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ABSTRACT
With the rise of general purpose computing on graphics pro-
cessing units (GPGPU), the influence from consumer mar-
kets can now be seen across the spectrum of computer ar-
chitectures. In fact, many of the high-ranking Top500 HPC
systems now include these accelerators. Traditionally, GPUs
have connected to the CPU via the PCIe bus, which has
proved to be a significant bottleneck for scalable scientific
applications. Now, a trend toward tighter integration be-
tween CPU and GPU has removed this bottleneck and uni-
fied the memory hierarchy for both CPU and GPU cores. We
examine the impact of this trend for high performance scien-
tific computing by investigating AMD’s new Fusion Acceler-
ated Processing Unit (APU) as a testbed. In particular, we
evaluate the tradeoffs in performance, power consumption,
and programmability when comparing this unified memory
hierarchy with similar, but discrete GPUs.

Categories and Subject Descriptors
B.3.3 [Memory Structures]: Performance Analysis and
Design Aids; C.1.3 [Processor Architectures]: Other Ar-
chitecture Syltes—heterogeneous (hybrid) systems

General Terms
Performance, Measurement

1. INTRODUCTION

1.1 GPUs and Heterogeneity
The demand for flexibility in advanced computer graph-

ics has caused the GPU to evolve from a highly specialized,
fixed-function pipeline to a more general processor. How-
ever, in its current form, there are still substantial differ-
ences between the GPU and a traditional multi-core CPU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’12, May 15–17, 2012, Cagliari, Italy.
Copyright 2012 ACM 978-1-4503-1215-8/12/05 ...$10.00.

Perhaps the most salient difference is in the memory hier-
archy: the GPU shuns high capacity, coherent caches in fa-
vor of a much larger number of functional units. This lack of
coherent caches in the GPU is not surprising, given the low
reuse of graphics data flowing through the frame buffer. In-
stead, GPUs have used wide memory busses and specialized
texturing hardware (that provides a limited set of address-
ing and interpolation operations) for a high bandwidth, high
latency connection to off-chip RAM. Because of these archi-
tectural differences, early GPGPU adopters observed that
many data-parallel problems in scientific computing exhib-
ited substantial performance improvements when run on a
GPU.

Initially, achieving such speedups usually required that
all operations be cast as graphics operations, comprising a
“heroic” programming effort. This made the initial costs of
GPGPU too high for mainstream scientific computing. How-
ever, with the advent of programming models like OpenCL
and CUDA, which are very similar to standard C/C++,
the barriers to entry have decreased and GPGPU now en-
joys much wider adoption. Indeed, the low cost of the GPU
hardware itself is one of GPGPU’s main advantages.

Despite these improvements, most GPUs suffer from per-
formance limitations due to the PCIe bus, and limited pro-
ductivity to due an increasingly complex memory model.
Both of these problems are direct consequences of the hard-
ware architecture. Simply put, any data that moves between
the CPU and a discrete GPU must traverse the PCIe bus,
which has limited bandwidth (usually at least an order of
magnitude less than GPU memory bandwidth). This archi-
tecture results in relatively slow transfers, and high latency
synchronization between devices that applications should
avoid when possible.

The complexity of the memory model for programming
accelerated applications has also increased. The OpenCL
memory model for a single GPU is already more compli-
cated than the cache hierarchy of a traditional multicore.
In fact, the OpenCL memory model contains five distinct
memory spaces (global, local, constant, image, and private),
each with its own coherency policy and optimal access pat-
tern. Moreover, many of the address spaces only implement
relaxed consistency, requiring the programmer to perform
explicit synchronization. This model is further complicated
by the PCIe bus, since the programmer is required to keep



CPU and GPU memory consistent via explicit DMA trans-
fers.

In an effort to address these difficulties, system archi-
tects and vendors are now focusing on designs which feature
much tighter integration between the CPU and GPU, such
as AMD’s Fusion [4] (studied in this paper) and NVIDIA’s
Project Denver.

1.2 SoC and Tighter Integration
Another consumer trend that has motivated the design

of the APU is the shift towards a system-on-a-chip (SoC).
SoC design largely came about in the mobile and embed-
ded spaces due to the desire for reuse of silicon designs,
specifically reusing basic system blocks for wireless tech-
nologies, specialized media processing units, etc. Tighter
integration also offers advantages in energy efficiency by en-
abling fine-grained dynamic voltage and frequency scaling
(DVFS) across multiple system components. In DVFS, the
clock speed and voltage of a processing element are raised
or lowered by the operating system based on processor uti-
lization and workload, resulting in higher performance un-
der load and lower power consumption when cores are idle.
This improved efficiency is increasingly appealing for HPC
systems, due to the projections for the power requirements
of an exascale computer [12], and the possibility of leverag-
ing design trends in in the mobile and embedded markets,
where the focus is on longer battery life.

