
Model-Based, Memory-Centric Performance and Power Optimization
on NUMA Multiprocessors

ChunYi Su† Dong Li‡ Dimitrios S. Nikolopoulos§

Kirk W. Cameron† Bronis R. de Supinski\ Edgar A. León\

Department of Computer Science† Oak Ridge ‡ Lawrence Livermore\ Queen’s University§
Virginia Tech, VA 24060 National Laboratory National Laboratory of Belfast
{sonicat,cameron}@vt.edu Oak Ridge, TN 37831 Livermore, CA 94550 Belfast,Northern Ireland, UK

lid1@ornl.gov {bronis,leon}@llnl.gov d.nikolopoulos@qub.ac.uk

Abstract—Non-Uniform Memory Access (NUMA) architec-
tures are ubiquitous in HPC systems. NUMA along with
other factors including socket layout, data placement, and
memory contention significantly increase the search space to
find an optimal mapping of applications to NUMA systems.
This search space may be intractable for online optimization
and challenging for efficient offline search. This paper presents
DyNUMA, a framework for dynamic optimization of programs
on NUMA architectures. DyNUMA uses simple, memory-
centric, performance and energy models with non-linear terms
to capture the complex and interacting effects of system
layout, program concurrency, data placement, and memory
controller contention. DyNUMA leverages an artificial neural
network (ANN) with input, output, and intermediate layers
that emulate program threads, memory controllers, processor
cores, and their interactions. Using an ANN in conjunction
with critical path analysis, DyNUMA autonomously optimizes
programs for performance or energy-efficiency metrics. We
used DyNUMA on a variety of benchmarks from the NPB
and ASC Sequoia suites on three different architectures (a 16-
core AMD Barcelona system, a 32-core AMD Magny-Cours
system, and a 64-core Tilera TilePro64 system). Our results
show that DyNUMA achieves on average 8.7% improvement
in performance (12.9% in the best case), 16% improvement in
Energy-Delay (30.6% in the best case) and 9.1% improvement
in MFLOPS/Watt (10.7% in the best case) compared to the
default Linux scheduling.

I. INTRODUCTION

Non-Uniform Memory Access (NUMA) is now the
dominant memory system architecture for multiprocessors.
NUMA has been the leading design paradigm in scal-
able, cache-coherent, multi-processor architectures since the
1990s. On a typical NUMA system, each processor has a
local memory node accessible over dedicated links, while
remote memory nodes are accessible via an interconnect
and through network interfaces. The latency of accessing
the local memory node is markedly lower than the latency
of accessing a remote memory node. More recently, non-
uniform memory access latency is also present between
cores in the same socket. The processor uses multiple
memory controllers on-chip to serve its cores, with each
controller connected to a different memory node. NUMA is
therefore becoming pronounced also within the boundaries
of a single chip. For example, the Tilera TilePro64 processor
has four memory nodes on the same die [1]. It implements
a shared physical address space via a mesh interconnect
between cores. When a core accesses the closest memory
node, it incurs lower access latency than when accessing
other memory nodes. Similar asymmetric access latencies
also appear in the NVIDIA Fermi architecture [2].

NUMA improves system scalability by avoiding bottle-
necks in the memory subsystem and by increasing the mem-
ory bandwidth available per core. With an increasing number

of cores per processor, NUMA is becoming necessary for
systems to scale. According to Top500 statistics, over 90%
of Top500 supercomputers are based on NUMA nodes [3].

Optimizing applications for performance and energy ef-
ficiency on a NUMA architecture has been and remains
challenging. While a significant body of prior work has
treated non-uniform memory access as one of data distribu-
tion and migration, assuming a stationary mapping of threads
to cores [4], [5], [6] [7] [8], we consider the problem from
the opposite direction: given a distribution of data among
memory nodes, what is the optimal mapping of threads
to cores? As remapping of threads to cores is orders of
magnitude faster than remapping data to memories, such
an approach is worth considering as a dynamic optimization
strategy.

Application performance is highly sensitive to thread-to-
core mapping. Figure 1 shows an example that quantifies
performance variance due to different thread-to-core map-
pings on a NUMA system. We use SP from the NAS Parallel
Benchmarks (class A, OpenMP version), running with 8
threads on a single node with 4 AMD quad-core processors.
We enumerate 85 different mappings for 9 parallel regions
in the benchmark. We observe a performance difference be-
tween the best and the worst mapping up to 45%. Compared
to the default system mapping (Linux 2.6.32), the best map-
ping is 18% faster. Therefore, to optimize the performance
and energy efficiency of applications on NUMA systems,
we must determine the best mapping. However, the search
space to determine the best mapping can be very large.

For the 16-core NUMA architecture shown in Figure 2,
a system similar to the smallest system that we use in our
experiments, there are over 63 million possible mappings of
threads to cores, each with different memory access latency
and bandwidth available per core. The above calculation
excludes the impact of shared caches and assumes statically
placed data. If we consider these implications, the search
space is even larger.

In addition to the challenges of making optimal static
mapping of threads to cores, previous techniques to optimize
power and performance dynamically on Unified Memory
Access (UMA) systems does not necessarily extend to
NUMA systems. Earlier work [9], [10] shows that dynamic
concurrency throttling (DCT) is a viable optimization tech-
nique for performance and energy efficiency. DCT amounts
to modifying (throttling) the number of threads and the
mapping of threads to cores used by parallel code at runtime,
to avoid oversubscribing hardware resources, such as shared
memory bandwidth. DCT is beneficial also when the degree
of available algorithmic parallelism in a code region is
less than the maximum number of cores available on the
hardware. On a NUMA system, any attempt to throttle con-

0%

20%

40%

60%

80%

100%

120%

140%

1

2

3

4

5

6

7

8

9

N
o
rm

a
liz

e
d
 T

im
e

(%

)

Parallel Region Number

Best Mapping Worst Mapping Default Mapping

Figure 1: The performance variance of 85 different thread map-
pings in SP.A benchmark. The performance is normalized to the
performance with the Linux default mapping.

NUMA

M
e
m
o
ry

Cores Cores

M
e
m
o
ry

M
e
m
o
ry

Cores Cores

M
e
m
o
ry

Figure 2: A 16-core NUMA architecture with 4 memory nodes

currency after execution begins will redistribute computation
between cores, thereby forcing extraneous cache misses,
remote memory accesses, and contention. Prior work on
dynamic concurrency throttling overlooks this problem. In
fact, any attempt to migrate threads or data in the operating
system for the purposes of throughput, power optimization,
or reliability, suffers from the same problem.

