
Power-aware MPI Task Aggregation Prediction for High-End Computing Systems

Dong Li† Dimitrios S. Nikolopoulos‡ Kirk Cameron† Bronis R. de Supinski? Martin Schulz?

† Virginia Tech
Blacksburg, VA, USA

{lid,cameron}@cs.vt.edu

? Lawrence Livermore National Lab
Livermore, CA, USA

{bronis,schulzm}@llnl.gov

‡ FORTH-ICS and University of Crete
Heraklion, Crete, GREECE

dsn@ics.forth.gr

Abstract—Emerging large-scale systems have many nodes
with several processors per node and multiple cores per
processor. These systems require effective task distribution
between cores, processors and nodes to achieve high levels
of performance and utilization. Current scheduling strategies
distribute tasks between cores according to a count of available
cores, but ignore the execution time and energy implications
of task aggregation (i.e., grouping multiple tasks within the
same node or the same multicore processor). Task aggregation
can save significant energy while sustaining or even improving
performance. However, choosing an effective task aggregation
becomes more difficult as the core count and the options
available for task placement increase. We present a framework
to predict the performance effect of task aggregation in both
computation and communication phases and its impact in
terms of execution time and energy of MPI programs. Our
results for the NPB 3.2 MPI benchmark suite show that our
framework provides accurate predictions leading to substantial
energy saving through aggregation (64.87% on average and up
to 70.03%) with tolerable performance loss (under 5%).

Keywords-MPI; performance modeling; power-aware high-
performance computing.

I. INTRODUCTION

Modern high-end computing systems have many nodes
with several processors per node and multiple cores per
processor. The distribution of tasks across the cores of
multiple nodes impacts both execution time and energy.
Current job management systems, which typically rely on a
count of available cores for assigning jobs to cores, simply
treat parallel job submissions as a 2D chart with time along
one axis and number of cores along the other [1], [2].
They regard each job as a rectangle with width equal to the
number of cores requested by the job and height equal to the
estimated job execution time. Most scheduling strategies are
based on this model, which has been extensively studied [3],
[4], [5]. Some job scheduling systems also consider commu-
nication locality factors such as the network topology [6].
Unfortunately, job schedulers ignore the power-performance
implications of the layouts of cores available in compute
nodes to execute tasks from parallel jobs.

Task aggregation refers to aggregating multiple tasks
within a node with shared memory. A fixed number of tasks
can be distributed across a variable number of nodes, using
different degrees of task aggregation per node. Aggregated
tasks share system resources, such as the memory hierarchy
and network interface, which has an impact on performance.

This impact may be destructive, because of contention
for resources. However, it may also be constructive. For
example, an application can benefit from the low latency and
high bandwidth of intra-node communication through shared
memory. Although earlier work has studied the performance
implications of communication through shared-memory in
MPI programs [7], [8], [9], the problem of selecting the
best distribution and aggregation of a fixed number of tasks
has been left largely to ad hoc solutions.

Task aggregation significantly impacts energy consump-
tion. A job uses fewer nodes with a higher degree of task
aggregation. Unused nodes can be set to a deep low-power
state while idling. At the same time, aggregating more tasks
per node implies that more cores will be active running tasks
on the node, while memory occupancy and link traffic will
also increase. Therefore, aggregation tends to increase the
power consumption of active nodes. In summary, task aggre-
gation has complex implications on both performance and
energy. Job schedulers should consider these implications
in order to optimize energy-related metrics while meeting
performance constraints.

In this paper we propose a model to predict the impact
of task aggregation, which entails several issues:
• How can we model and predict the performance impact

of aggregation on computation phases? The prediction
should capture the likely impact of increased hardware
utilization and contention on scalability.

• How can we model and predict the impact of aggre-
gation on communication phases? Can we predict this
impact based on the aggregation pattern?

• How can we integrate predictions for computation and
communication to predict the optimal aggregation level,
given an optimization criterion based on performance,
energy, or a combination thereof?

The main contributions of this paper are:
• A framework to collect information from execution

samples in HPC applications and use this information
to predict the impact of MPI task aggregation;

• A model for predicting the impact of aggregation on
the computation phases of MPI programs;

• An analysis of the effects of concurrent inter-task
communication under varying aggregation levels and a
method of predicting an upper bound of communication

time across different aggregation levels;
• A formalization of the problem of deciding which MPI

tasks should be aggregated, given the aforementioned
analysis of communication; this formalization maps the
problem into a graph partitioning problem, which we
solve with a heuristic algorithm;

• An evaluation of task aggregation on system scales of
up to 1024 cores.

Our results show that our prediction captures accurately
the performance impact of different aggregation patterns.
Our prediction for the computation phases has 1.08% error
on average. Our prediction for total execution time time,
which includes an upper bound of communication time, has
28.97% error on average. This seemingly large error arises
due to the inability of modeling overlapping communication
operations and communication with computation in our
framework. Nevertheless, the error tends to be uniform
across aggregation patterns, therefore our prediction tends to
rank correctly aggregations in terms of the objective metric
(minimizing energy under a performance constraint). The
predicted task aggregations yield substantial energy saving
(64.87% on average and up to 70.03%) with tolerable per-
formance loss (under 5%). We correctly predict the optimal
aggregation in most cases on system scales from 16 nodes
up to 128 nodes. Even in mispredicted cases, our prediction
is close to the optimal and achieves 68.12% energy saving
on average. In addition, our scaling study (up to 1024 cores)
demonstrates improved performance with more aggregation.