1.3 Tradeoffs
Heterogeneity and SoC-like integration are both evident

in the design of AMD’s Fusion APU, shown in Figure 1; it
replaces the PCIe connection between the CPU and GPU
cores with a unified north bridge and two new busses, the
Radeon Memory Bus (RMB) and the Fusion Compute Link
(FCL), discussed further in Section 2.1. While integrated
GPUs have existed for some time in the mobile market,
AMD’s fused GPU (fGPU) can snoop CPU cache transac-
tions using the FCL, making Fusion the first mass-market
architecture to support cache coherency between the CPU
and GPU. This capability for cache coherency is the hall-
mark of a fused heterogeneous architecture.

Fusing these two distinct memory hierarchies results in
numerous tradeoffs. For example, traditional GPU archi-
tectures support much higher memory bandwidth due to
dedicated GDDR memory (see Section 4) than the Llano Fu-
sion architecture. This paper explores five such tradeoffs us-
ing Llano as a forward-looking example of tightly-integrated
CPU and GPU architectures:

1. In the multi-level cache hierarchy of fused designs,
what is the set of caches that should be kept coher-
ent in order to allow scalability to large core counts?

2. With fixed die space and transistor count, how should
resources be allocated to improve serial performance
(CPU cores) as opposed to parallel performance (GPU
cores)?

3. Given a fixed power budget, should the memory be
configured for higher capacity (e.g. DDR3) or higher
bandwidth (e.g. GDDR5)?

4. Are fused designs more power efficient? Would power
be better spent using discrete, specialized components?

5. Given a limited amount of programmer effort, what
is the correct level of abstraction to use when pro-
gramming APUs? Simple abstractions will require ad-
vanced runtime systems and middleware, while lower-
level abstractions require more application program-
ming effort.

2. CACHE COHERENCY VS. SCALABIL-
ITY

The specialization of the GPU memory hierarchy is also
evident in its cache configuration, which has traditionally re-
lied on a combination of simple, incoherent SRAM scratch-
pad memories with a specialized texturing unit. This textur-
ing unit typically contains its own separate cache, targeted
to regular access patterns on two dimensional data. It also
implements a limited set of functions in hardware includ-
ing several addressing computations and interpolation oper-
ations that are ubiquitous in graphics applications. Aside
from the texture unit, the cache hierarchy of the GPU is
remarkably flat compared to the CPU, largely due to the
data parallelism of graphics operations. One of the bene-
fits of this flat hierarchy is that it scales very well with the
number of processor tiles (e.g. to sixteen hundred cores in
Cypress, with only thirty-two kilobytes of scratchpad mem-
ory per tile). The disadvantage is that this hierarchy can
only support relaxed consistency models for small groups of
cores, which places a burden on the programmer which will
be discussed more in Section 6.

On the other hand, CPUs have traditionally used multi-
level, high capacity caches which are kept consistent using
protocols like MESI. Such protocols provide strong consis-
tency models for the programmer, but are much less scalable
due to the rapid growth of coherency-related traffic. The key
tradeoff, then, is in determining how the CPU and fGPU
caches can be coupled to enforce coherency while preserving
scalability to a large number of cores.

2.1 Fusion Memory Hierarchy
In Fusion, this coupling is accomplished via the addition

of two new busses, the Fusion Compute Link (FCL) and the
Radeon Memory Bus (RMB), depicted in Figure 1 as well as
a unified north bridge which coordinates access to the differ-
ent logical regions of physical memory. One of the goals of
the Fusion memory hierarchy is to allow the CPU and GPU
to share data while preserving performance for each process-
ing element’s predominant access pattern—the CPU should
still support low latency access (optimized with caches) and
the GPU should still have high bandwidth access (optimized
via the RMB) to contiguous regions of memory. In order to
understand the design at a high level, it is important to
understand each of the components:

• Physical Memory. In Fusion, the same physical
memory is shared between the CPU and GPU. The
operating system maintains the partition between sys-
tem memory (normal, pageable memory) and “local”
memory, which is reserved for the GPU. Local mem-
ory is conceptually similar to the frame buffer or the
onboard RAM on a discrete GPU.