This paper considers a three-dimensional optimization
problem for NUMA systems: (i) finding an optimal degree
of concurrency, (ii) mapping threads to cores to reduce
remote accesses per core, and (iii) minimizing contention
on memory controllers. An optimal degree of concurrency
avoids performance loss due to synchronization overhead,
contention, or lack of sufficient algorithmic concurrency in
the program. Reducing remote memory accesses reduces
memory latency but may create contention due to oversub-
scribing of memory controllers.

Any solution to the optimization problem needs to identify
the enumeration and layout of cores with respect to mem-
ory controllers and memory nodes (a non-trivial exercise)
and also needs to consider phase behavior in programs
such as changes in concurrency, memory access patterns
or data communication and synchronization patterns [9].
Unfortunately, standard linear regression cannot capture the
complexities of such systems. Non-linear regression models
(or logistic regression) are often very complicated in formu-
lation and can require substantial computation resources to
solve.

To address these challenges, we created DyNUMA, a
framework for dynamic optimization of programs on NUMA
architectures. DyNUMA is implemented in the runtime sys-
tem to improve both performance and energy efficiency. The

core of DyNUMA is a novel memory-centric performance
model. The model captures the non-linear and interacting
effects of concurrency, thread mapping, and data placement
using an Artificial Neural Network (ANN). ANN’s are sim-
pler to implement than logistical regression techniques re-
quiring less formal statistical training. Furthermore, ANN’s
excel at deriving structure from data samples.

DyNUMA uses an ANN model in conjunction with crit-
ical path analysis [11] to predict optimal concurrency and
thread mapping, assuming static data placement. Integration
of DyNUMA with dynamic data redistribution (migration)
is out of the scope of this work.

This paper makes the following contributions:
• A novel memory-centric, non-linear performance model

for NUMA architectures which captures the effects of
concurrency, data placement, and memory contention
on system performance. The model accurately predicts
non-linear performance metrics such as the energy-
delay product (EDP).

• A flexible and portable framework, DyNUMA, to ad-
dress the multi-dimensional problem of concurrency
control and thread-to-core mapping on NUMA systems.
This framework is portable and can be used on a variety
of NUMA architectures. It is also flexible allowing the
use of different program optimization metrics including
energy efficiency.

• A runtime system which implements online and au-
tonomous optimization of NUMA programs using the
aforementioned model.

The rest of this paper is organized as follows. In Sec-
tion II, we review the related work. Section III describes our
system design and is followed by our performance evaluation
in Section IV. Our conclusions and future work are presented
in Section V.

II. RELATED WORK

OpenMP performance models: Curtis-Maury et al. [9]
and Li et al. [10], [12] map threads to cores using a linear
regression model of performance and power. An online pre-
dictor enables dynamic optimization based upon measured
hardware counter events at runtime. While these techniques
are useful, the authors noted limitations in thread placement
and model accuracy as the cores and memory scale in
number and complexity. Our ANN model is designed to
address the accuracy limitations of applying linear models
to the non-linear problem of mapping threads to cores
to optimize for power and performance as systems and
applications scale.

In other work, Singh et al. [13] and Curtis-Maury et
al. [14] used ANN’s to predict performance and energy
efficiency on multicore systems. These models focus on the
use of cache miss rates from hardware counters in their
predictions. As such, these techniques also suffer inaccura-
cies on NUMA systems since they ignore significant effects
including thread-to-data affinity, non-uniform data access
latency, and core bandwidth. In our work, as noted, we
include the effects of thread-to-data affinity as well as those
of latency and bandwidth. Through collective consideration
of these characteristics, we capture thread locality and the
full costs of thread affinity in NUMA environments.

Thread-data affinity on NUMA: Terboven et al. [15]
propose a NUMA memory placement policy called next
touch, to migrate pages that are frequently accessed re-
motely. Ribeiro et al. [16] use data access patterns to guide
memory placement on NUMA systems. Nikolopoulos et
al. [5], [6] propose a series of user-level dynamic page
migration approaches. DyNUMA differs from the above

2

OpenMP PR
Signature Collector

PR(1) PR(2) PR(3)

Iteration 1-k Iteration (k+1)- (2k+1)
PR(1) PR(2) PR(3)

Iteration 2k+2 …..

Collected
Application
Signatures

Runtime Predictor

ANN
Concurrency

Predictor

Threads
Mapping
Arbiter

Program Execution

…..

Metric
Selector

Tuples

Sampling Phase Configuration Phase Running Phase

Figure 3: Diagram of the DyNUMA system framework. PR means
the parallel region.

approaches, in that it does not perform dynamic data place-
ment or data migration. DyNUMA only migrates threads
to improve thread-to-data affinity. Thread migrations are
orders of magnitude faster than data migrations that can
incur severe performance penalties due to TLB misses and
data transfers.

Broquedis et al. [17] introduce a runtime system to
optimize thread-to-data affinity by using a BubbleScheduler
scheme. BubbleScheduler remaps threads using a capacity
metric to identify memory nodes with the largest concen-
tration of thread data. Threads are then migrated remotely
to the identified node to maximize data reuse and minimize
data transfer costs. Though this approach considers affinity,
the focus is on modeling and optimizing for data movement
with threads tightly coupled to data. Despite the focus on
minimizing data movement, as threads and cores scale,
the need to migrate and the amount of data to migrate
increase substantially. DyNUMA addresses this limitation by
focusing on optimizing thread affinity without the associated
coupling to data movement.

III. SYSTEM DESIGN

DyNUMA optimizes OpenMP programs where paral-
lelism is expressed with directives that delineate parallel
regions. Each parallel region may enclose parallel loops,
tasks, or nested regions. The design objective of DyNUMA
is to select the best level of concurrency for each OpenMP
parallel region and optimize thread placement to cores based
on data locality so that the program is optimized for a
given performance or energy-efficiency metric. The design
of DyNUMA is based on the following characteristics:

• Scalable: system is expected to execute on architectures
with massive parallelism.

• Architecture-aware: system should capture key archi-
tectural factors that affect performance and power.

• Light-weight: system should incur low overhead to
allow for online dynamic optimization.

• Portable: system should be parameterized to allow for
ease of porting to different NUMA architectures.