The rest of this paper is organized as follows. Section II
formulates the problem of task aggregation. Section III
presents our method for predicting the performance of com-
putation phases after task aggregation. Section IV presents
our graph partitioning algorithm for task grouping. Section V
presents our communication performance prediction method.
Section VI discusses our method for ranking aggregation
patterns. Section VII presents our experimental analysis.
Section VIII discusses related work and Section IX con-
cludes the paper.

II. PROBLEM STATEMENT

We target the problem of how to distribute MPI tasks be-
tween and within nodes in order to minimize execution time,
or minimize energy, under a given performance constraint.
The solution must make two decisions: how many tasks to
aggregate per node; and how to assign the tasks scheduled on
the same node to cores, which determines how these tasks
will share hardware components such as caches, network
resources, and memory bandwidth. In all cases, we select a
task aggregation pattern based on performance predictions.

We assume the following:
1) The number of MPI tasks is given and fixed throughout

the execution of the application;
2) The number of nodes used to execute the application

and the number of tasks per node is decided at job

Figure 1: Impact of task aggregation on the NAS PB suite

submission time and this decision depends on a pre-
diction of the impact of different aggregation patterns
on performance and energy;

3) Any aggregation must assign the same number of tasks
to each node;

4) Jobs are SPMD (Single Program Multiple Data) pro-
grams;

5) MPI communication patterns—including message size
and communication target—can vary across tasks;

6) Aggregation patterns must not result in total DRAM
requirements that exceed a node’s physical memory.

Allowing aggregation patterns that place more tasks on
some nodes than others may be more efficient in imbalanced
applications, however, the resulting load imbalance would
hurt performance and waste energy in well balanced SPMD
applications. In these cases, the system could leverage slack

Figure 2: Aggregation patterns on our test platform

to save energy. Energy saving opportunities due to slack
have been studied elsewhere [10] and are beyond the scope
of this work.

A series of tests with the NPB 3.2 MPI benchmarks [11]
(problem size D) on 16 nodes of a cluster under various
aggregation patterns demonstrates the effect of aggregation
on execution time and energy. Each node of this cluster has
two Xeon E5462 quad-core processors, each of which has
two dies shared by two cores and 8 GB of physical memory.
Figure 1 shows the results for the eight possible aggregation
patterns on this platform. Energy and energy-delay product
data are normalized to the results with aggregation pattern
1. Figure 2 depicts the aggregation patterns with the cores
assigned to tasks indicated with stripes. Pattern 8 is not
available for some benchmarks as each task requires more
than an eighth of the memory on a node. Our results
for FT use more grid points and iterations than in the
standard problem size D to achieve longer execution time.
As seen in the execution time and energy consumption of
the benchmarks across all feasible aggregation patterns, no
single pattern always provides the best results. For example,
using one core of each die (pattern 5) for CG uses the
least energy but results in sub-optimal execution time, while
using one core of each processor (pattern 2) for FT provides
the lowest execution time but does not minimize energy
consumption.

We decompose the aggregation problem into three sub-
problems:

1) Predicting the impact of task count per node on
computation;

2) Predicting the communication cost of all aggregation
patterns;

3) Combining the computation and communication pre-
dictions.

We study the impact of aggregation on computation and
communication separately, since the same aggregation pat-
tern can impact computation and communication differently.

We present a prediction-based framework to solve the
aggregation problem. The framework exploits the iterative
structure of parallel phases that dominate execution time in
scientific applications. We collect samples of hardware event
counters and communication pattern information at runtime.
From this data, we predict the performance under all feasible
aggregation patterns and then rank the patterns to identify a
preferred aggregation pattern.

III. PREDICTING COMPUTATION PERFORMANCE

We predict performance during computation phases by
predicting IPC. We derive an empirical model based on
previous work [12], [13], [14], which predicts IPC of
computation phases in OpenMP applications. We use iter-
ation samples collected at runtime on specific aggregation
patterns to predict the IPC for each task on other untested
aggregation patterns. The IPC for each aggregation pattern
is the average value of the IPC of all tasks.

The execution samples provide statistical indicators about
the execution properties of computation phases that impact
IPC. Different aggregation patterns imply different patterns
in resource sharing and contention, which in turn influence
IPC. If we can accurately predict the impact of sharing and
contention on IPC we can also identify the aggregations
that improve energy efficiency.

Based on this discussion, we build an empirical model
derivation shown in equation (1):

IPCt =

|S|X
i=1

(IPCi · α(t,i)(e(1···n,i))) + λt(e(1···n,S)) + σt (1)

The model predicts the IPC of a specific aggregation
pattern t, based on information collected in S samples. We
collect n hardware event rates e(1···n,i) and IPCi in each
sample i. The function α(t,i)() scales the observed IPCi in
sample i up or down based on the observed values of event
rates while λt is a function that accounts for the interaction
between events and σt is a constant term for the aggregation
pattern t. For a specific sample s, αt is defined as:

αt(e(1···n,s)) =

nX
j=1

(x(t,j) · e(j,s) + y(t,j)) + zt (2)

where e(j,s) is a hardware event in sample s, and x(t,j),
y(t,j) and zt are coefficients.
λt is defined as:

λt(e(1···n,S)) =
nX

i=1

(

|S|−1X
j=1

(

|S|X
k=j+1

(µ(t,i,j,k) · e(i,j) · e(i,k))))+

|S|−1X
j=1

(

|S|X
k=j+1

(µ(t,j,k,IPC) · IPCj · IPCk)) + lt

(3)

where e(i,j) is the ith event of the jth sample. µ(t,i,j,k),
µ(t,j,k,IPC) and lt are coefficients.