• Traditional CPU Cache Hierarchy. The CPU
cores are supplied with a standard cache hierarchy in-
cluding private L1 data and instruction caches, and a
1MB private L2 cache (4MB total L2 capacity).
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Figure 1: The Fusion Memory Hierarchy. The solid lines in this figure indicate cache coherent connections,
and the dashed lines show lack of coherence. Blue indicates components of a traditional CPU memory
hierarchy and red shows components of a traditional GPU hierarchy. For example, the CPU usually accesses
System Memory through the L2 cache and the write-combining buffers. Orange indicates novel features and
paths in Fusion. The familiar cache hierarchy of the CPUs is connected to the GPU cores by the FCL. The
RMB preserves high bandwidth access from the GPU cores to the “Local” memory (optionally storing data
in the texture cache). The CPU cores can access this same “Local” memory via the write-combining buffers
through the Unified North Bridge.

• Write Combining Buffers. Each CPU core in Llano
has four uncached, write-combining buffers. Ideally,
these buffers can provide relatively high write band-
width (by merging memory transactions) but are typ-
ically avoided due to a lack of strict ordering and ex-
tremely high read latency. However, in Fusion, the
WCBs are utilized when the CPU needs to write into
“local” memory. In this case, they exploit the higher
write bandwidth and avoid polluting the CPU cache
with data that will be primarily used on the GPU
cores.

• Fusion Compute Link. The FCL provides a high
latency, low bandwidth from the GPU cores to the
CPU cache. It’s arbitrated by the UNB, and has the
capability to snoop CPU cache transactions, providing
for full coherency between the CPU and GPU. Due to
its low bandwidth (compared to other memory paths
in the system), it should primarily be used for fine-
grained data sharing between the CPU and GPU.

• Radeon Memory Bus. The RMB is a much wider
bus that connects the GPU cores to the “local” parti-
tion of physical memory and mimics the performance
of RAM access in a discrete GPU–high latency and
high bandwidth. It bypasses all cache (except L1 and
texture), and can saturate DRAM bandwidth.

Simply put, CPU-like accesses are supported by tradi-
tional caches, GPU access patterns are handled by the RMB,
and the FCL enables cache coherency only when it is needed,
with most of the pathways enabled through the address
translation capabilities of the UNB.

3. LATENCY OPTIMIZED VS. THROUGH-
PUT OPTIMIZED CORES

Another distinction between the traditional CPU core and
the GPU core is the marked difference in the allocation of
transistors and die space. In CPUs, a substantial portion of
these resources have been devoted to optimizing latency in
single-threaded programs using caches, complex techniques
for instruction-level parallelism including out-of-order exe-
cution, and other specialized units like branch predictors.
In comparison to CPUs, GPUs have throughput-optimized
cores that are much simpler, but GPUs tend to have far
more cores. In addition, GPUs can schedule thousands of
application threads onto these cores in order to hide mem-
ory access latency. For example, contemporary GPUs (e.g.
Cypress and Llano’s core counts) can have ten to one hun-
dred times as many cores as CPUs. In these throughput-
oriented designs, performance is achieved through massive,
fine-grained parallelism, and, particularly for HPC, a large
number of floating-point units.

The question then, is how many resources should be de-
voted to serial performance (latency-optimized) compared
to parallel performance (throughput-optimized). For in-
stance, are wide SIMD units on the CPU cores still benefi-
cial? Would those resources be better spent on more GPU
cores, which would handle the majority of the floating point
workload? This complex tradeoff has serious implications
for sustained performance and depends on application char-
acteristics like the fraction of parallel work, the instruction
mix, and the requirements for synchronization.

It is difficult to characterize this tradeoff in a sense that
will generalize well to any application. However, the amount
of serial performance sacrificed to obtain parallel perfor-
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Figure 2: Block Diagram of Core i7-2600 (Sandy Bridge) and Cypress Architectures. Blue elements indicate
memory or cache while red indicates processing elements. The dotted lines show that each SIMD engine
in Cypress contains sixteen thread processors, each with five ALUs, a shared L1, and a shared scratchpad
memory.

Cores Clock Peak FLOPS RAM Bus Width Mem. Clock Bandwidth TDP
Units # Mhz GFLOPS (SP/DP) GB Bits Mhz GB/s Watts

Core i7-2600 4 3400 108.8/54.4 8 128 1333 21 95
Llano’s CPU 4 2900 46.4/23.2

8 128 1866 29.9 100
Llano’s fGPU 400 600 480/0

Redwood 400 775 620/0 0.5 128 1000 64 64
Cypress 1600 825 2640/528 2 256 1150 147.2 225

Table 1: Architecture Specifications. Note that Llano’s CPU and fGPU cores share the same interface to
physical memory and have a combined TDP of 100W.

mance can be quantified by comparing an APU to a tradi-
tional CPU. This loss can then be weighed against increased
parallel performance on an application-specific basis.