A. Overview
DyNUMA implements a dynamic online predictor for

the degree of concurrency and the thread-to-core mapping
of each parallel region. The framework is illustrated in
Figure 3. The runtime predictor of DyNUMA includes
two components. The first component is an architecture-
aware, Artificial Neural Network Predictor (ANN) which
predicts the degree of concurrency. The second component
is a Thread Mapping Arbiter (TMA) which implements a
deterministic algorithm that determines the thread-to-core

mapping in linear time. DyNUMA assumes iterative pro-
grams where parallel regions are executed a number of time
steps. This is common for many HPC applications. In the
sampling phase, DyNUMA initially executes a program with
maximal concurrency –using as many threads as the number
of cores– for first k iterations. The number of k is equal
to the number of memory nodes. The ith iteration samples
threads’ execution signatures on the memory node i. The
choice of k is determined by a limitation of current hardware
counters, that is, hardware counters can only profile one
memory node at a time. Overcoming this limitations can
significantly reduce k. DyNUMA samples all execution
signatures during these k iterations to derive predictions of
the best concurrency and thread mapping of each parallel
region using ANN. Afterwards, DyNUMA applies TMA to
further improve data locality.

We define an execution signature as a collection of three
metrics:

• IPC: Instructions per Cycle
• LMA: Local Memory Accesses per Cycle
• RMA: Remote Memory Accesses per Cycle
The runtime system collects the execution signature of

each thread and transforms into a 3-element tuple. Each
tuple characterizes a thread with respect to the intensity
of computation to memory operations while executing a
parallel region. LMA and RMA values are determined by the
location of a thread. DyNUMA maintains LMA and RMA
per memory node for each thread. DyNUMA uses thread-
level tuples coupled with thread mapping information and
observed metrics as inputs to the two DyNUMA predictors
– ANN and TMA. IPC, LMA and RMA from all threads
are used in the ANN to navigate the search space and
predict performance on all degrees of concurrency. If an
application is processor-bound, IPC should be high while
LMA and RMA should be low. In this case, the ANN
tends to select higher concurrency. Conversely, a memory-
bound application is expected to have low IPC and high
LMA and RMA values, in which case the ANN tends
to select lower concurrency to avoid oversubscribing the
memory system. The optimal degree of concurrency can
vary across regions due to variance of execution signature.
On the other hand, TMA makes use of LMA, RMA and
thread mapping information to redistribute threads in a more
balanced way. Following prediction, DyNUMA actuates the
selected concurrency and thread mapping for the remaining
time of program execution.

B. Metric Selection
DyNUMA predicts performance and energy efficiency us-

ing the metrics shown in Table I. MFLOPS/Watt is the metric
used to evaluate system energy efficiency in the Green500
list [18], while EDP is a common energy-efficiency metric
in HPC environments because it is implementation-neutral.
The EDP and MFLOPS/Watt are calculated by Equations 1
and 2 respectively. The system provides the end user with
flexibility to define different metrics while using the same
unified prediction infrastructure explained in Section III.C.

Table I: Three metrics used for the prediction of performance and
energy efficiency.

Wall-clock
time

Wall clock time of a parallel region

EDP Energy-Delay-Product of a parallel region
MFLOPS/Watt Number of floating point instructions (in mil-

lions) per second per Watt of a parallel region

3

Metric
Generator

Metric
Selector

Execution
Signatures

Memory
Controller 1

Memory
Controller 2

Memory
Controller 3

Memory
Controller 4

T5~T8 : (IPC, LMA,
RMA)

T2 :(IPC, LMA,
RMA)

T3: (IP, LMA,
RMA)

T4: (IPC, LMA,
RMA)

T1: (IPC, LMA,
RMA)

T9~T12 : (IPC, LMA,
RMA)

T13~T16 : (IPC,
LMA, RMA)

Memory
Controller 1

Memory
Controller 2

Memory
Controller 3

Memory
Controller 4

Predict
Metric
Input

Output 1

Output 8

Output 16

Output 2

Input Layer Internal
layers

Output
Layer

Metric
Selector

Target Outputs [1-16]

Mapping
Info

Metric Set

Figure 4: The ANN model for four quad-core processors (16 cores
in total) and 4 NUMA memory nodes

EDP = Power ∗ (wall clock time)2 (1)

MFLOPS/Watt =
Number of floating point instructions

106 ∗ Time ∗ Power
(2)

C. Architecture-Aware Artificial Neural Network Predictor
One of DyNUMA’s design goals is to be easily

portable across platforms with different architectures. This
is achieved by using portable metrics in the DyNUMA
model of performance, namely IPC, LMA and RMA. The
DyNUMA predictor uses a configurable, back-propagation,
artificial neural network model [19] which can be ported
by changing two parameters: the number of cores and the
number of NUMA memory nodes of the target machine.

ANN is an adaptive system that learns its coefficients
using training sets fed through the network during a learning
phase. Figure 4 shows an example of the configurable ANN
model. The topology of the ANN model in this example
emulates a node with 4 quad-core processors and 4 NUMA
memory nodes. The topology of the ANN model emulates
the target architecture. The ANN includes three layers: input,
internal and output. The cells in the input layer correspond
to cores and receive as input the execution signature of
each thread. The cells in two internal layers emulate the
controllers of NUMA memory nodes. The links between
two internal layers emulate communication among memory
nodes. For example, the link between the memory controller
1 and the memory controller 3 emulates data transfers
between cores attached to the memory node 1 and cores
attached to the memory node 3. The ANN can have multiple
outputs. Each output represents the predicted metric at a
different degree of concurrency. Output i is the predicted
value when running the examined code region with i threads.
In the current implementation, the ANN model predicts the
three metrics listed in Table I.

The ANN model can be reconfigured for different systems
by changing the number of cells in the input and internal
layers to correspond to different numbers of cores and
memory nodes. The topology of the ANN reflects the system

Thread
Tuples

Mapping
Info

Metric

OpenMP PR
Signiture Collector

Training Samples

Applications

ANN
Predictor

Machine

Collected Data

PAPIPower meter

Metric
Selector

thread signature tuples metric set mapping information

(t1,t2,….……,tn) (m1,m2,……,mn) (mi1,mi2,……,min)(; ;)

(t1,t2,….……,tn) (m1,m2,……,mn) (mi1,mi2,……,min)(; ;)

(t1,t2,….……,tn) (m1,m2,……,mn) (mi1,mi2,……,min)(; ;)

Figure 5: Model training

interconnect topology. It is not fully connected since each
core is associated with one NUMA memory node and not
all cores directly access all memory nodes. This ANN
model can be easily adapted to handle SMT architectures
(multiple hardware threads per core) by using the execution
signature of each hardware thread as input. There are several
advantages of using ANN. First, it can easily capture the
hardware architecture by changing its internal layers and
topology. Second, it can generate multiple predictions under
different levels of concurrency in parallel, contrary to prior
linear DCT models that require a different model to predict
each level of concurrency [9]. Third, ANN is a non-linear
statistical modeling tool that captures complex relationships
between inputs (execution signatures) and outputs (perfor-
mance and power efficiency metrics). Such relationships
cannot be easily captured by other models. We demonstrate
this advantage by comparing the ANN model to a state-of-
the-art linear regression model proposed by Curtis-Maury et
al. [14].

