concurrency configura-
tion based on fixed configuration runs. This loss arises
from the configuration changes, which lead to additional
cache misses due to migration of data between caches on
different cores. Last-level cache misses, which the lines
in the charts on Figure 4 show normalized to the number
with the best static mapping, are higher under profile-
driven static mapping for all OpenMP phases.

Previous work [4], [6] has shown that the profile-
driven static mapping can outperform the best static
mapping. Overall, we observe that the profile-driven
static mapping has no performance guarantees: it bene-
fits from improved concurrency configurations but can
suffer from additional cache misses due to migration of
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data between caches on different cores. We next propose
a scheme to address this problem.

3.1.2 One Phase Approach
A simple solution to avoid cache misses due to con-
figuration changes, the one phase approach, combines all
OpenMP phases in a task. We can then select the config-
uration that minimizes the time of the combined phase
in future iterations. Under this DCT scheme, all OpenMP
phases use the same concurrency configuration. We ap-
ply this strategy to AMG and, as Figure 3 shows, it
greatly reduces the performance loss compared to the
profile-driven static mapping. The one phase approach
reduces cache misses but still incurs performance loss
(4.8% in the computation phases) compared to the best
static mapping. Further performance analysis reveals
that the one phase approach uses suboptimal configu-
rations for OpenMP phase groups despite minimizing
the time across all OpenMP phases.

Our AMG results further illuminate this observation.
Under the best static mapping (configuration (4,2)), the
time in OpenMP phase group 2 is shorter in task 0 than
task 1, as Figure 3 shows. Thus, task 1 is the critical
task for phase group 2. Under the one phase approach,
task 1 uses configuration (4,2) and achieves the same
performance as the best static mapping, while task 0 uses
the configuration (3,4), under which group 2 takes 10.46s
longer than in task 1. Thus, task 0 becomes the critical
task for group 2, which increases total computation time.

This problem arises because the one phase approach
selects configurations without coordinating between
tasks. Instead, each task greedily chooses the best config-
uration for the combined phase regardless of the global
impact. Our improved one phase approach considers the
critical task time when making DCT decisions. It selects
a configuration for each task that does not make its
OpenMP phase groups longer than those in the critical
task. Although this strategy may select a configuration
with lower performance than the best static mapping
for a specific task (e.g., OpenMP phase group 1 in task
0, as Figure 3 shows), it maintains overall performance
by keeping the OpenMP phase group time shorter than
that of the critical task. Unlike the profile-driven static
mapping, this strategy has a performance guarantee: it
selects configurations that yield overall performance no
worse than the best static mapping, as Figure 3 shows.

In summary, fine granularity configuration changes
under the profile-driven static mapping can increase
cache misses. The one phase approach throttles con-
currency at the coarsest granularity, thus ignoring the
impact on individual OpenMP phases. The improved
one phase approach strives for a balance between the
two approaches through task coordination that considers
performance at a medium granularity (phase groups).

3.2 Applying DVFS
A parallel application’s MPI tasks can have different
execution times because (1) the workload may not divide

evenly between them; (2) their individual workload
may scale differently; (3) the computing environment
may be heterogeneous; or (4) the existence of distortion
due to other system events, such as management of
parallelism in the runtime system or operating system
noise. Any of these events leads to load imbalance,
which in turn causes slack in one or more MPI tasks.
We use DVFS to reduce slack by extending the execution
times of OpenMP phases of non-critical tasks, which
in turn reduces overall energy consumption. We select
frequencies for the cores that execute each OpenMP
phase. For simplicity and to avoid introducing more
load imbalance, we assume that all cores that execute
an OpenMP phase within an MPI task use the same
frequency.

We formulate frequency selection as a variant of the
0-1 knapsack problem [19], which is NP-complete. We
define the time of each OpenMP phase under a particular
core frequency fk as an item. With each item, we associate
a weight, w, that is the time change under frequency
fk compared to using the peak frequency and a value,
p, that is the energy consumption under frequency fk.
The optimization objective is to keep the total weight
of all phases under a given limit, which corresponds
to the slack time ∆tslack, and minimize the total value
of all phases. Our formulation is a variant of the basic
problem since we require that some items cannot be
selected together since we assume that we cannot select
more than one frequency for each OpenMP phase.