3.1 Experimental Platform
We compare a current APU architecture to a traditional

CPU and discrete GPU can help illustrate some of the trade-
offs of fused designs. Specifically, we evaluate the concrete
examples (shown in Figure 2) of AMD’s A8-3850 Llano APU
(with fGPU) and two discrete GPUs: the ATI Radeon HD5670
(codenamed Redwood), most similar to the fGPU of Llano,
and the high-end ATI FirePro v8800 (Cypress). Also, any
power or performance measurements involving the Redwood
GPU use the Llano as a host system with the fGPU disabled
to ensure consistency. On some occasions, we also compare
Llano to an Intel Core i7-2600 CPU (Sandy Bridge archi-
tecture). This CPU is similar in terms of core count and
power envelope, but devotes far fewer resources to graphics
operations. Its integrated graphics hardware does not sup-
port OpenCL and is not used in any of our tests. Table 1
gives a more detailed listing of the differences among Llano,
Redwood, Cypress, and Sandy Bridge. None of the test
configurations used ECC memory, which is not supported
by these consumer versions of the architectures. For further
introduction to GPU architectures, in general, we refer the
reader to the overview from Owens [19] and the discussion
of the AMD architecture by Daga et al [8].

Unless otherwise specified, all measurements were taken
using the AMD APP SDK v2.4, SHOC [9] v1.1.2, GCC
v4.4.5, and Scientific Linux v6.1.

3.2 CPU Performance
To evaluate Llano CPU performance, we compared the

performance of a simple dense matrix-matrix multiply op-
eration with another contemporary processor with similar
power envelope, the Intel Core i7-2600 CPU (with Sandy
Bridge microarchitecture). This benchmark is intended to
show the processor’s practical upper limit for computation
rate. We also compared the performance of the High Perfor-
mance Computing Challenge (HPCC) [10] benchmark suite
on both processors. Because this benchmark suite measures
the performance of several types of operations, it provides
a more complete picture of CPU performance than the sim-
ple matrix-matrix multiply benchmark. The specifications
of the systems used in this comparison are shown in Table 1.
On the Sandy Bridge system, HyperThreading was disabled
to avoid sharing floating point hardware between multiple
threads within each core; thus, the Sandy Bridge test system
supported four hardware threads total, like the Llano sys-
tem. Turbo mode was enabled on the Sandy Bridge system,
allowing the processor to increase the clock rate of a single
core if it was performing a computationally intensive task
while other cores on the chip were less busy. Also, the soft-
ware stack for this system differs slightly from the listing in
Section 3.1, with the Sandy Bridge tests using the Intel com-
piler v2011 SP1.8.274, MPI v4.0.3, and MKL math library
v10.3.8 while the Llano was tested using the PGI compiler
v11.10, ACML v4.4 and v5.0, and OpenMPI v1.5.4.

Llano and Sandy Bridge performance for the SGEMM
and DGEMM benchmarks are shown in Figures 3 and 4,



for several threading configurations and a range of matrix
sizes. For DGEMM, the Core i7-2600 consistently outper-
forms the Llano CPU, more than doubling its peformance
on the largest matrix. No results are shown from the Llano
fGPU since it does not support double precision.

In contrast, the Llano’s fGPU outperforms the Core i7-
2600 on the SGEMM benchmark on large matrices, even
when four threads are used. Note that the Llano benchmark
used AMD’s APPML math library v1.6, which is OpenCL-
based.
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Figure 4: DGEMM CPU Performance for one, two,
and four threads

Llano and Core i7-2600 performance on the HPCC bench-
mark suite is summarized in Table 2. The measurements
from the table were obtained using four MPI processes (one
per core) on each system. On the AMD system, we built
HPCC with both the ACML 4.4 and 5.0 math libraries, and
we tried explicitly setting the number of OpenMP threads
to be used by the ACML library. We found slightly better
performance from using ACML 4.4 on this system for the
HPL and DGEMM subtests, without specifying the number

of OpenMP threads, so the numbers presented in Table 2
reflect this scenario. On the Intel system, we ran HPCC
under several scenarios. We tried pinning the each of the
four HPCC processes to a specific processor core, and we
tried explicitly setting the number of OpenMP threads to
be used by the MKL math library. With these single node
tests, performance did not vary much under these differ-
ent scenarios, but we did notice slightly better performance
for the HPL and DGEMM subtests when pinning processes
but not explicitly setting the number of OpenMP threads.
Hence the Sandy Bridge numbers presented in Table 2 are
for this scenario.