1) Data collection: The ANN model in DyNUMA is
trained offline. Figure 5 shows the data collection framework
for offline training. The OpenMP PR Signature Collector
uses a set of APIs for application instrumentation. The in-
strumentation enables the collection of signatures of parallel
regions, thread mapping information and metrics targeted
for optimization. The signature collector uses PAPI [20],
Oprofile [21] and WattsUp [22] power meters. The collected
data is transformed into training samples. A training sample
consists of: (1) a set of metric values (wall-clock time,
EDP or MFLOPS/Watt), (2) a set of thread signature tuples,
and (3) thread mapping information. LMA and RMA are
hardware events and are collected using architecture-specific
counters. The thread mapping data is collected with the
portable POSIX sched getcpu() interface.

2) Power Measurement: To compute energy efficiency
metrics (EDP and MFLOPS/Watt), DyNUMA collects
power consumption of each parallel region. The runtime
system uses an API to connect to external WattsUp power
meters and record power for each region. The dynamic
power of the two components varies as DyNUMA changes
the number of active threads, memory access rate, and access
pattern per thread. There are other hardware components
that might exhibit dynamic power variance under DyNUMA;
however, their power variance is expected to be relatively
small, comparing to the processors and main memory [23].

We use Equation 3 to compute the power variance of
processors and memory:

Power = Powerexec − Powersystem idle (3)
Powerexec and Powersystem idle are collected from the
WattsUp power meter. Because we are unable to physically
access the TilePro64 machine that we use in our experimen-
tal analysis, power consumption of the TilePro64 processor
is obtained from the TilePro64 technical specification, as-
suming that processor power scales linearly from idle (17
Watt) to maximum (23 Watt), with the number of cores.

4

D. Thread Mapping Arbiter
TMA uses an algorithm based on the critical path analysis

to identify the optimal thread mapping. In most cases, pro-
grammers want to distribute workload (computation) evenly
in their parallel execution. However, the execution time from
one thread to another may still vary. This is because of
different memory access patterns across threads and uneven
distribution of data across memory nodes. The thread with
the longest execution time in any given parallel region is
said to be on the critical path. Note that TMA cannot be
combined with ANN and has to be applied after ANN,
because the critical path analysis can only be performed after
the thread concurrency is determined.

We use Figure 6 to further explain the critical path prob-
lem. Figure 6 displays remote and local memory accesses
per socket collected from the first OpenMP parallel region in
the NAS FT benchmark (class B). The test was deployed on
a platform with four quad-core processors (16 cores total),
each with one memory node. We used 8 threads to run
this parallel region and all threads are evenly distributed
to 4 sockets (i.e., 2 threads per socket). We traced LMA
and RMA per socket for 40 iterations. From the figure,
we observe that each socket has different RMA and LMA.
Socket 1 attains the lowest RMA and the highest LMA.
We further mapped threads to cores in different ways, but
a similar distribution of memory accesses was observed.
The difference in the number of memory accesses results
in asymmetric execution time between threads and causes
the critical path problem.

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

4 8 12 16 20 24 28 32 36 40

N
u

m
b

e
r

o
f

M
e
m

o
ry

 A
c
c
e
s
s
e
s

Iteration Number

Remote Accesses per Socket

Socket1

Socket2

Socket3

Socket4

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

2.0E+07

4 8 12 16 20 24 28 32 36 40

N
u

m
b

e
r

o
f

M
e

m
o

ry
 A

cc
e

ss

Iteration Number

Local Accesses per Socket

Socket1

Socket2

Socket3

Socket4

Figure 6: The distribution of remote memory accesses and local
memory accesses in an OpenMP parallel region in FT.B

We present an algorithm that attempts to reduce the
critical path by modifying thread placement, hence the ratio
of local to remote memory accesses from each thread. The
algorithm attempts to evenly distribute accesses between

Algorithm 1 Thread Mapping Arbiter Algorithm
Input: TNT t
Output: Map mapMinCp

1: Map mapMinCp = Φ
2: Int cpImpact[Nd]= 0; //The critical path impact on Nd

//memory nodes
3: ElementList sl= SortElementInTable(t);
4: while sizeof(mapMinCp) 6= #threads do
5: Element e(Ti, Dj)=GetMinCritcalPathElement(sl);
6: mapMinCp.Add(e(Ti, Dj));
7: end while
8: Return mapMinCp

9: GetMinCritcalPathElement(ElementList x)
Input: ElementList x // A list of the candidate elements
Output: Element edecide // An element with the smallest

//impact to the critical path
10: Element emax = GetFirstMaxElement(x);
11: ElementList lc=FindAllPossibleCandidateElements(emax);
12: edecide=FindLowestCPElement(cpImpact,lc);
13: RemoveThreadFromList(x,edecide.Ti);
14: AppendCriticalPathImpact(cpImpact,IF(edecide));
15: Return edecide

16: FindLowestCPElement(UINT64 cpImpact[], List x)
Input: ElementList x //A sorted element list
Output: Element edecide //An element with the minimal

//impact to the critical path
17: minV al=UINT64 MAX; element edecide=Φ;
18: for all Element e in x do
19: if (IF (e) + cpImpact[e.Dj]) < minV al then
20: minV al=IF (e) + cpImpact[e.Dj]);edecide = e;
21: end if
22: end for
23: Return edecide

memory nodes, reduce remote memory accesses, and avoid
contention on any memory node. The pseudo-code is shown
in Algorithm 1.

The input to the algorithm is a thread to node mapping
table (TNT). The output is the predicted best thread map-
ping (mapMinCp). The TNT is a data structure collects
the number of memory accesses from each thread to each
memory node, derived from the execution signature of the
program collected during sample iterations. An example of
a TNT is shown in Table II. This TNT records the number
of memory accesses from four threads to four memory
nodes. Each element (e(Ti, Dj)), corresponds to the number
of memory accesses to memory node j (i.e., Dj) from
thread i (i.e., Ti). The algorithm first sorts all elements
in the TNT in descending order of number of memory
accesses (line 3 of Algorithm 1). This sorting step facilitates
quick thread mapping in later steps of the algorithm. In
the implementation, we use parallel radix sort to reduce
sorting complexity. The sorting result is saved in a list (sl).
Following the sorting, the algorithm iteratively selects an

5

element from sl and places the selected element, e(Ti, Dj),
in mapMinCp (line 6) until all threads are selected. The
selected element represents a decision of placing thread Ti
on memory node Dj .