We approximate the coefficients in our model with multi-
variate linear regression. IPC, the product of IPC and each
event rate, and the interaction terms in the sample aggrega-
tion patterns serve as independent variables, while the IPC
on each target aggregation pattern serves as the dependent
variable. We record IPC and a predefined collection of
event rates while executing the computation phases of each
training benchmark with all aggregation patterns. We use
the hardware event rates that most strongly correlate with the
target IPC in the sample aggregation patterns. We develop a
model separately for each aggregation pattern and derive sets
of coefficients independently. The training benchmarks are
the twelve SPEC MPI 2007 benchmarks [15] under different
problem sets, which demonstrate wide variation in execution
properties such as scalability and memory-boundedness.

We classify computation phases into four categories based
on their observed IPC during the execution of the sample
aggregation patterns and use separate models for different
categories in order to improve prediction accuracy. Specif-
ically, we classify phases into four categories with IPC
[0, 1), [1, 1.5), [1.5, 2.0) and [2.0,+∞). Thus our model
is a piecewise linear regression that attempts to describe
more accurately the relationship between dependent and
independent variables by separately handling phases with
low and high scalability characteristics.

We test our model by comparing our predicted IPC with
the measured IPC of the computation phases of several
NPB MPI benchmarks. We present results from tests on the
Virginia Tech System G supercomputer (see Section VII) in
Figure 1. Patterns 4 and 5 from Figure 2 serve as our sample
aggregation patterns. Our model is highly accurate, as the
results in Table I show, with worst-case absolute error of
2.109%. The average error in all predictions is 1.079% and
the standard deviation is 0.7916.

IV. TASK GROUPING

An aggregation pattern determines how many tasks to
place on each node and processor; we must also determine
which tasks to collocate. If an aggregation groups k tasks
per node and a program uses n tasks, there are

(
n
k

)
ways

to group the tasks to achieve the aggregation. For nodes
with p ≥ k processors, we then can place the k tasks
on one node in

(
p
k

)
k! = p!

(p−k)! ways on the available
cores. The grouping of tasks on nodes and their placement
on processors has an impact on the performance of MPI
point-to-point communication. Computation phases are only
sensitive to how tasks are laid out in each node and not
to which subset of tasks is aggregated in each node since
we assume SPMD applications with balanced workloads
between processors. The impact of task placement for MPI
collective operations depends on the characteristics of the
network; they are relatively insensitive to task placement

Measured
IPC

Predicted
IPC

Error rate

lu.D.16, pattern1 1.926 1.944 0.9510%
lu.D.16, pattern2 1.921 1.937 0.8234%
lu.D.16, pattern3 1.924 1.942 0.9109%
lu.D.16, pattern6 1.846 1.834 0.6689%
lu.D.16, pattern7 1.763 1.743 1.137%
lu.D.16, pattern8 1.699 1.669 1.741%
bt.D.16, pattern1 2.033 2.028 0.2475%
bt.D.16, pattern2 2.048 2.032 0.7474%
bt.D.16, pattern3 2.051 2.041 0.4738%
bt.D.16, pattern6 2.014 2.008 0.3041%
bt.D.16, pattern7 1.989 1.995 0.3033%
ft.D.16, pattern1 1.441 1.469 1.934%
ft.D.16, pattern2 1.568 1.601 2.109%
ft.D.16, pattern3 1.512 1.543 2.032%
ft.D.16, pattern6 1.451 1.479 1.948%
ft.D.16, pattern7 1.291 1.314 1.730%
sp.D.16, pattern1 1.952 1.976 1.259%
sp.D.16, pattern2 1.956 1.971 0.7839%
sp.D.16, pattern3 1.99 1.955 0.3166%
sp.D.16, pattern6 1.755 1.789 1.951%
sp.D.16, pattern7 1.610 1.628 1.110%

Table I: IPC prediction of computation phases

Figure 3: Intra-node vs. inter-node latency comparison

with flat networks such as fat trees. Thus, we focus on point-
to-point operations as we decide which specific MPI ranks
to locate on the same node or processor.

We demonstrate how MPI point-to-point communication
is sensitive to locations of communication source and target
in Figure 3, which shows results of single ping-pong pattern
tests with the Intel MPI benchmark [16] using OpenMPI-
1.3.2 [17]. Each test has two tasks involved in an MPI point-
to-point communication. For the inter-node results, we used
two nodes connected with a 40Gb/s InfiniBand network.
Each node has two Intel Xeon E5462 quad-core processors.
We also test the three possible intra-node placements (same
die; different dies, same processor; different processors —
see Figure 2).

The results reveal that intra-node communication has low
latency for small messages, while inter-node high bandwidth
communication is more efficient for large messages. These
conclusions are consistent with previous results on the
Myrinet2000 network [7]. In theory, intra-node communi-

cation can leverage the low latency and high throughput of
the node memory system. Therefore, it should outperform
inter-node communication. In practice, sharing the node’s
memory bandwidth between communicating tasks while
they exchange large messages incurs sufficient overhead to
make it less efficient than inter-node communication. We
also find that the performance of intra-node communication
is sensitive to how the tasks are laid out within a node: intra-
node communication can benefit from cache sharing due to
processor die sharing or whole processor sharing.

Based on these results, we prefer aggregations that colo-
cate tasks based on whether their communication is in the
latency or bandwidth regime. However, we cannot decide
whether to colocate a given pair of tasks based only on
individual point-to-point communications between them.
Instead, we must consider all communication performed
between those tasks and all communication between all
tasks. Overall performance may be best even though some
(or all) point-to-point communication between two specific
tasks is not optimized.