Dynamic programming can solve the knapsack prob-
lem in pseudo-polynomial time. If each item has a
distinct value per unit of weight (v = p/w), the empirical
complexity is O((log(n))2), where n is the number of
items [19]. For convenience in describing the dynamic
programming solution of our variant, we replace p with
−p so that we maximize the total value. Let L be
the number of available CPU frequency levels and, for
OpenMP phase i (0 ≤ i < N , where N is the number
of phases), let wi,j (1 ≤ j ≤ L) be the lowest to highest
available weights associated with CPU frequencies. Let
pi,j (1 ≤ j ≤ L) be the available values. The total number
of items is n = N ∗ L. The total weight limit is W , the
available slack time. The maximum attainable value with
weight less than or equal to Y using items up to j is
A(j, Y ), which we define recursively as:

A(0, Y ) = −∞, A(j, 0) = −∞ (1)

For OpenMP phase i, if ∀ 1 ≤ j < L: wi,j > Y , then

A(iL, Y ) = A((i− 1)L, Y ) + pi,L; (2)

else,

A(iL, Y ) = max(A((i− 1)L, Y ) + pi,L,
maxj(pi,j +A((i− 1)L, Y − wi,j)))

(3)

We choose frequencies by calculating A(n,∆tslacki ) for
task i. For a given total weight limit W , the empirical
complexity is still O((log(n))2). The supplementary ma-
terial of this paper has a further discussion.
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M Number of OpenMP phases in a phase group
N Number of MPI tasks
ti Time for OpenMP phases in task i
C Set of possible concurrency configurations
tijc Time for OpenMP phase j of task i under

concurrency configuration c
tcrit Critical time
tdvfs DVFS overhead

tcomm send
i Time to send data from task i

tijf Time for OpenMP phase j of task i under
frequency setting f

Pijf Average system power for OpenMP phase j
of task i under frequency setting f

fmax, fmin Maximum and minimum frequency settings
cmax Maximal concurrency configuration
Pijc Average system power for OpenMP phase j

of task i under concurrency configuration c
tijcf Time for phase j of task i under concurrency

configuration c and frequency f
Pijcf Average system power for phase j of task i

under configuration c and frequency f

TABLE 1: Power-aware MPI/OpenMP model notation

4 DCT AND DVFS ADAPTATION STRATEGIES

We can apply DCT and DVFS in order or simultaneously
to obtain energy savings. We now discuss the alterna-
tives for combining DCT with DVFS in more detail and
formalize the execution behaviors and energy saving
opportunities. Table 1 summarizes the notation used in
our formalization.

4.1 DCT First
We model this strategy, which first apples our improved
one phase DCT approach in each MPI task, as:

ti = min
c∈C

M∑
j=1

tijc (4)

where c is the concurrency configuration for task i and
C is the set of all possible configurations on one node.

The critical task has the longest execution time in the
phase group. We model this critical time as:

tcrit = max
1≤i≤N

(min
c∈C

M∑
j=1

tijc) (5)

We compute the slack for task i (∆tslacki ) with Equa-
tion 6. As Figure 5 shows, we reduce the available slack
by the DVFS overhead and the time to send data from
task i in order to avoid reducing the frequency too much.

∆tslacki = tcrit − ti − tcomm send
i − tdvfs (6)

After applying DCT to determine the concurrency con-
figurations, we use communication to provide each non-
critical task with the available slack. We then apply DVFS
in these tasks so that the selected frequency satisfies our
time constraint (Equation 7), which ensures that the total
time change on task i does not exceed the available slack.
∆tijf is the change in time between executing phase j

Fig. 5: Leveraging slack to save energy with DVFS

on task i at frequency f and at the maximum frequency
setting fmax, which we use as the DCT default.∑

1≤j≤M

∆tijf ≤ ∆tslacki (7)

We also constraint DVFS energy consumption with the
selected frequencies by the energy consumption at the
maximum frequency (Equation 8).∑

1≤j≤M

Pijf tijf ≤
∑

1≤j≤M

Pijfmaxtijfmax (8)

Under our time and energy constraints, we minimize
the total energy consumption (Ei) with DVFS:

Ei = min
fmin≤f≤fmax

∑
1≤j≤M

Pijf tijf (9)

4.2 DVFS First

This strategy uses communication to provide each non-
critical task with the available slack before we apply
DCT. We use Equation 6 to compute the slack. Following
the requirements of Equations 7–9, we then apply DVFS.
At the same time, the critical task performs DCT and
communicates the new slack time to the non-critical
tasks, which then perform DCT using the new slack, fol-
lowing the constraints of Equations 10–12, in which cmax

is the maximal concurrency configuration (i.e., a thread
running on every core of the node). These constraints
are similar to Equations 7–9 but consider concurrency
configurations instead of frequency settings.∑

1≤j≤M

∆tijc ≤ ∆tslacki (10)

∑
1≤j≤M

Pijctijc ≤
∑

1≤j≤M

Pijcmaxtijcmax (11)

Ei = min
c∈C

∑
1≤j≤M

Pijctijc (12)
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4.3 Simultaneous DCT and DVFS

With this strategy, we initially use communication to
provide non-critical tasks with the available estimated
slack. We then simultaneously apply DCT and DVFS in
each task. We use additional communication to provide
the non-critical tasks with the new slack, and proceed by
simultaneously readjusting the DCT and DVFS settings
of the non-critical tasks.