The selection criterion is implemented in GetMinCriti-
calPathElement (line 9). Generally speaking, this function
chooses an element whose corresponding thread placement
introduces the minimum imbalance of memory accesses
between memory nodes. The function initially selects the
first element from the sorted list (line 10), and then considers
elements in other memory nodes (line 11) whose number of
memory accesses are close (within 75% in our cases) to
that of the first element in the input sorted list. The reason
why the algorithm considers multiple candidates instead of
choosing the first element is that the first candidate from the
list may not necessarily avoid imbalance of memory accesses
between memory nodes. In particular, the first candidate may
have a significant imbalance between LMA and RMA which
creates unbalanced memory accesses across memory nodes.

To estimate how placing a thread i on memory node j
affects the critical path, we define a metric Impact Factor,
IF , as:

IF (Ti, Dj) = LMAi,j +

NX
k=1,k 6=j

NUMA Factori,k · RMAi,k (4)

The equation weighs the number of remote memory
accesses by a NUMA Factor because a remote access has
longer latency than a local access. The NUMA Factor is
the ratio of the remote memory access latency to the local
memory access latency. The NUMA Factor is a variable.
Depending on the distance between the core that issues a
memory access upon a cache miss and the memory node
where the miss is served, the NUMA Factor can have
different values. The NUMA Factor can be calculated by
measuring average access time when running a microbench-
mark to vary data location between memory nodes. Based on
the above equation, an element with a small IF means that
this element introduce lowest-unbalanced memory accesses
between memory nodes while avoiding remote memory ac-
cesses. We also define a counter (cpImpact) associated with
each memory node that accumulates the IF value for each
memory node whenever a thread mapping is determined
(line 14). The counter helps us trace the distribution of
memory accesses across memory nodes.

FindLowestCPElement (line 12) selects the best can-
didate. For all candidate elements (line 18), the algorithm
first calculates IF (e) + cpImpact[e.Dj], which estimates
the impact of the memory accesses of a specific thread
to memory node Dj on the critical path. The algorithm
selects the element with the minimal value (lines 19 and 20)
to minimize memory load imbalance between nodes while
avoidng remote memory accesses.

We use an example to further illustrate the algorithm.
We assume a system with four threads and four memory
nodes, with a TNT as shown in Table II. After applying
the algorithm, elements e(3, 2), e(2, 3), e(4, 1), and e(1, 4)
are considered, which means that threads 3, 2, 4, and 1
are placed on cores close to memory nodes 2, 3, 1, and
4 respectively. We use a specific case to explain the process
of choosing the best mapping candidate. In the second
iteration of the selection loop (line 4), the algorithm first
selects e(4, 1) from the sorted list. The algorithm selects this
element, because it wants to first handle the element with the
highest number of memory accesses. The selection of this
element is the key to improve performance and should take
the most favorable mapping when possible. However, e(4, 1)
is not necessarily the best choice because it does not have the

lowest IF on the critical path. Hence the algorithm consider
other candidates (i.e., e(4, 2) and e(2, 3)). Their number of
memory accesses are close to e(4, 1). The algorithm then
calculates the IF values of the three candidates and checks
the cpImpact[j] on each memory node (shown in Table III).
The algorithm eventually selects e(2, 3) instead of e(4, 1)
because its IF + cpImpact[j] is the lowest among the
three candidates, which intuitively introduces the smallest
imbalance between the four memory nodes.

Table II: A TNT for 4 threads whose data is distributed into 4
memory nodes

Thread
Id

Mem Node1 Mem Node2 Mem Node3 Mem Node4

1 100 1000 0 2000
2 1300 200 3500 1300
3 220 5000 500 500
4 4500 3800 2000 1000

Table III: An example to show how we choose the best element
element IFvalue cpImpact IF + cpImpact

e(4,1) IF(e(4,1))=14700 cpImpact[1]=0 14700

e(4,2) IF(e(4,2))=15050 cpImpact[2]=6830 21880

e(2,3) IF(e(2,3))=7700 cpImpact[3]=0 7700

E. Overhead and Penalty Control
DyNUMA changes concurrency and thread mapping be-

tween parallel code regions. Frequent changes in concur-
rency may incur performance loss due to cache flushing.

To ameliorate this effect, the runtime system considers
remapping threads only for parallel code regions with se-
quential execution times of 100 milliseconds or higher. In
addition to cache flushing, non-optimal concurrency predic-
tion or non-optimal prediction of thread mapping can cause
performance loss. DyNUMA uses an additional iteration
to measure performance of the selected configuration and
compares it with the performance of the system default. If
the system default is better, the predicted configuration is
discarded, and the system default is taken.

IV. PERFORMANCE EVALUATION

Experimental analysis explores two aspects of DyNUMA:
prediction accuracy of the ANN model and effectiveness of
model-based optimization.

We use two benchmark suites, the NAS parallel bench-
marks (3.1) [24] and the ASCI Sequoia benchmark
suite [25]. The benchmarks have 85 OpenMP parallel
regions in total. Their workload ranges from compute-
intensive to memory-intensive and most benchmarks exhibit
phase changes in their memory access patterns. We use the
Class D data set for all NAS benchmarks and use two of the
Sequoia AMG benchmarks, AMG.Relax and AMG.Matvec.

The number of sample iterations k (see Section III.A) is 4
in our tests. When presenting the results, we use the notation
benchmark suite name.benchmark name.region no
to represent a specific OpenMP parallel region. For
example, NPB.FT.1 refers to the first parallel region in the
benchmark FT in the NAS benchmark suite.

We present experiments from three platforms listed in
Table IV to verify the portability of DyNUMA. We use
Intel’s C and Fortran compilers (version 12.0.2) on AMD

6

platforms. On TilePro64, we use the Tilera GCC and Fortran
compiler (version 3.0.1) to perform cross compilation on an
X86-64 platform.

Table IV: Three test platforms
Processor #Cores Speed Memory

Nodes
Memory

Barcelona 16 2.0 GHz 4 64GB
Magny-Cours 32 2.5 GHz 4 128GB
TilePro64 64 866 MHZ 4 64GB

We execute OpenMP benchmarks with static loop
scheduling, which is the most appropriate for the selected
benchmarks. Nevertheless, DyNUMA is independent of
scheduling policy and can be applied as is once an initial
distribution of workload between threads is performed by
the scheduler. We execute benchmarks using first-touch for
data placement in memories. First-touch is a page-level
placement policy that allocates each page in memory located
as close as possible to the processor that first touches the
page during program execution. First-touch is an effective
common case policy for many operating systems (e.g., Linux
and FreeBSD).