Benchmark Units AMD Intel
A8-3850 i7-2600

HPL TFlop/s 0.0290 0.0949
SingleDGEMM GFlop/s 11.1037 24.7620
StarDGEMM GFlop/s 10.9816 25.8956
PTRANS GB/s 0.4093 2.3594
SingleRandomAccess GUP/s 0.0363 0.0671
StarRandomAccess GUP/s 0.0165 0.0253
MPIRandomAccess GUP/s 0.0490 0.0912
SingleSTREAM Triad GB/s 5.4585 13.3438
StarSTREAM Triad GB/s 1.9530 3.5079
SingleFFT GFlop/s 0.9810 2.8007
StarFFT GFlop/s 0.6822 1.6154
MPIFFT GFlop/s 1.6292 3.5563

Table 2: HPCC Performance

Llano’s design reflects the perspective that the fGPU should
be the computational workhorse, thus the CPU microarchi-
tecture is relatively simple, and the performance penalty for
not following this distribution of work is substantial. In
contrast, the Core i7-2600 design reflects the perspective
that the CPU is the primary computational device in the
system. These differing perspectives are evidenced in the
HPCC measurements, where the Core i7-2600 outperformed
the A8-3850 by a margin larger than would be expected
based on clock speed differences alone. Interestingly, the
gap was largest for the computationally intensive subtests,
but narrowed significantly for subtests like RandomAccess
that are more focused on memory hierarchy performance.

4. CAPACITY VS. BANDWIDTH
The next tradeoff is the type of physical memory used

for the base of the fused memory hierarchy. Traditionally,
CPUs have attempted to optimize latency to high capacity
memory, like the DDR3 used in the Llano APU. Conversely,
GPUs, which have traditionally been concerned with repeat-
edly streaming a fixed-size frame buffer, focus on achieving
maximum bandwidth. In order to achieve this bandwidth,
GDDR (graphics double data rate) standards began to di-
verge from their DDR counterparts to place an emphasis
on wider memory busses and higher effective clock speeds.
However, given a similar power budget, GDDR tends to
have much less capacity than DDR. In a discrete architec-
ture, each type of core can be paired with the most appli-
cable memory, but in a fused architecture, the latency and
throughput-oriented cores must use the same type of phys-
ical memory. In the near term, this is essentially a choice
between DDR and GDDR memory. In the future, however,



this tradeoff is likely to be become much more complex as the
configuration of 3D stacked memories and advanced memory
controllers may allow for increased flexibility in combining
different types of memories in one node.

In our concrete examples, both the Redwood and Cy-
press discrete GPUs use GDDR5, while Llano’s fGPU shares
DDR3 with the CPU cores. As shown in Table 1, the gap
in capacity is quite large, but the most salient difference is
bandwidth. This is in large part due to the fact that GDDR5
is quad-pumped while DDR3 is double-pumped. That is,
DDR3 delivers two bits of data per signal line per clock cy-
cle (on the rising and falling edge of the clock) while GDDR5
transfers those two bits and an additional two bits at each
midpoint using a second clock that is ninety degrees out of
phase with the first. The difference in peak bandwidth il-
lustrates the impact of these architectural differences—with
the same bus width and a lower clock speed, Redwood has
roughly twice the bandwidth of Llano’s fGPU.

4.1 DDR3 vs. GDDR5 Memory
We evaluated how this difference translates to applica-

tion performance using the Scalable Heterogeneous Comput-
ing (SHOC) benchmark suite [9]. SHOC includes synthetic
benchmarks designed to measure bandwidth to each of the
OpenCL memory spaces as well as real application kernels.

Figure 5 shows results from SHOC on the fGPU in Llano
using DDR3 memory and the two discrete GPUs using GDDR5.
Results are on a logarithmic scale and show the speedup of
the discrete GPUs over Llano.

The HD5670 is the closest GDDR5-based discrete GPU
to Llano’s fGPU: the shader architecture is essentially the
same, and it has only a 30% increase in clockspeed. Per-
formance results from SHOC’s MaxFlops benchmark reflect
this, showing an approximately 25% improvement in pure
floating point performance. Tests limited by global mem-
ory bandwidth show a much larger improvement, with the
GDDR5 resulting in an approximate 3x speedup. The Fire-
Pro v8800 shows improvements of 2x to 8x, commensurate
with or exceeding the increase in power consumption.