The critical task configurations follow Equation 13,
which minimizes execution time. The configurations of
the non-critical tasks follow Equations 14–16, which
minimize energy consumption (Equation 16) subject to
our new time (Equation 14) and energy (Equation 15)
constraints. We compute the slack time from Equation 6.

ti = min
c∈C,fmin≤f≤fmax

M∑
j=1

tijcf (13)

∑
1≤j≤M

∆tijcf ≤ ∆tslacki (14)

∑
1≤j≤M

Pijcf tijcf ≤
∑

1≤j≤M

Pijcmaxfmaxtijcmaxfmax (15)

Ei = min
c∈C,fmin≤f≤fmax

∑
1≤j≤M

Pijcf tijcf (16)

With Equations 9, 12, and 16, Equations 8, 11 and
15 are unnecessary. The minimization constraints (Equa-
tions 9, 12, and 16) guarantee that the selected configura-
tions consume no more energy than with the maximum
frequency and/or the maximum concurrency.

4.4 Performance

We perform tests with AMG to investigate how the
three strategies affect energy saving and performance.
We execute all tests on two nodes, each of which has four
quad-core processors (AMD Opteron Processor 8350)
with five available frequency settings. We measure the
energy consumption of the nodes with a Watts Up Pro ES
power meter. Except where specifically indicated, we use
this type of power meter throughout the paper. To study
how effectively DCT and DVFS contribute to energy
savings, we display candidate configurations that satisfy
the energy and time constraints but do not necessarily
satisfy Equations 9, 12 and 16 (i.e., minimizing energy
consumption). We mark the best candidate (i.e., the one
with the lowest energy consumption) with stripes.

All tests improve performance (7.32% in average) over
not using any power-saving technique (shown in Fig-
ure 13, but omitted here since we focus on comparing
the power-saving techniques). The small performance
differences (less than 0.5%) between tests mainly come
from OS interference. Figure 6(a) compares the results
of using DCT first or DVFS first. The numbers above
the bars in the figure refer to the DCT configurations.
For example, (4,2) uses four processors and two cores

(a)

(b)

Fig. 6: Comparison of three adaptation strategies

per processor. The results show that energy consumption
is higher with the two DVFS candidates, which choose
frequencies according to the slack before using DCT,
than with DCT first. Candidate 2 consumes more energy
despite using the same DCT configuration because it has
a higher frequency setting. This slack is less than the
slack after applying DCT under the DCT first strategy,
so DVFS first chooses a higher frequency setting. Thus,
candidate 2 does not fully leverage the available slack.
Readjusting the frequency would be counter to the DVFS
first design so we cannot fully leverage the slack to
save energy. Candidate 1 consumes more energy than
candidate 2 since it uses more processors and uses a DCT
configuration that executes longer.

Figure 6(b) compares the results with the DCT first
and combined strategies. These two strategies choose the
same best configuration. Candidate 4 is interesting: its
DCT configuration, (3,4), leads to slower execution than
candidate 3’s choice of (4,2), while its frequency setting
is higher. In other words, to extend the execution time
of the non-critical task to cover a fixed slack time, candi-
date 4 uses both DCT and DVFS, while candidate 3 only
uses DVFS (DCT does not extend execution time). Since
candidate 4 consumes more energy than candidate 3, we
conclude that DVFS is more efficient in energy saving
than DCT for this workload.

4.5 Discussion

Section 4.4 shows that the combined strategy saves the
most energy. The results in Section 7 show that the
combined strategy never performs worse than the other
two strategies. If we regard the configuration space as
a 2D plane with DCT configuration as one dimension
and DVFS configuration as the other, DCT first (DVFS
first) chooses a DCT (DVFS) configuration (i.e., chooses
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a line in the 2D plane) and then chooses the frequency
setting (concurrency setting) along this line. The best
configuration may be a blind spot that neither DCT first
or DVFS first can achieve. The combined strategy can
choose any point, thus finding the blind spot.

Neither DCT first nor DVFS first guarantee the optimal
configuration. DCT can increase or decrease slack. If
slack increases, DCT first can save more energy by
leveraging the additional slack. If slack decreases, the
DVFS energy saving potential is reduced. DVFS first
can save more energy than DCT first if DVFS is more
effective than DCT for the workload.

5 PERFORMANCE PREDICTION
Our strategies use execution time to compute slack
(Equation 6) and to avoid performance loss (Equa-
tion 14). We also need execution time to compute energy
consumption and to determine if we meet our energy
constraints (Equation 15) and energy consumption is
minimized (Equation 16). Further, we must estimate
average system power (hereafter, simply power) to de-
termine if a configuration meets our energy constraint
(Equation 15). We also need power estimates to minimize
energy consumption (Equation 16). In this section, we
present our time and power prediction methods.