A. ANN Model Prediction Accuracy

We evaluate the ANN model prediction accuracy by pre-
dicting wall-clock time and EDP. We use a cross validation
technique in our experiments. In particular, we use 7 out of
the 8 benchmarks for training and the remaining benchmark
to verify prediction accuracy. Figure 7 shows the prediction
error rate on the three platforms using 1400 samples in total.
The error rate for wall-clock time is 2.18% on average and
only 7.7% of the samples has an error rate higher than 5%.
The prediction error rate for EDP is 3.31% on average and
only 13.9% of the samples has an error rate higher than 5%.

0%

5%

10%

15%

20%

25%

0 200 400 600 800 1000 1200 1400

Er
ro

r
R

at
e

(%
)

Sample ID (EDP Prediction)

0%

5%

10%

15%

20%

25%

0 200 400 600 800 1000 1200 1400

Sample ID (Wall-clock Time Prediction)

Figure 7: The distribution of ANN prediction error rate for EDP
and wall-clock time

To investigate the variance of prediction accuracy across
benchmarks, we look into the prediction results for each
benchmark. Figure 8 displays the EDP prediction results for
one OpenMP region of each benchmark. Similar variance of
prediction accuracy is observed in other OpenMP regions.
We notice that the predictor achieves high accuracy no
matter how many threads are chosen to run a parallel region.
We also notice that the prediction error rate for NAS SP
is relatively high. We suspect this is due to a shift in
the memory access pattern within the benchmark region
studied. Our model cannot capture well oscillating memory
access patterns within the same OpenMP region. Prediction
accuracy can be improved, if the model is applied at a
granularity finer than that of an OpenMP parallel region.

B. Comparison between ANN Model and Linear Regression
Model

Linear regression models have been used for performance
prediction in earlier work [9], [10], [12]. They are a realistic
baseline to compare against the ANN model. We compare
the prediction accuracy of the ANN model with that of a
linear regression-based model proposed by Curtis-Maury et
al. [26]. This linear regression model is briefly explained in
Equation 5.

pi = Pmax ∗ Hi(m1,m2,m3,m4) + ei (5)
where pi is the prediction target (e.g., wall-clock time,
EDP or MFLOPS/Watt) for the case of using i threads.
Pmax is the measured value using maximal number of
threads and Hi() is a transfer function to scale the observed
Pmax. The transfer function is a linear combination of four
hardware event rates, m1,m2,m3, and m4, with significant
contribution to the observed metric, in a statistical sense. For
the 16-core Barcelona system, these rates are IPC, LMA,
RMA and branch misses per cycle. ei is a constant residual.

Figure 9 shows the prediction results from 21 parallel
regions of NPB FT, CG, SP and MG benchmarks using
the linear regression model. The benchmarks run with 8
threads on the 16-core Barcelona platform. The curves
within the figure represent prediction values normalized to
the measured values. We find that linear regression predicts
EDP poorly. The prediction error is up to 60%. We further
compare the linear regression model and ANN models
in Table V, which summarizes the prediction error rates
for wall-clock time and EDP, collected from the 16-core
Barcelona platform. The results are averages of 21 parallel
regions. In terms of wall-clock time prediction, the ANN
model is about 7% better than the linear model, with the
standard deviation being 10 times less. In terms of EDP
prediction, the ANN model is much better (18%) than the
linear model, with the standard deviation being 25 times
less. The ANN model achieves better prediction accuracy
than the linear model. This is because there is inherent non-
linear relationship between hardware counter event rates and
the prediction target, due to the implications of data locality
and contention. The linear model lacks the ability to emulate
the NUMA architecture, as all remote memory accesses are
treated equally and summarized as a single term with only
one coefficient within the model, despite varying latency due
to the interconnect topology and contention. In contrast, the
ANN model can map data locality and architecture details
into the model illustrated in Figure 4, hence is able to make
prediction with higher accuracy.

Table V: Comparison of the linear regression (LR) and ANN
models for time and EDP predictions

Model LR ANN
The averaged error rate for time prediction 9.90% 2.18%
The standard deviation for time prediction 1.591 0.156
The averaged error rate for EDP prediction 22.61% 3.31%
The standard deviation for EDP prediction 2741.3 106.78

C. Thread Mapping
We compare thread mapping in DyNUMA to the default

thread mapping scheme used in Linux. Table VI displays
selected results. For each benchmark, we choose a specific
number of threads and then execute it with the two methods
to decide the thread mapping. We run each test 100 times
on the 16-core Barcelona machine. Table VI reports the
best performance improvement with DyNUMA for each test

7

0%

20%

40%

60%

80%

100%

120%

140%

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Threads

NPB.FT

Predicted EDP Measured EDP Normalized Prediction

0%

20%

40%

60%

80%

100%

120%

140%

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Threads

NPB.CG

Predicted EDP Measured EDP

Normalized Prediction

0%

20%

40%

60%

80%

100%

120%

140%

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Threads

NPB.SP

Predicted EDP Measured EDP
Normalized Prediction

0%

20%

40%

60%

80%

100%

120%

140%

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Threads

NPB.BT

Predicted EDP Measured EDP

Normalized Prediction

0%

20%

40%

60%

80%

100%

120%

140%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Threads

NPB.MG

Predicted EDP Measured EDP
Normalized Prediction

0%

20%

40%

60%

80%

100%

120%

140%

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Threads

NPB.UA

Predicted EDP Measured EDP Normalized Prediction

0%

20%

40%

60%

80%

100%

120%

140%

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Threads

AMG.Relax

Predicted EDP Measured EDP

Normalized Prediction

0%

20%

40%

60%

80%

100%

120%

140%

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Threads

AMG.Matvec

Predicted EDP Measured EDP

Normalized Prediction

E
D

P
(J

.s
e
c
)

E
D

P
(J

.s
e
c
)

P
re

d
ic

te
d
 E

D
P

 n
o
rm

a
liz

e
d
 w

ith
 th

e
 m

e
a
s
u
re

d
 E

D
P

Figure 8: The EDP prediction results for the 16-cores system with the ANN model. The Normalized Prediction refers to the predicted
value normalized by the measured one.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0

5

10

15

20

25

30

35

wall-clock time

Predicted Wall-clock time Measured Wall-clock time Normalized Prediction

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0

10000

20000

30000

40000

50000

60000

EDP

Predicted EDP Measured EDP Normalized Prediction

T
im

e
(s

e
c

o
n

d
)

E
D

P
(J

o
u

le
.s

e
c

o
n

d
)

Figure 9: Prediction accuracy of the linear regression model

case. The results indicate that optimized thread mapping can
significantly improve performance.