The lower half of Figure 5 shows much smaller speedups
for the discrete GPUs. These lower results are benchmarks
with a dependence on PCIe bus transfers, whether as an
inherent part of the benchmark or as a GPU-centric bench-
mark with the CPU-GPU transfer of input and output data
included. Although use of architecture-specific flags when
creating buffers and special techniques when performing data
transfers can allow somewhat higher bandwidths between
System and Local memory in Fusion (see Section 2.1), the
standard OpenCL mechanism for these transfers performs
only slightly better than the discrete v8800 and is somewhat
slower than transfer to the discrete HD5670. However, the
tighter coupling of the fGPU with the CPU — seen, in part,
in the faster Queue Delay performance due to the removal of
PCIe latency — results in a net performance increase in the
Llano, despite its slower shader clock and reduced memory
bandwidth.

4.2 Contention
A performance model may be able to predict the preferred

memory type for a given application based on its memory
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Figure 5: Speedup of a discrete Radeon HD5670
(Redwood, GDDR5) GPU and a discrete FirePro
v8800 (Cypress, GDDR5), versus the fused GPU
with DDR3 in Llano, on a logarithmic scale. Values
greater than 1x indicate the discrete GPU outper-
forming Llano.

access characteristics. However, in a fused architecture, this
tradeoff is complicated by contention effects between the
CPU and GPU cores. For example, in the worst case, the
throughput-optimized cores may generate enough memory
requests to starve the latency-optimized cores, and, at a min-
imum, their traffic is likely to inject significant, unexpected
latency. This type of resource exhaustion has traditionally
been difficult to model.

To measure these contention effects on Llano we ran the
SHOC benchmark suite on the fGPU under two conditions.
First, we measured performance with the CPU cores idle
and then with the CPU cores running a bandwidth-bound
kernel which lasted for the duration of the benchmark suite.
For the CPU kernel, we used JACOBI, a micro-kernel that
solves Laplace equations using Jacobi iteration, available in
any numerical analysis text [24]. The tested kernel uses two
12288 x 12288 matrices with one hundred iterations. Our
hypothesis was that the increased memory traffic from the
Jacobi kernel would saturate memory bandwidth and cause
degraded performance in the fGPU. The results in Figure 6
show a penalty ranging from fifteen to twenty-two percent
for bandwidth-bound benchmarks and smaller penalties for
those that incorporate at least a modest floating point in-
tensity.

We include results from the same experiment using the
HD5670 to confirm that this penalty is unique to the fused
memory hierarchy. That is, no contention should occur with
the HD5670, and while the measurements show some minor
noise, the magnitude of that noise is less than one percent.

The CPU performance under these same scenarios shows
the average runtime of the Jacobi benchmark increasing un-
der contention. As seen in Table 3, we observe almost no
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Figure 6: Performance penalty caused by memory
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contention with the HD5670, but a 10% penalty when si-
multaneously using the fGPU.

Average Runtime
No CPU/GPU Contention 22.3 s
Contention with HD5670 GPU 22.5 s
Contention with Llano fGPU 24.5 s

Table 3: Performance of the CPU Jacobi kernel un-
der various contention scenarios.

5. POWER VS. PERFORMANCE

5.1 GPU Power Usage
Tighter integration of separate components like a GPU

and CPU generally results in lower power usage. The reduc-
tion in redundant hardware requires less power, and when
components are physically closer together, less energy is re-
quired for data movement across wires and board traces.
This, in turn, can also lead to secondary reductions, such
as lower requirements for cooling. We study the power us-
age of Llano fGPU and compare it with the discrete Radeon
HD5670. We measure the whole system power with an in-
line AC power meter and record the peak power consump-
tion of the system. During the measurement, the default
power saving features (i.e., employing appropriate power
gating when possible) are enabled for both Llano and the
discrete GPU.