5.1 Time Prediction for OpenMP Phases
We present a method to predict execution time that
extends previous work to predict IPC (Instructions Per
Cycle) for DCT [4], [6], [13]. That work only required
correct prediction of the rank ordering of DCT configu-
rations for parallel execution phases and could tolerate
inaccuracies in the absolute IPC predictions. We require
accurate absolute predictions since we must estimate
slack in order to apply our DCT and DVFS strategies.

Our prediction method uses execution samples to
identify the execution time impact of configuration vari-
ations for each OpenMP phase. The sample phase input
consists of elapsed CPU clock cycles and n hardware
event rates (e(1···n,s)) observed with configuration s. An
event rate is the number of event occurrences divided by
the elapsed cycles. It captures the utilization of particular
hardware resources that represent scalability bottlenecks,
thus providing insight into the impact of hardware
utilization and contention on scalability.

We use correlation analysis to choose model events.
We select the n event rates that most strongly correlate
with execution time (n is the number of available hard-
ware performance counters, which is 2 or 4 on our plat-
forms). The model predicts the time, Timet, which is the
time in OpenMP phases plus parallelization overhead,
on a given target configuration (including both DCT and
DVFS), t. For arbitrary samples, S, of size |S|, we model
Timet as a linear function:

Timet =

|S|∑
i=1

(Timei · α(t,i)(e(1···n,i))) + λt(e(1···n,S)) + σt

(17)

We define the term λt as:

λt(e(1···n,S))=
∑n

i=1(
∑|S|−1

j=1 (
∑|S|

k=j+1(µ(t,i,j,k)·e(i,j)·e(i,k))))+∑|S|−1
j=1 (

∑|S|
k=j+1(µ(t,j,k,time)·Timej ·Timek))+lt (18)

Equation (17) illustrates the dependency of terms
α(t,i), λt and σt on the target configuration. The term
α(t,i) scales the observed Timei on the sample con-
figurations based on the observed values of the event
rates in that configuration. The term λt combines the
products of each event across configurations and of
Timej/k to model interaction effects. The constant term
σt is an event rate-independent term that includes par-
allel overhead. In summary, Equation (17) models each
target configuration t through coefficients that capture
the effects of hardware utilization at different degrees
of concurrency, different mappings of threads to cores,
and different frequency levels. Equation (18) defines the
term λt. The term µ is the target configuration-specific
coefficient for each event pair and l is the event rate-
independent term in the model.

We use multivariate linear regression to obtain the
model coefficients (α, µ and constant terms) from train-
ing benchmarks, which we select empirically to vary
properties such as scalability. We used MM5 and UA
from the NAS OpenMP Parallel Benchmarks version 3.1
(119 total phases) as training benchmarks. The observed
time Timei, the product of Timei and each event rate,
and the interaction terms on the sample configurations
are independent variables for the regression while Timet
on each target configuration is the dependent variable.
We model each target configuration separately.

We verify the accuracy of our models on systems with
three different node architectures. One has four AMD
Opteron 8350 quad-core processors. The second has two
AMD Opteron 265 dual-core processors. The third has
two Intel Xeon E5462 quad-core processors. We present
experiments with seven OpenMP benchmarks from the
NAS Parallel Benchmarks suite (version 3.1) with CLASS
B inputs using 247 phases in total. We collect event
rates from three sample configurations (one using the
maximum concurrency and frequency and the other two
using configurations with half the concurrency and the
second highest frequency) and make time predictions
for OpenMP phase samples in the benchmarks. We then
compare the measured time for the OpenMP phases to
our predictions. Figure 7 shows the cumulative distri-
bution of our prediction accuracy, i.e., the total percent-
age of OpenMP phases with error under the threshold
indicated on the x-axis. The results demonstrate good
accuracy of the model in all cases: more than 75% of the
samples have less than 10% error.

5.2 Power Estimation
Power is approximately linear in processor frequency
and CPU utilization for relatively high utilization [20].
Since HPC applications typically exhibit high CPU uti-
lization, we can estimate power based on frequency.
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Fig. 7: Cumulative distribution of time prediction accuracy

Unfortunately, this method only works for our DCT first
strategy in which all candidates use the same concur-
rency configuration. For our DVFS first and combined
strategies, the candidates can use different concurrency
configurations so their CPU utilization can vary signifi-
cantly. Thus, we need a new power estimation method.