Task grouping is an NP-complete problem [18]. We for-
malize the problem as a graph partitioning problem and use
an efficient heuristic algorithm [19] to solve it. We briefly
review this algorithm in the following section.

A. Algorithm Review

The algorithm partitions a graph G of kn nodes with
associated edge costs into k subpartitions, such that the total
cost of the edge cut, the edges connecting subpartitions,
is minimized. The algorithm starts with an arbitrary par-
titioning into k sets of size n and then tries to bring the
partitioning as close as possible to being pairwise optimal
by repeated application of a 2-way partitioning procedure.

The 2-way partitioning procedure starts with an arbitrary
partitioning {A,B} of a graph G and tries to decrease the
initial external cost T (i.e., the total cost of the edge cut) by a
series of interchanges of subsets of A and B. The algorithm
stops when it cannot find further pair-wise improvements. To
choose the subsets of A and B, the algorithm first selects two
graph nodes a1, b1 such that the gain g1 after interchanging
a1 with b1 is maximum. The algorithm temporarily sets
aside a1 and b1 and chooses the pair a2, b2 from A− {a1}
and B − {b1} that maximizes the gain g2. The algorithm
continues until it has exhausted the graph nodes. Then, the
algorithm chooses m to maximize the partial sum

∑m
i=1 gi.

The corresponding nodes a1, a2, ..., am and b1, b2, ..., bm are
exchanged.

This algorithm has a reasonable probability of finding the
optimal partition. The number of subset exchanges before
the algorithm converges to a final partition for a 2-way
partitioning is between 2 and 4 for a graph with 360
edges [19]. In our experiments we execute programs with
at most 128 tasks (as shown in Section VII). In this case,
the subset exchanges for 2-way partitioning (2 cluster nodes)

is at most 2 and the number of total subset exchanges for
16-way partitioning is at most 1200.

B. Applying the Algorithm

Task aggregation must group T tasks into n partitions,
where n is the number of nodes we want to use for a
specific aggregation pattern. We regard each MPI task as
a graph node and communication between tasks as edges.
Aggregating tasks into the same node is equivalent to placing
graph nodes into the same partition. We now define an edge
cost based on the communication between task pairs.

The original algorithm tries to minimize the total cost of
the edge cut. In other words, it tries to place graph nodes
with a small edge cost into different partitions. Thus, we
must assign a small (large) cost value on the edge which
favors inter-node (intra-node) communication. We observe
two further edge cost requirements:

1) The difference between the small cost value (for inter-
node communication) and the large cost value (for
intra-node communication) should be large;

2) The edge values should form a range that reflects the
relative benefit of intra-node communication.

A large difference between edge costs reduces the probabil-
ity of the heuristic algorithm selecting a poor partitioning.
The range of values reflects that colocation benefits some
task pairs that communicate frequently more than others.

To assign edge costs, we measure the size of every
message between each task pair during execution to obtain a
communication table. We then estimate the communication
time for each pair of communicating tasks i and j if we place
them in the same partition (tintra

ij) and if we place them in
different partitions (tinter

ij). We estimate these communica-
tion times experimentally by using data similar to that shown
in Figure 3. Our intra-node communication time prediction
is conservative, since we use the worst-case intra-node com-
munication (i.e., two tasks with no processor or die sharing).
Finally, we compare tintra

ij and tinter
ij to decide whether the

tasks i, j benefit from colocation. If tintra
ij > tinter

ij then we
set the edge cost to cij = 1.0/(tintra

ij −tinter
ij). Alternatively,

if tintra
ij ≤ tinter

ij , we set cij = C + (tinter
ij − tintra

ij). These
edge costs provide a range of values that reflect the relative
benefit of intra-node communication as needed.
C is a parameter that ensures the difference of edge costs

for pairs of tasks that favor intra-node communication and
pairs of tasks that favor inter-node communication is large.
We define C as:

C = k2∆t (4)

where k is the number of tasks per node (i.e., k = T/n).
k2 is the maximum number of edge cuts between the
two partitions. ∆t is defined as max{1.0/(tintra

ij − tinter
ij)}

between all task pairs (i, j) that benefit from inter-node
communication.

Overall, our edge costs reflect whether the communication
between a task pair is in the latency or bandwidth regime.
We apply the graph partitioning algorithm based on these
edge costs to group tasks into n nodes. We then use the
same algorithm to determine the placement of tasks on
processors within a node. Thus, this algorithm calculates
a task placement for each aggregation pattern.

V. PREDICTING COMMUNICATION PERFORMANCE

Communication performance prediction must estimate the
impact of sharing resources such as memory, buses or
other node-level interconnects, network interfaces, links, and
switches. We use the term communication interference if this
sharing causes performance loss.

We study how communication operations performed by
tasks in the same node affect performance. In particular,
we investigate if the placement of tasks in the node (i.e.,
how MPI tasks are distributed between processors, sockets,
and dies in the node) and task intensity (i.e., the number
of tasks assigned to the node) affect performance. Figure 4
displays the performance of intra-node MPI point-to-point
communication between two tasks, which we call the “ob-
served communication operation”, while there is interference
from other concurrent intra-node communication operations,
which we call “noise”. We use the Intel MPI benchmark
to perform concurrent ping-pong tests within a node, and
present results from the same system as in Section IV. The
observed communication operation and noise start at the
same time and use the same message size.