Figure 7 displays system power consumption for specific
GPU operations. We first notice that Llano using the fGPU
has a lower power draw than the HD5670 in idle state by
about 16.7%. We attribute this difference to the extra power
consumption of global memory and peripheral circuitry on
the HD5670. We further notice that the power difference
is increased when the system is performing data transfers
between the host and device (labeled ‘Host/Dev Transfer’
in the figure), floating point operations (labeled ‘Compute
FLOPS’) and memory intensive operations (labeled ‘Device
Memory’). The lower power consumption of data transfer in
Llano comes from the shorter data path and the elimination
of the PCI bus and controller; the lower power consump-
tion of floating point and memory operations comes from a
lower shader clock on the Llano fGPU and from the sim-
plified peripheral circuitry on the fGPU. Llano achieves an
average power savings of approximately 20% compared to
the HD5670 when running the computation kernels in the
Level 1 tests from SHOC benchmark suite.
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Figure 7: Full-system maximum power usage when
using the integrated GPU in Llano and when using
a discrete Radeon HD5670 GPU. The dark and light
colors indicate the range of power usage across tests
in each category.

5.2 Evaluation
Figure 8 shows the increase in power consumption ver-

sus the increase in performance when using the HD5670
compared to Llano for individual SHOC test results which
do not depend on CPU-GPU data transfers. The vertical
axis shows the best speedup obtained by using the discrete
HD5670, and the horizontal axis shows the increase in peak
power usage from the HD5670. We first notice that all points
within the 2D performance-power plane are on the upper
right side of the point (1.0x, 1.0x), which demonstrates bet-
ter performance of HD5670 accompanied with greater power
consumption.

The results in Figure 8 can be roughly clustered into three
groups. The results above y = 2.0x, including DevMem-
Read, DevMemWrite, MD, and Reduction show the largest
performance speedup with a relatively small power increase.
The benchmarks in this group are generally characterized as
memory operation intensive. The groups on the right side
of the line x = 1.3×, including MaxFlops and S3D, repre-
sent those with the least speedup and the greatest power
consumption. The benchmarks in this group are, in general,
characterized as floating point operation intensive. The re-
maining benchmarks show a wider range of floating point



and memory operation intensities; however, they do not ap-
proach either the performance improvement or the power
increase of the other two groups.

Figure 9 shows similar results, this time for SHOC bench-
marks which do include CPU-GPU data transfers. Note
that some results are included in both Figures 8 and 9, but
with different performance; in the latter, the data trans-
fer times to GPU memory are incorporated. The relation-
ship between power and performance is less straightforward
in these results; the Llano fGPU performs relatively better
once data transfers are included, often outperforming the
HD5670, while power usage of the HD5670 is typically 30%
higher than the Llano fGPU.

These results reveal that the high bandwidth of HD5670
brings performance benefit for memory intensive applica-
tions at the cost of small increase in power consumption,
(i.e., the energy-delay product (EDP) is higher) while the
tighter integration of Llano’s fGPU may result in better en-
ergy efficiency for compute-intensive applications or those
that require frequent CPU-GPU memory transfers.
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Figure 8: Performance and system power usage
of the discrete HD5670 GPU on individual SHOC
benchmarks relative to using the integrated GPU in
Llano. This set of results does not include CPU-
GPU transfers.
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Figure 9: Performance and system power usage
of the discrete HD5670 GPU on individual SHOC
benchmarks relative to using the integrated GPU in
Llano. This set of results does include CPU-GPU
transfers.

6. PROGRAMMING MODELS VS. RUNTIME
SYSTEMS

One of the reasons for the success of GPGPU and, espe-
cially CUDA, is the effectiveness of the programming model.
CUDA’s useful abstractions allowed access to the hardware
resources of the GPU without having to learn graphics oper-
ations or very low-level device characteristics. For instance,
the notion of a grid of thread blocks is easy to understand
and hides many details about how the GPU actually sched-
ules operations. The increased complexity of a fused hetero-
geneous architecture raises new questions for programming
models. Which cores should a task run on? How does the
programmer indicate that a task requires cache coherency
among different cores? These questions begin to capture
the next tradeoff, the contention between the desire for high-
level abstractions and the complexity of the runtime systems
required to support those abstractions.

Consider the problem of scheduling in more detail. Cur-
rent capabilities in OpenCL allow the programmer to ex-
press a task that can run on the CPU or GPU cores. The
programmer must then explicitly specify which device to use.
The task may perform much better on one type of core,
but it is the application’s responsibility to track this and
submit the task to the appropriate OpenCL device queue.
Advanced scheduling features like preemption and task mi-
gration (from one core type to the other) are not yet avail-
able. However, the argument can be made that OpenCL is
at a low-level of abstraction and the appropriate scheduling
should be done by the application. At this extreme end of
the tradeoff, maximal domain knowledge can be exploited,
but the burden on application developers is large.