Previous work [21] found a strong correlation between
power consumption and IPC if the processor frequency
is fixed. When the frequency varies, the impact of pro-
cessor stalls on IPC also varies. On lower frequencies,
processor stalls are smaller components of consumed
CPU clock cycles than on higher frequencies, which in
turn tends to increase IPC on lower frequencies. Thus,
IPC cannot reflect power when frequency changes. We
instead use a linear model (Equation 19) to capture
the relationship between instructions per second (IPS)
and power consumption to estimate power. We obtain
the model parameters (k1, k0) by offline training. Given
the IPS of a configuration, we estimate the power at
runtime as:

P = k1 × IPS + k0 (19)

To calculate IPS, we need the instruction count and
execution time. We predict execution time as in Sec-
tion 5.1. The instruction count is independent of proces-
sor frequency, but dependent on the number of threads
that execute the OpenMP phases. Using more threads
tends to increase the instruction count due to additional
parallel overhead. We record instruction counts from
sample configurations and use linear interpolation to
estimate the counts for the other (untested) configura-
tions. Interpolation constructs new data points within a
range of known data points. Thus, the predicted value is
bounded by known values, thus limiting prediction er-
ror. We use interpolation instead of the linear regression
used in Section 5.1, since the instruction counts should
be within the range of values collected from samples
with minimum and maximum concurrency. Further, we
choose linear interpolation since the instruction count
intuitively varies across DCT configurations primarily
due to data accesses and thread synchronization, which
are approximately linear in thread count.

We train our model with three benchmarks (bt.B, cg.C
and ft.B) from the OpenMP version of the NAS Parallel
Benchmarks with 239 total configurations. We predict the
power of the other four NAS benchmarks (260 config-

Fig. 8: Cumulative distribution of power prediction accuracy

urations) on a machine with four AMD Opteron 8350
quad-core processors. Figure 8 shows the cumulative
accuracy: prediction with estimated instruction counts
is close that with measured instruction counts. Our
prediction scheme exhibits good accuracy: about 80% of
the predictions have error less than 18% and more than
90% have error less than 25%.
Discussion: Our time and power predictions achieve
good accuracy for most cases. However, in a few cases
when prediction is inaccurate, performance loss may
happen. We use 148 OpenMP phases from the NAS
parallel benchmark suite to investigate further how our
prediction accuracy can impact performance. Our results
show that our prediction chooses the best configuration
for 130 out of 148 cases (87.8%). Between the other 18
cases, only 8 incur performance loss. The remaining
10 cases do not achieve the best energy savings but
maintain performance. To avoid performance loss, our
algorithm uses one more iteration to determine if per-
formance suffers under the chosen configuration. If it
does, the system uses to the original configuration.

6 IMPLEMENTATION

We have implemented our power-aware strategies for
MPI/OpenMP programs in a runtime system that adapts
dynamically using DVFS and DCT. To enable the run-
time system, we instrument applications with function
calls around OpenMP phases and selected MPI opera-
tions (collectives and MPI Waitall). This instrumentation
is mechanical and can be automated with a source code
instrumentation tool, such as OPARI [22], in combination
with an MPI interposition library.

We cannot apply DCT to OpenMP phases in which
the code in each thread depends on the thread identi-
fier, since changing thread counts would violate correct
execution. Also, we cannot accurately predict time and
power for short OpenMP phases due to the overhead
of performing adaptation as well as accuracy limitations
in performance counter measurements. We empirically
identify a threshold of one million cycles as the mini-
mum DCT granularity for an OpenMP phase. For each
phase below this threshold, we simply use the active
configuration of the preceding phase.

Our model computes slack time from Equation 6.
Details on how we compute the terms of the model are
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provided in the supplementary material that accompa-
nies the paper.

We collect hardware events from performance coun-
ters to learn application execution properties. We use
four sample configurations: one uses the maximum con-
currency and frequency and one uses the minimum
concurrency and frequency to bound instruction counts
for linear interpolation (Section 5.2), while the other
two use configurations with half the concurrency – with
different mappings of threads to cores – and the second
highest frequency. This small number of samples pro-
vides insight into the utilization of shared caches and
memory bandwidth. Based on sample events, we then
predict execution time of the untested configurations
with the coefficients obtained by offline training and
our time prediction model (Section 5.1). After collecting
hardware events, we use communication to determine
the critical task and available slack time. Based on slack
time and the adaptation strategy (Section 4), we choose
the configuration candidate that satisfies the time con-
straint. We then choose the best configuration based on
the power model (Section 5.2). The best configuration
minimizes energy consumption while satisfying our en-
ergy constraint (Section 4). We enforce the configuration
decisions with the Linux processor affinity system call,
sched setaffinity(), threading library-specific calls for
changing concurrency levels (omp set num threads()),
and a set of cpufreq pseudofiles in the /sys directory for
changing processor frequencies. The rest of the execution
uses the predicted optimal configurations.

7 PERFORMANCE EVALUATION

We evaluate our model with the Multi-Zone versions of
the NAS Parallel benchmarks (NPB-MZ) [23] and two
full applications (AMG and IRS). Figure 9 shows the pro-
gram flow of the three benchmarks (LU-MZ, SP-MZ and
BT-MZ) of NPB-MZ [24]. The benchmark loop has one
procedure to exchange boundary values using point-to-
point MPI communication. Thus, the entire benchmark
loop has only one OpenMP phase group. A bin-packing
algorithm balances the workload of the OpenMP phases
between all tasks. Under this algorithm, LU-MZ and SP-
MZ allocate the same number of zones for each task and
each zone has the same size. For BT-MZ, zones have
different sizes and each task owns a different number of
zones; however each task has almost the same total zone
size.