Figure 4(a) shows that task placement impacts commu-
nication performance. In the following, we refer to the
numbering of patterns presented in Figure 2 for conciseness.
The intra-node communication in groups 1, 2, and 3 follows
communication patterns 4, 3 and 2 respectively. Each group
has three tests: test 1 is a reference with no noise; test
2 and test 3 each have a task pair introducing noise by
performing intra-node communication. In test 2, the layout
of the task pair introducing noise and the layout of the
observed task pair follow pattern 6 for group 1 and pattern 5
for group 2 and group 3. In test 3, the layout of the task pair
introducing noise and the layout of the observed task pair
follow pattern 7 in group 1 and 2, and pattern 6 in group
3. The performance penalty of intra-node communication
under noise can range from negligible to as high as 182%,
depending on where the tasks that introduce noise are
located.

Figure 4(b) shows that task intensity has a significant
impact on communication performance. In these tests, the
two tasks performing the observed communication operation
do not share a processor. The tasks introducing noise do not
share a processor either. Test 1 is again a reference with
no noise, while test 2 has one pair of tasks introducing
noise and test 3 has two pairs of tasks introducing noise.
The intra-node communication of tasks introducing noise

(a) Impact of task placement

(b) Impact of task intensity

Figure 4: Impact of communication interference

in test 2 and test 3 occupy a different processor than
the task pair performing the observed communication. Test
4 has three task pairs introducing noise by performing
intra-node communication that, together with the observed
pair, fully occupy all cores. The performance of intra-node
communication is significantly affected by other intra-node
communication operations running concurrently on the same
node, especially if the message size is large.

We conducted exhaustive tests to cover all combinations
of intra-node communication and inter-node communication
under different aggregation patterns. The tests show that both
intra-node communication and inter-node communication
are sensitive to interference from concurrent communication
operations. They also show that the performance of MPI
communication is sensitive to task placement and task
intensity. Thus, we must capture the impact of these factors
and integrate them into our prediction framework.

Modeling and predicting communication time in the pres-
ence of noise is challenging, due to the following reasons:
• Computation/communication overlap;
• Overlap and interference of concurrent communication

operations;
• Even in the absence of overlap, many factors, including

task placement, task intensity, communication type (i.e.,
intra-node or inter-node), and communication volume
and intensity impact communication interference.

Thus, we propose an empirical method to predict a rea-
sonable upper bound for MPI point-to-point communication
time.

We trace MPI point-to-point operations to gather the
endpoints of communication operations. We also estimate

Figure 5: Examples of symmetric task placements

potential interference based on the proximity of the calls.
We use this information to estimate parameters for task
placement and task intensity that interfere with each com-
munication operation for each aggregation pattern. Since
we predict an upper bound, we assume that the entire
MPI latency overlaps with noise from other concurrent
communication operations. This assumption is reasonable
for well-balanced SPMD applications, because of their bulk-
synchronous execution pattern.

We construct a prediction table based on our extracted
parameters, namely type of communication (intra-node/inter-
node), task intensity, task placement for both communicating
and interfering tasks, and message size. We populate the
table by running MPI point-to-point communication tests
under various combinations of input parameters. We reduce
the space that we must consider for the table by considering
groups of task placements with small performance difference
as symmetric. The symmetric task placements have identical
hardware sharing characteristics with respect to observed
communication and noise communication. Figure 5 depicts
two symmetric examples with one observed intra-node task
pair and one task pair introducing noise. We mark the
cores occupied by task pairs that introduce noise with dots
and the cores occupied by the observed task pairs with
stripes. Placement A and placement B are symmetric, so
are placement C and placement D.

We use a similar empirical scheme for MPI collectives.
However, the problem is simplified since collectives on
MPI COMM WORLD involves all tasks; we leave extend-
ing our framework to handle collective operations on derived
communicators as future work. Thus, we only need to test
the possible task placements for specific task counts per node
for the observed communication.

We apply our communication prediction methodology to
the NPB 3.2 MPI benchmarks and compare it with the
communication time measured and reported by mpiP [20].
Figure 6 shows a subset of the results. We use 10 iterations
of the main computation loop in bt.D.16 and ft.D.16, and 50
iterations of the main computation loop in mg.D.16, to min-

Figure 6: Measured vs. predicted communication time

imize measurement error. Most MPI operations in BT and
MG are point-to-point operations. We clearly overpredict
communication overhead due to the overlap of computation
and communication and our pessimistic prediction of the
overlap between interfering communication operations. On
the contrary, MPI operations in FT are collective operations
and our prediction methodology is accurate in these cases.

VI. CHOOSING AN AGGREGATION PATTERN

Our prediction framework allows us to predict the ag-
gregation pattern that either optimizes performance, or op-
timizes energy under a given performance constraint.

We predict the best aggregation pattern based on our
computation and communication performance predictions.
Since our goal is to minimize energy under a performance
constraint, we pick candidates based on their predicted
performance and then rank them considering a ranking of
their energy consumption.

We predict performance in terms of IPC (Section III).
To predict performance in terms of time, we measure the
number of instructions executed with one aggregation pattern
and assume that this number remains constant across aggre-
gation patterns. We verify this assumption by counting the
number of instructions under different aggregation patterns
for 10 iterations of all NPB MPI benchmarks on a node

of our cluster. The maximum variance in the number of
instructions executed between different aggregation patterns
is a negligible 8.5E-05%.