Table VI: Performance improvement with our thread mapping
algorithm

Benchmark # Threads Performance Improvement
SP.C 4 20%
FT.B 8 28%

MG.B 12 6%
MG.B 16 14%

D. ANN versus TMA

We use two benchmarks, AMG.Relax and AMG.Matvec
to show if the ANN predictor provides performance im-
provement over a system that uses only TMA as an optimizer
before showing the performance of the two optimizers com-
bined in next subsection. Figure 10 shows that concurrency
control with the ANN provides significant additional im-
provement in performance and energy-efficiency compared
to mere thread mapping optimization. This behavior is more
pronounced in memory-bound code regions.

70%

75%

80%

85%

90%

95%

100%

w
al

l-
cl

o
ck

 t
im

e

E
D

P

M
F

LO
P

S/
W

at
t

w
al

l-
cl

o
ck

 t
im

e

E
D

P

M
F

LO
P

S/
W

at
t

Barcelona Magny-Cours

N
o

rm
a

li
ze

d
 T

im
e,

 E
D

P
,

M
FL

O
P

/W
a

tt
 (

%
)

(TMA) AMG.Relax (TMA) AMG.Matvec

(ANN) AMG.Relax (ANN) AMG.Matvec

Figure 10: Performance comparison of ANN over TMA

E. DyNUMA Results
We now consider the full DyNUMA framework, including

concurrency throttling and thread mapping optimization. We
report results in Figures 11-14 and Table VII. These results
are normalized to the respective metrics with maximum
concurrency and the default Linux thread mapping. On

8

TilePro64, we test DyNUMA with a limited subset of
the benchmarks due to hardware instability. The TilePro64
provides a platform-specific Oprofile tool for collecting
hardware event rates. Oprofile, unlike PAPI, does not have
the ability to collect data at runtime. Therefore, the TMA
algorithm cannot collect application signatures on TilePro64.
Hence, we only use the ANN model to predict thread
concurrency without applying TMA on the Tilera platform.

Figure 11 summarizes the performance of DyNUMA and
Table VII presents averages. We notice significant improve-
ment in EDP and noticeable improvement in wall-clock time
on the TilePro64. The improvement stem exclusively from
concurrency throttling, as applications do not scale perfectly
on the TilePro64. By choosing appropriate thread-level con-
currency, DyNUMA improves EDP by 30%. Improvements
in performance and energy-efficiency on other platforms are
more modest but still measurable and consistent.

N
o
rm

a
liz

e
d
 T

im
e
,
E

D
P

,
M

F
L

O
P

S
/W

a
tt

 (
%

)

0%

20%

40%

60%

80%

100%

120%

w
a
ll-

c
lo

c
k
 t
im

e

E
D

P

M
F

L
O

P
S

/W
a
tt

w
a
ll-

c
lo

c
k
 t
im

e

E
D

P

M
F

L
O

P
S

/W
a
tt

w
a
ll-

c
lo

c
k
 t
im

e

E
D

P

M
F

L
O

P
S

/W
a
tt

Barcelona Magny-Cours Tilera64

NPB.FT

NPB.CG

NPB.SP

NPB.BT

NPB.MG

NPB.UA

AMG.Relax

AMG.Matvec

Figure 11: Performance improvement with DyNUMA on the three
platforms

Table VII: Performance improvement with DyNUMA on the three
platforms

Metrics Barcelona Magny-Cours TilePro64
wall-clock time 6.74% 6.58% 12.88%
EDP 10.45% 6.90% 30.58%
MFLOS/Watt 10.66% 7.60% 18.49%

To further explore DyNUMA results, Figures 12-14 break
down the metrics presented in Figure 11 between OpenMP
parallel regions longer than 100 milliseconds. On the 16-
core Barcelona system, DyNUMA achieves improvement
in performance in 45% of the OpenMP parallel regions
and energy efficiency in 72% of the OpenMP parallel
regions; on the 32-core Magny-Cours machine, DyNUMA
achieves improvement in performance in 59% and energy
efficiency in 56% of OpenMP parallel regions; on the Tilera
platform, all parallel regions benefit from DyNUMA in both
performance and energy efficiency. However, not all parallel
regions present opportunities for optimization. Compute-
intensive regions tend to be more scalable and less sensitive
to thread mappings than memory-bound regions. This is the
case, for example, in NPB.FT.4, NPB.BT.1, NPB.BT.4 and
NPB.UA.18. In these parallel regions, DyNUMA leads to
negligible performance loss.

V. CONCLUSIONS AND FUTURE WORK

Performance and energy efficiency optimization depends
on effective control and mapping of parallelism to the system
architecture. NUMA architectures expand significantly the
search space of optimality. Programmers are often unaware
of or unwilling to navigate this space via experimentation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NPB.FT.1 AMG.Relax AMG.Matvec

N
o
rm

a
liz

e
d
 T

im
e
,
E

D
P

,
M

F
L

O
P

/W
a
tt
 (

%
)

Wall-clock Time EDP MFLOPS/Watt

Figure 12: Performance with DyNUMA on the 64-cores Tilera
platform

Effective automatic control of concurrency and mapping
needs to consider not only workload characteristics but also
specifics of the underlying NUMA architecture.

This paper presents a framework combining a memory-
centric, architecture-aware ANN model and a thread map-
ping arbiter to help parallel programs to autonomously
optimize their concurrency and thread mapping at runtime.
We evaluate the framework using the NAS and Sequoia
Benchmarks on three different NUMA platforms. DyNUMA
achieves on average 8.7% improvement in wall-clock time,
16% improvement in EDP and 12.3% improvement in
MFLOPS/Watt.

For future work, we will incorporate DyNUMA with
dynamic data migration to achieve better thread-data affinity.
We will also develop a strategy to combine small parallel
regions into bigger ones to explore new opportunities for
performance improvement.

ACKNOWLEDGEMENT
The paper has been authored, in part, by Oak Ridge National Laboratory, which

is managed by UT-Battelle, LLC under Contract #DE-AC05-00OR22725 to the U.S.
Government.Accordingly, the U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. This research is sponsored by the Office of
Advanced Scientific Computing Research in the U.S. Department of Energy. The
research leading to these results has received funding from the European Union 7th
Framework Programme [FP7/2007-2013], under the ENCORE (grant agreement no
248647), TEXT (no 261580) and I-CORES (no 224759) Projects. This material is
based upon work supported by the National Science Foundation under Grant No.
0910784 and 0905187.