IRS uses a preconditioned conjugate gradient method
for inverting a matrix equation. Figure 10 shows its sim-
plified computational kernel. The OpenMP phases form
four groups. Some OpenMP phase groups include serial
code, which we treat as a special OpenMP phase with
the number of threads fixed to 1. Although DCT is not
applicable to serial code, serial code could be imbalanced
between MPI tasks hence providing opportunities for
saving energy through DVFS. We use input parameters
NDOMS=8 and NZONES PER DOM SIDE=90. The IRS

Fig. 9: NPB-MZ
flow graph Fig. 10: Simplified

IRS flow graph

Fig. 11: Sim-
plified AMG flow
graph

benchmark has load imbalance between the OpenMP
phase groups of different tasks.

AMG [25] is a parallel algebraic multigrid solver for
linear systems on unstructured grids. Its driver builds
linear systems for various 3-dimensional problems; we
choose a Laplace type problem (problem parameter set
to 2). The driver generates a problem that is well bal-
anced between tasks.

For our experiments, we introduce artificial load im-
balance into BT-MZ and AMG to investigate how the
energy saving varies with explicit load imbalance under
different strategies. However, our system does not neces-
sarily require imbalanced load to save energy. We choose
BT-MZ and AMG because we can easily change their
problem partitions across tasks without violating the
correctness of the applications. In particular, we slightly
modify BT-MZ so that each task owns the same number
of zones, but each task has a different total zone size. We
also generate a new problem with imbalanced load for
AMG. The load distribution ratio between pairs of MPI
tasks in this new version is 0.45:0.55.

We categorize hybrid MPI/OpenMP applications
based on the workload characteristics of their OpenMP
phases: 1) imbalanced and constant workload per itera-
tion (e.g., modified BT-MZ) or nearly constant workload
per iteration (e.g., IRS); 2) imbalanced and non-constant
workload per iteration (e.g., modified AMG); 3) balanced
workload (e.g., SP-MZ, LU-MZ, BT-MZ and AMG).

7.1 Basic Tests
We first run all benchmarks on two homogeneous nodes,
each with four AMD Opteron 8350 quad-core processors
(a total of 16 cores per node). The baseline is the exe-
cution under the configuration using 4 processors and
4 cores per processor, running at the highest processor
frequency. DVFS on the AMD Opteron 8350 has five
frequency settings and we apply DVFS to the all cores
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Fig. 12: Execution time and energy consumption of NPB-MZ

on a single socket. We display the results with three
adaptation strategies (Section 4). The results with pure
DCT are also displayed so that we can know whether
DCT or DVFS lead to the energy savings.

Figure 12 shows the results for the NPB benchmarks.
The pure DCT scheme selects the same concurrency
configuration as the performance baseline for BT-MZ,
which leads to no performance or energy gains. Due
to the scalability of the OpenMP phases, DCT main-
tains maximum concurrency and cannot save energy.
However with DCT first, we achieve energy savings
(10.21%) with almost no performance loss. With DVFS
first, we choose the same DCT/DVFS configurations as
DCT first and thus the energy consumption is almost
the same. With the combined strategy, we achieve the
largest energy saving (10.85%), because it can choose a
configuration that the other two strategies cannot.

The OpenMP phases in SP-MZ do not scale well, so
we can save energy (5.72%) by applying DCT alone. Due
to the balanced load in SP-MZ, our DVFS algorithm
cannot save energy, as shown by pure DCT and the
three strategies having the same energy consumption.
The LU-MZ benchmark has scalable OpenMP phases
and balanced load so our runtime system does not save
energy. However, this test case shows that our system
has negligible overhead (0.736%).

The AMG problem that we study has non-constant
workload per iteration, which makes our predicted con-
figurations based on sampled iterations incorrect in later
iterations. After profiling its OpenMP phases, we find
that AMG has a periodic workload. OpenMP phase
group 1 has a period of 14 iterations and OpenMP phase
group 2 has a period of 7 iterations. Therefore, we can
still apply our control schemes, but with application-
specific sampling. Since the workload within a period

Fig. 13: Execution time and energy consumption of AMG and
IRS

varies from one iteration to another, we select configu-
rations for every iteration within a period. We use more
sample iterations during at least one period and change
configurations for each iteration within a period.