We compare aggregation patterns by measuring their dif-
ference to a reference pattern, where there is no aggregation
of tasks in a node. We compute the difference as:

∆t = tcomp
1 + tcomm

1 − tcomp
0 − tcomm

0 (5)

where tcomp
1 , tcomm

1 is our estimated computation time and
communication time upper bound for the given aggregation
pattern respectively and tcomp

0 , tcomm
0 is the computation and

communication time for the reference pattern respectively.
Comparing patterns in terms of difference with a reference
pattern partially compensates for the effect of overlap and
other errors of time prediction, such as the gap between the
actual and predicted communication time. Our analysis in
Sections III and V estimates performance for each task. For
a specific aggregation pattern, Equation (5) uses the average
computation time of all tasks and the longest communication
time.

We choose candidate patterns for aggregation using a
threshold of 5% for the performance penalty that any
aggregation pattern may introduce when compared to the
reference pattern. We discard any aggregation pattern with a
higher performance penalty, which ensures that we select
aggregations that minimally impact user experience. An
aggregation may actually improve performance; obviously,
we consider any such aggregations.

We choose the best aggregation candidate by considering
energy consumption. Instead of estimating actual energy
consumption, we rank aggregation patterns based on how
many nodes, processors, sockets, and dies they use. We rank
aggregation patterns that use fewer nodes (more tasks per
node) higher. Among aggregation patterns that use the same
number of nodes, we prefer aggregation patterns that use
fewer processors. Finally, among aggregation patterns that
use the same number of nodes and processors per node, we
rank aggregation patterns that use fewer dies per processor
higher. In the event of a tie, we prefer the aggregation
pattern with the better predicted performance. According
to this ranking method, the energy ranking of the eight
aggregation patterns for our platform in Figure 2 from most
energy-friendly to least energy-friendly corresponds with
their pattern IDs.

VII. PERFORMANCE

We implemented a tool suite for task aggregation in MPI
programs. The suite consists of a PMPI wrapper library
that collects communication metadata, an implementation
of the graph partitioning algorithm, and a tool to predict
computation and communication performance and choose
aggregation patterns. To facilitate collection of hardware
event rates for computation phases, we instrument applica-

tions with calls to a hardware performance monitoring and
sampling library.

We evaluate our framework with the NAS 3.2 MPI
benchmark suite, using OpenMPI-1.3.2 as the MPI commu-
nication library. We present experiments from the System G
supercomputer at Virginia Tech. The system has thousands
of power and thermal sensors and uses power-scalable
components. It is also equipped with intelligent power strips
to log power data for each node. System G has 320 nodes
powered by Mac Pro computers, each with two Quad-Core
Xeon E5462 processors clocked at 2.8GHz. The nodes are
connected by 40Gb/s Infiniband.

We set the threshold of performance loss to 5% and use
one task per node as the reference aggregation pattern. The
choice of the reference aggregation pattern is intuitive, since
we aim at demonstrating the potential energy and perfor-
mance advantages of aggregation and our reference performs
no task aggregation. More specifically, energy consumption
is intuitively greatest with one task per node since it uses the
maximum number of nodes for a given run. Task aggregation
attempts to reduce energy consumption through reduction
of the node count. Given that each node consumes a few
hundred Watts, we will save energy if we can reduce the
node count without sacrificing performance. Using one task
per node will often improve performance since that choice
eliminates destructive interference during computation or
communication phases between tasks running on the same
node. However, using more than one task per node can
improve performance, e.g., if tasks exchange data through
a shared cache. Since the overall performance impact of
aggregation varies with the application, our choice of the
reference aggregation pattern enables exploration of the
energy saving potential of various aggregation patterns.

Figure 7 shows that our prediction selects the best ob-
served aggregation pattern, namely the pattern that mini-
mizes energy while not violating the performance constraint,
in all cases. We indicate the best observed and predicted task
aggregations with stripes. The performance loss threshold is
shown with a dotted line. We achieve the maximum energy
saving with sp.D.16 (70.03%) and average energy saving of
64.87%. Our prediction of the time difference between ag-
gregation patterns for both computation and communication
follows the variance of actual measured time. For FT and
BT, we measure performance gains from some aggregation
patterns in computation phases and our predictions correctly
capture these gains.

The applications exhibit widely varied computation
to communication ratios, ranging from communication-
intensive (FT) to computation-intensive (LU). The com-
munication time difference across the different aggregation
patterns depends on message size and communication fre-
quency. Small messages or less frequent communication
result in a smaller communication time difference. For
example, 99.98% of the MPI communication operations in

lu.D.16 transfer small messages of size close to 4KB. The
communication time differences in patterns 2–6 are all less
than 10.0%; the communication time differences in patters
7 and 8 (most intensive aggregation patterns) are less than
22.7%.

On the contrary, the FT benchmark runs with an input of
size 1024 × 512 × 1024 and has MPI Alltoall operations,
in which each task sends 134MB data to other tasks and
receives 134MB data from other tasks; the communication
time differences in patterns 2–6 range between 28.96% and
144.1%; the communication time difference in pattern 7
(most intensive aggregation pattern) is as much as 209.7%.

We also observe that CG is very sensitive to the ag-
gregation pattern: different patterns can have significant
performance differences due to CG’s memory intensity [21].
Colocating tasks saturates the available memory bandwidth,
resulting in significant performance penalties. Finally, we
observe MG communication can benefit from task aggre-
gation due to the low latency of communicating through
shared-memory. In particular, communication time at pat-
terns 2, 3 and 4 reduce by 12.08%, 25.68% and 48.81%
respectively.