On the other hand, investment in a robust runtime sys-
tem could significantly reduce this burden. Indeed, there
have been several successes for these runtimes on CPUs in-
cluding Cilk++ [15], with its work-stealing scheduler, and
StarPU [2] for runtime scheduling on CPUs and discrete
GPUs. These runtime systems often outperform static schedul-
ing strategies. It seems reasonable to assume that static
scheduling will only become more difficult on the APU, as
the scheduler will have to include task affinities for a given
type of core, costs of moving memory between pageable and
“local” memory partitions, and coscheduling requirements
for deciding when to enable cache coherency between CPU
and fGPU, which cannot be used in the general case for
performance reasons. Also, it remains to be seen if the in-
creased flexibility of the abstractions for an APU could be
successfully incorporated into a distributed environment in
a model similar to Charm++ [14] or Chapel [3].

Unfortunately, at the time of this writing, no such runtime
systems were available for evaluation on the APU. Despite
this, we believe the availability of an effective runtime will
be an important factor in the success of any APU.

7. RELATED WORK
While the Fusion APU architecture [4] is the first of its

kind, the trend toward increased heterogeneity (and specif-
ically GPGPU) was recognized by Owens et al. in their re-
view of heterogeneity in HPC, covering several successes in
game physics and biophysics [19]. The trend towards tighter
integration is mentioned by Kaeli and Akodes who docu-
ment the movement of multicore processors and GPUs into
mainstream consumer electronics like tablets and cellular



phones [13] and identify the rapidly expanding class of prob-
lems which is amenable to GPGPU.

Prior to the release of the APU, several teams evaluated
the performance of the ATI “Evergreen” GPU architecture,
which includes two of the GPUs studied in this work, Cy-
press and Redwood. Both of these GPUs heavily influenced
the GPU core architecture of Llano. These include a gen-
eral study of performance and optimization techniques [16],
a detailed characterization of the performance of atomic op-
erations [17], and an evaluation of the energy efficiency of the
architecture [26]. Others have also studied performance op-
timization on discrete NVIDIA GPUs [7, 20, 21, 22], some of
which use a similar set of kernels to our experiments includ-
ing GEMM [1, 11, 25], FFT [18], and molecular dynamics [5,
6].

There has also been an assessment of the Fusion architec-
ture using the low power “Zacate” APU by Daga et al. [8]
with a particular emphasis on absolute performance com-
pared to a discrete GPU and the importance of the APU
for scientific computing. Our results with the SHOC bench-
mark suite [9], also used by Daga, confirm the applicability
of their findings at a different power scale. SHOC has also
been used to study contention effects in previous work by
Spafford et al. on NVIDIA-based platforms [23] with multi-
ple GPUs that explores how PCIe contention becomes more
complicated when traffic to the interconnect is considered.

8. CONCLUSIONS
We have identified five important tradeoffs for those de-

signing or programming heterogeneous architectures with
fused memory hierarchies. When constrained to a single
type of physical memory, the choice between designs which
focus on capacity and those that maximize bandwidth has
a huge impact on GPU performance. So great, in fact, that
this choice largely shaped the energy efficiency results in the
last tradeoff, providing a fairly consistent method for group-
ing the mixed results of Figure 8. When system CPU-GPU
data transfers become a more dominant portion of runtime
(as seen in Figure 9), the efficiency benefits of tighter cou-
pling do seem to overcome the specialized memory.

In the design of these fused memory hierarchies, the ben-
efits of the tradeoff between cache coherency and scalability
remains highly workload-specific and is not yet well under-
stood. The addition of the FCL and the capability for cache
coherency in Llano is an important first step. However, it
will take time for this capability to make its way into main-
stream programming models and scientific applications.

Furthermore, an APU-like design may only be beneficial
if the application has a substantial parallel fraction and
that fraction can be run on the throughput-oriented cores.
The difference in performance of Llano’s CPU cores and the
Sandy Bridge CPU reflect the costs of not utilizing the ap-
propriate core type or the potential penalty for devoting too
many resources to a set of cores which won’t be fully used
by an application. When moving to a fused heterogeneous
platform, an effective performance model and characteriza-
tion of the instruction mix will be critical for choosing the
correct core type for a kernel.

Finally, in the exploration of the tradeoff between sim-
ple abstractions and complex runtimes, we have identified
a significant need for a robust APU runtime system. New
concepts from the APU architecture impose additional com-
plexity on programming models including kernel core affin-

ity, coherence specification, and coscheduling requirements.
While advanced applications may develop custom infrastruc-
ture to account for this complexity, the level of effort re-
quired to do so precludes many programmers from making
this investment.
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