The AMG results in Figure 13 show that pure DCT
achieves 8.38% energy saving and 7.39% performance
gain. The best energy saving (13.80%) is achieved by ap-
plying either DCT first or the combined strategy. DVFS
first, however, achieves less energy saving since it cannot
fully leverage slack time (discussed in Section 4.4). In
IRS, we observe 7.5% performance gain and 12.25%
energy saving by applying only DCT. Our three strate-
gies to apply DVFS and DCT save additional energy
although we incur a slight performance loss, compared
to the performance of pure DCT because the workload
in OpenMP phases varies slightly and irregularly. The
selection of our DVFS scheme based on sample iterations
may hurt performance in the rest of the run. The best
energy saving (13.31%) is achieved with DCT first and
the combined strategy, with overhead of only 1.89% and
2.07% respectively, compared to pure DCT.

To summarize, our hybrid MPI/OpenMP applications
present different energy-saving opportunities and the
energy-saving potential depends on workload charac-
teristics. Our model can detect and leverage this poten-
tial. In particular, for balanced workloads, if OpenMP
phases are non-scalable, we can save energy with DCT;
if OpenMP phases are scalable, our algorithm does not
save energy, but also does not hurt performance. For
imbalanced and constant (or close to constant) per itera-
tion workloads, our algorithm is effective, saving energy
while maintaining performance. For imbalanced and
non-constant per iteration workload, if the workload is
periodic, we can still apply our algorithm after manually
detecting the periodicity of the workload.

7.2 Scaling Tests

We extend our analysis to larger systems to investi-
gate the scalability of our energy saving techniques.
We present results from experiments on the System G
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supercomputer at Virginia Tech. System G is a research
platform for Green HPC, composed of 320 nodes pow-
ered by Mac Pro computers, each with 2 quad-core
Xeon processors, and thousands of power and thermal
sensors. Each processor has two frequency settings for
DVFS. The nodes are connected by Infiniband (40Gb/s).
System power is measured with Raritan Dominion PX
power strips. We vary the number of nodes and study
how our power-aware model performs under strong and
weak scaling. We use the execution under the configura-
tion using 2 processors and 4 cores per processor running
at the highest processor frequency, which we refer to as
(2,4), as the baseline by which we normalize reported
times and energy.

Figure 14 displays the results of AMG and IRS under
strong scaling (i.e., maintaining the same total problem
size across all scales). Actual execution time is shown
above normalized execution time bars, to illustrate how
the benchmark scales with the number of nodes. On our
cluster, the OpenMP phases in AMG scale well so DCT
does not find energy-saving opportunities in almost all
cases although, with 64 nodes or more, DCT leads to
concurrency throttling on some nodes. However due to
the small length of OpenMP phases at this scale, DCT
does not save significant energy. When the number of
nodes reaches 128, the per node workload in OpenMP
phases is further reduced to a point at which some
phases become shorter than our DCT minimum phase
granularity threshold and DCT simply ignores them.

On the other hand, our three strategies using DVFS
save significant energy in most cases. However, as the
number of nodes increases, the ratio of energy-saving
decreases from 3.72% (4 nodes) to 0.121% (64 nodes) be-
cause the load difference between tasks becomes smaller
as the number of nodes increases. With 128 nodes, load
imbalance is actually less than DVFS overhead, so DVFS
becomes ineffective. We also notice the slightly increased
overhead as the number of nodes increases, which arises
from an increase in the cost of communication to coor-
dinate tasks under our strategies. In IRS, our strategies
with DCT lead to measurable energy-saving when the
number of nodes is more than 8 (up to 3.06%). We even
observe performance gains by DCT when the number
of nodes reaches 16. However, DCT does not lead to
energy-saving in the case of 128 nodes for similar reasons
to AMG. DVFS leads to energy savings with less than
16 nodes but does not provide benefits as the number of
nodes becomes large and the imbalance becomes small.

Figure 15 displays our weak scaling results. We adjust
the input parameters as we vary the number of nodes
so that the problem size per node remains constant
(or close to it). For IRS, the energy saving ratio grows
slightly as we increase the number of nodes (from 1.9%
to 2.5%). Slightly increased imbalance, as we increase
the problem size, allows additional energy savings. For
AMG, we observe that the ratio of energy-saving stays
almost constant (2.17%∼2.22%), which is consistent with
AMG having good weak scaling. Since the workload

per node is stable, energy saving opportunities are also
stable as we vary the number of nodes.

Energy saving opportunities generally vary with
workload characteristics. They decrease as the node
count increases under a fixed total problem size since
the workload of a single node may fall below our
exploitable threshold. With weak scaling, energy saving
opportunities are usually stable or increasing and actual
energy savings from our model tend to be higher than
with strong scaling. Most importantly, our model always
leverages energy saving opportunities without signifi-
cant performance loss as the node count changes.