To investigate how aggregation affects energy consump-
tion on a larger system scale, Figure 8 shows the results
for LU (Class D) with more nodes in strong scaling tests.
As we scale up the processor count, performance improves
with more aggregation. In particular, lu.D.32 has an optimal
aggregation pattern of four tasks per node with each task
occupying a separate die, while both lu.D.64 and lu.D.128
have optimal aggregation patterns of eight tasks per node.
This difference occurs because tasks have smaller workloads
and therefore exercise less pressure on shared resources at
large processor counts. This result confirms the intuition that
maximal aggregation is the preferred way of running parallel
jobs on large-scale clusters, for the purpose of economizing
on energy and hardware resources, while sustaining perfor-
mance.

We also note that we predict a different best aggregation
than the observed best for lu.D.64 and lu.D.128 although our
choices perform similarly. Our predictions choose the second
optimal aggregations with energy saving 68.46% (lu.D.128)
and 67.77% (lu.D.64), while the optimal aggregations have
energy saving 80.70% (lu.D.128) and 80.65% (lu.D.64). In
both cases, our prediction of time difference for the observed
best is higher than the real time difference. As a result, we
eliminate that aggregation pattern as exceeding the max-
imum acceptable performance loss. In general, prediction
error increases as the time scale during which the program
runs decreases. Using more samples for prediction is a
potential solution to this problem.

VIII. RELATED WORK

Communication-aware task mapping techniques are an ac-
tive research area. Leng et al. [7] use the High Performance

Figure 8: Strong scaling and task aggregation for lu.D

Linpack benchmark to demonstrate how task re-mapping
can improve overall performance. However they manually
arrange the process mapping based on communication path
characteristics and MPI message information, which is not
a feasible solution for complex systems.

Orduna et al. [18], [22], [23], [24], [25] explore
communication-aware task mapping strategies that account
for the communication requirements of parallel tasks and
bandwidth in different parts of the network. They model
the network resources as a table of costs for each pair of
communicating processors. Their heuristic random search
method attempts to identify the best mapping for a given
network topology and communication pattern. Their work
targets heterogeneous inter-node networks and does not
consider intra-node communication. Also, their evaluation
only maps one process to each processor. Thus, they do not
account for potential interference between tasks executing
communication operations on the same node.

Our work improves on prior research by considering both
intra-node and inter-node communication for large scale
SMP clusters, which are the most common HPC platforms.
Our work further improves on prior research by accounting
for the impact of task aggregation on computation phases,
which we find to be significant.

Network communication models have been studied ex-

Figure 7: Results for the NPB 3.2 MPI benchmark suite

tensively. Well-known communication models include the
LogP [26] and LogGP models [27]. They usually predict
communication time with linear equations enclosing mea-
sured parameters. These models, however, do not consider
concurrent communication operations between groups of
tasks and ignore resource sharing, both essential factors
in understanding performance under different aggregation
scenarios.

Several researchers have focused on communication shar-
ing effects. Kim et.al [28] develop a model for predicting
delays of messages that share links in Myrinet. Their study
is based on the GM and BIP network protocols, whereas we
focus on MPI. Also their study does not consider intra-node
communication.

Martinasso et. al [29], [30] introduce a notion of resource
sharing within communication patterns. Their work decom-
poses a chain of sources of communication interference into
several elementary sources of interference and then predicts
communication time by the flow cut of each source. They
evaluate their model on SMP clusters with dual processors.
Nodes with more processors and complex core layouts
introduce complications in resource sharing that have not
been considered in their work. Furthermore, their model
requires careful analysis to decompose communication into
sources of interference manually, which makes it infeasible
for complex communication patterns. Our work considers
both intra-node and inter-node communication interference.
In addition, we predict worst case performance for the
communication conflicts to provide an upper bound on
communication time, a simplification that leads to a feasible
solution.

Several works have explored dynamic voltage and fre-
quency scaling (DVFS) to save energy. Software-controlled
energy saving in MPI programs has attracted considerable

interest recently. Rountree et al. [31] use linear programming
to estimate the maximum energy saving possible in MPI pro-
grams based on critical path analysis. The same authors [32],
propose a critical path-based online algorithm that uses
simple predictions of execution time for program regions
based on prior executions of the same regions. Springer [33]
propose a scheduler that selects node counts and CPU
frequencies to minimize energy consumption and execution
time. DVFS strategies for saving energy complement our
approach, which reduces energy by aggregating tasks and
releasing system resources.

IX. CONCLUSIONS

High-end computing systems continuously scale up to
more nodes, with more processors per node and more cores
per processor. The multitude of options for mapping parallel
programs to these systems creates optimization challenges.
In this paper we show that varying the aggregation and
placement of MPI tasks can provide significant energy
saving and occasional performance gain. Our framework
predicts a task aggregation pattern that minimizes energy
under performance constraints in MPI applications. We
derive an empirical model to predict computation time under
all feasible aggregation patterns. We formalize the problem
of grouping tasks as a graph partitioning problem and solve
it with a heuristic algorithm that considers communication
patterns. We also derive a communication time upper bound
for concurrent MPI point-to-point communication. Overall,
our predictions capture the performance impact of aggrega-
tion for both computation and communication phases. Based
on our prediction model, we further propose a method to
select aggregations. We apply our framework to the NPB
3.2 MPI benchmark suite and observe significant energy
saving (64.87% on average and up to 70.03%). We also

apply it at scales of up to 128 nodes and observe increasing
energy saving opportunities which allow more intensive task
aggregation under tight performance constraints.

In future work, we plan on designing an online framework
that can dynamically change the task aggregation pattern
according to dynamic performance predictions. This ap-
proach will require process migration, which is challenging
to implement efficiently and to model accurately in MPI
programs, yet feasible through the use of native MPI task
migration tools or virtualization frameworks. We also plan to
apply our framework to parallel programming models other
than MPI, including hybrid models.