REFERENCES
[1] Tilera, “TILEPro64 Processor-Product Brief,” Tilera, Tech.

Rep., 2012.
[2] NVIDIA, “NVIDIA Next Generation CUDA Compute

Architecture:Fermi,” 2012. [Online]. Available:
http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf

[3] TOP500, “TOP500 Supercomputer Site.” [Online]. Available:
http://www.top500.org

[4] J. Marathe, V. Thakkar, and F. Mueller, “Feedback-Directed
Page Placement for ccNUMA via Hardware-Generated Mem-
ory Traces,” Journal of Parallel and Distributed Computing,
vol. 70, no. 12, pp. 1204–1219, 2010.

[5] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Poly-
chronopoulos, J. Labarta, and E. Ayguadé, “UPMLIB: A Run-
time System for Tuning the Memory Performance of OpenMP
Programs on Scalable Shared-Memory Multiprocessors,” in
The 5th International Workshop on Languages, Compilers,
and Run-Time Systems for Scalable Computers, 2000, pp. 85–
99.

[6] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Poly-
chronopoulos, J. Labarta, and E. Ayguade, “User-level dy-
namic page migration for multiprogrammed shared-memory
multiprocessors,” in Proc. of the 2000 International Confer-
ence on Parallel Processing, 2000.

9

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Wall-clock Time EDP MFLOPS/Watt

N
o
rm

a
liz

e
d
 T

im
e
,

E
D

P
,

M
F

L
O

P
S

/W
a
tt
 (

%
)

Figure 13: Performance with DyNUMA on the 16-cores Barcelona platform

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Wall-clock Time EDP MFLOPS/Watt

N
o

rm
a
liz

e
d
 T

im
e
,

E
D

P
,

M
F

L
O

P
S

/W
a
tt
 (

%
)

Figure 14: Performance with DyNUMA on the 32-cores Magny-Cours platform

[7] D. Tam, R. Azimi, and M. Stumm, “Thread clustering:
sharing-aware scheduling on SMP-CMP-SMT multiproces-
sors,” in Proc. of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, ser. EuroSys ’07,
2007.

[8] R. Azimi, D. K. Tam, L. Soares, and M. Stumm, “Enhancing
operating system support for multicore processors by using
hardware performance monitoring,” SIGOPS Oper. Syst. Rev.,
2009.

[9] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopou-
los, B. R. de Supinski, and M. Schulz, “Prediction Models
for Multi-Dimensional Power-Performance Optimization on
Many Cores,” in Proc. of the 17th international conference
on Parallel architectures and compilation techniques, 2008.

[10] D. Li, B. de Supinski, M. Schulz, K. Cameron, and
D. Nikolopoulos, “Hybrid MPI/OpenMP Power-Aware Com-
puting,” in IEEE International Symposium on Parallel Dis-
tributed Processing, 2010.

[11] C. Su, D. Li, D. Nikolopoulos, M. Grove, K. W. Cameron,
and B. R. de Supinski, “Critical path-based thread placement
for numa systems,” in The second international workshop on
Performance modeling, benchmarking and simulation of high
performance computing systems, 2011.

[12] D. Li, D. Nikolopoulos, K. Cameron, B. de Supinski, and
M. Schulz, “Power-Aware MPI Task Aggregation Prediction
for High-End Computing Systems,” in IEEE International
Symposium on Parallel Distributed Processing, 2010.

[13] K. Singh, M. Curtis-Maury, S. A. McKee, F. Blagojević, D. S.
Nikolopoulos, B. R. de Supinski, and M. Schulz, “Compar-
ing Scalability Prediction Strategies on an SMP of CMPs,”
in Proc. of the 16th international Euro-Par conference on
Parallel processing, 2010.

[14] M. Curtis-Maury, K. Singh, S. A. McKee, F. Blagojevic, D. S.
Nikolopoulos, B. R. de Supinski, and M. Schulz, “Identifying
Energy-Efficient Concurrency Levels Using Machine Learn-
ing,” in Proc. of the 2007 IEEE International Conference on
Cluster Computing, 2007.

[15] C. Terboven, D. an Mey, D. Schmidl, H. Jin, and T. Reich-
stein, “Data and Thread Affinity in OpenMP Programs,” in
Proc. of the 2008 Workshop on Memory Access on Future
Processors: A Solved Problem?, 2008.

[16] C. Ribeiro, J.-F. Mehaut, A. Carissimi, M. Castro, and L. Fer-
nandes, “Memory Affinity for Hierarchical Shared Memory
Multiprocessors,” in Computer Architecture and High Perfor-
mance Computing, 2009. SBAC-PAD ’09. 21st International
Symposium on, 2009.

[17] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.-A.
Wacrenier, “Dynamic Task and Data Placement over NUMA
Architectures: An OpenMP Runtime Perspective,” in Proc.
of the 5th International Workshop on OpenMP: Evolving
OpenMP in an Age of Extreme Parallelism, 2009.

[18] W. Feng and T. Scogland, “The green500 list: Year one,”
in Proc. of IEEE International Symposium on Parallel Dis-
tributed Processing, 2009.

[19] S. Haykin, Neural Networks – a Comprehensive Foundation,
Prentice Hall, 2nd ed. Prentice Hall, 1999.

[20] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A
Portable Interface to Hardware Performance Counters,” in In
Proceedings of the Department of Defense HPCMP Users
Group Conference, 1999, pp. 7–10.

[21] “Oprofile Performance Monitoring Tool.” [Online]. Available:
http://oprofile.sourceforge.net/news/

[22] “WattsUp Meter Tool.” [Online]. Available: https://www.
wattsupmeters.com

[23] R. Ge, X. Feng, and K. Cameron, “Modeling and Evaluat-
ing Energy-Performance Efficiency of Parallel Processing on
Multicore Based Power Aware Systems,” in IEEE Interna-
tional Symposium on Parallel Distributed Processing, 2009.

[24] D. H. Bailey, “Performance and the NAS Parallel Bench-
marks,” International Journal of High Performance Comput-
ing Applications, vol. 5, no. 3, pp. 63–73, 1994.

[25] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith, “The
Sequoia 2000 Benchmark,” in Proc. of the 1993 ACM SIG-
MOD International Conference on Management of Data,
1993.

[26] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and
D. S. Nikolopoulos, “Online Power-Performance Adaptation
of Multithreaded Programs Using Hardware Event-Based Pre-
diction,” in Proc. of the 20th annual international conference
on Supercomputing, 2006.

10