8 RELATED WORK

OpenMP Performance Prediction: Curtis-Maury et al.
study prediction models for adaptation via DCT and/or
DVFS [4], [6], [13]. They estimate performance for each
OpenMP phase in terms of useful IPS for DVFS and
DCT, which is sufficient within a shared memory node.
Since we target hybrid MPI/OpenMP programs running
on large-scale distributed systems, we must consider the
impact of MPI communication on slack and the interac-
tions between MPI communication events and OpenMP
phases. Thus, our model must generalize their multi-
dimensional prediction models for OpenMP phases and
directly use the predicted time. We also address a short-
coming of their work: the lack of analysis of the implicit
penalty of DCT on memory performance. Our analysis
leads to a new coordinated DCT algorithm that mitigates
the penalty. Finally, we choose CPU frequencies under
the constraints of both slack and minimizing energy
consumption instead of minimizing only execution time
or only energy consumption.

Liao et al. [26] proposed static analytical models to
predict OpenMP performance with the support of the
OpenUH compiler. Their models account for three per-
formance factors: memory hierarchy; processor count;
and parallel overhead. Tournavitis et al. [27] integrate
static analysis with profiling information about control
and data dependencies. They use a machine learn-
ing method to determine the performance benefits of
OpenMP parallelism. However, these works do not con-
sider both power consumption and execution time. They
also focus on individual OpenMP phases, instead of
holistically considering parallelism overhead.
Power-Aware MPI: Kappiah et al. [12] address intern-
ode bottlenecks by using DVFS to exploit the net slack
expected in an iteration. Son et al. [28] leverage DVFS
for both CPU and communication links in a coordinated
fashion to save energy specifically for parallel sparse
matrix applications. A scheduler that Springer et al. [14]
propose selects node counts and CPU frequencies to
minimize energy consumption and execution time. A
heuristic by Freeh et al. [16] primarily attacks intranode
(memory) bottlenecks by choosing frequencies based on
previously executed program phases. Rountree et al. [15]
develop an offline method that uses linear programming
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Fig. 14: Results from strong scaling tests of adaptive DCT/DVFS control on System G

Fig. 15: Results from weak scaling tests of adaptive DCT/DVFS control on System G

to estimate the maximum energy saving possible for MPI
programs based on critical path analysis. Subsequent
work [17] provides a critical path-based online algorithm
that uses simple predictions of execution times for pro-
gram regions based on prior executions of the regions.

Our work differs from prior DVFS-based power man-
agement approaches in three ways. First, we choose
CPU frequency configurations based on a scalable per-
formance model instead of direct measurements or static
slack analysis. Increasing numbers of processors, cores
and available frequencies make scalable prediction mod-
els that prune the optimization space essential. Second,
we consider hybrid MPI programs with nested OpenMP
parallel phases that can be scaled using DVFS and DCT.
Thus, the solution design space is more challenging
although potential energy savings are also higher. Third,
we consider systems with larger node counts and cores
per node and, thus, derive insight into the implications
of strong scaling, weak scaling, and multicore processors
for power management.

9 CONCLUSIONS

In this paper, we presented models and algorithms for
energy efficient execution of hybrid MPI/OpenMP ap-
plications. We characterized energy saving opportunities
in these applications, based on the interaction between
communication and computation. We used this charac-
terization to propose algorithms that use two energy
saving tools, DCT and DVFS, to leverage energy sav-
ing opportunities without performance loss. We studied
three strategies to apply DCT and DVFS and investigated
their impact on energy savings. We proposed a power
estimation model that can estimate power for variant
concurrency and frequency configurations.

Our work improved existing DCT techniques by char-
acterizing the potential performance loss due to con-
currency adjustment. We used this insight to provide
performance guarantees in our improved one phase
approach, which balances DCT performance penalties
and energy savings. We also presented a more accurate
model for measuring slack time for DVFS control and
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solved the problem of frequency selection using dynamic
programming. We applied our model and algorithms
to realistic MPI/OpenMP benchmarks at larger scales
than any previously published study. Overall, our new
algorithm yields substantial energy savings (8.74% on
average and up to 13.8%) with either negligible per-
formance loss or some performance gain (up to 7.5%).
Further, our results are the first to characterize how
energy saving opportunities vary under strong and weak
scaling, on systems with large node and core counts.

Our work provides new opportunities for research of
concurrency throttling at the MPI level, an important
topic that will involve substantial work to understand
mechanisms for MPI task aggregation and their im-
pact on computation and communication. For SPMD
programs, the computation performance prediction may
leverage our DCT performance prediction methodology.
However, the communication phases within MPI tasks
introduce significant complexity into the research. The
communication phases across MPI tasks are usually
different and have data dependencies. How to account
for prediction inaccuracy caused by communication time
differentiation across tasks and across different concur-
rency levels, how to group tasks to optimize communi-
cation performance, and how to predict the performance
of MPI group communication primitives and optimized
collective operations are major research challenges. In
addition, applying DCT to message passing models re-
quires complex on-the-fly data redistribution and pro-
cess migration operations, which is another challenge.
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