ACKNOWLEDGMENT

This work has been supported by NSF (CNS-
0905187, CNS-0910784, CCF-0848670, CNS-0709025,
CNS-0720750) and the European Commission through the
MCF IRG project I-Cores (IRG-224759) and the HiPEAC
Network of Excellence (IST-004408, IST-217068). Part of
this work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344 (LLNL-
PROC-422991).

REFERENCES

[1] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn,
“Parallel Job Schueduling - A Status Report,” Lecture
Notes in Computer Science, vol. 3277, pp. 1–16, 2005.

[2] S. Srinivasan, R. Keetimuthu, V. Subramani, and P. Sa-
dayappan, “Characterization of Backfilling Strategies
for Parallel Job Scheduling,” in Proceedings of the
2002 International Workshops on Parallel Processing,
2002.

[3] D. Tsafrir, D. G. Feitelson, and Y. Etsion, “Backfiling
Using System-Generated Predictions Rather than User
Runtime Estimates,” IEEE Transactions on Parallel
and Distributed Systems, vol. 18, pp. 789–803, 2007.

[4] C. B. Lee and A. E. Snavely, “Precise and Realistic
Utility Functions for User-Centric Performance Anal-
ysis of Schedulers,” in Proceedings of the 16th inter-
national symposium on High performance distributed
computing, 2007.

[5] L. Barsanti and A. Sodan, “Adaptive Job Scheduling
via Predictive Job Resource Allocation,” Lecture Notes
in Computer Science, vol. 4376, pp. 115–140, 2007.

[6] O. Sonmez, H. Mohamed, and D. Epema,
“Communication-aware job placement policies
for the koala grid scheduler,” in Proc. of the Second
IEEE International Conference on e-Science and Grid
Computing (e-Science’06), 2006.

[7] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and
R. Rooholamini, “Performance Impact of Process Map-
ping on Small-Scale SMP Clusters-A Case Study Using

High Performance Linpack,” in Proceedings of IEEE
Parallel and Distributed Processing Symposium, 2002.

[8] L. Chai, Q. Gao, and D. K. Panda, “Understanding the
Impact of Multi-Core Architecture in Cluster Comput-
ing: A Case Study with Intel Dual-Core System,” in 7th
IEEE International Symposium on Cluster Computing
and the Grid, 2007.

[9] L. Chai, A. Hartono, and D. K. Panda, “Designing High
Performance and Scalable MPI Intra-node Communi-
cation Support for Clusters,” in IEEE International
Conference on Cluster Computing, 2006.

[10] N. Kappiah, V. Freeh, and D. Lowenthal, “Just In Time
Dynamic Voltage Scaling: Exploiting InterNode Slack
to Save Energy in MPI Programs,” in Proceedings of
the international conference on Supercomputing, 2005.

[11] “NAS Parallel Benchmarks.” [Online]. Available:
http://www.nas.nasa.gov/Resources/Software/npb.html

[12] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos,
and D. S. Nikolopoulos, “Prediction-Based Power-
Performance Adaptation of Multithreaded Scientific
Codes,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, pp. 1396–1410, 2008.

[13] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos,
and D. S. Nikolopoulos, “Online Power-Performance
Adaptation of Multithreaded Programs using Event-
Based Prediction,” in Proc. of the 20th ACM Interna-
tional Conference on Supercomputing (ICS), 2006, pp.
157–166.

[14] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S.
Nikolopoulos, B. R. de Supinski, and M. Schulz,
“Prediction Models for Multi-dimensional Power-
Performance Optimization on Many Cores,” in Proc.
of the 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), 2008.

[15] “SPEC MPI 2007.” [Online]. Available: http://www.
spec.org/mpi

[16] “Intel MPI Benchmarks 3.2.” [On-
line]. Available: http://software.intel.com/en-us/
articles/intel-mpi-benchmarks/

[17] “Open MPI: Open Source High Performance Comput-
ing.” [Online]. Available: http://www.open-mpi.org/

[18] J. M. Orduna and F. S. J. Duato, “On the Development
of A Communication-aware Task Mapping Technique,”
Journal of Systems Architecture, vol. 50, pp. 207–220,
2004.

[19] B.W.Kernighan and S. Lin, “An Efficient Heuristic Pro-
cedure for Partitioning Graphs,” Bell System Technical
Journal, vol. 49, pp. 291–308, 1970.

[20] J. Vetter and C. Chambreau, “mpiP: Lightweight, Scal-
able MPI Profiling.”

[21] Y. Zhang, V. Tipparaju, J. Nieplocha, and S. Hariri,
“Parallelization of the NAS Conjugate Gradient Bench-
mark Using the Global Arrays Shared Memory Pro-
gramming Model,” in Proceedings of International

Parallel and Distributed Processing Symposium, 2005.
[22] R. Tornero, J. Orduna, M. Palesi, and J. Duato,

“A Communication-aware Topological Mapping Tech-
nique for NoCs,” Lecture Notes in Computer Science,
vol. 5168, pp. 910–919, 2008.

[23] J. Orduna, V. Arnau, A. Ruiz, R. Valero, and J. Du-
ato, “On the Design of Communication-aware Task
Scheduling Strategies for Heterogeneous Systems,” in
Proceedings of International Conference on Parallel
Processing (ICPP-2000), 2000.

[24] J. Orduna, V. Arnau, and J. Duato, “Characterization of
Communication between Processes in Message-passing
Applications,” in Proceedings of International Confer-
ence on Cluster Computing (Cluster-2000), 2000.

[25] J. Orduna, F.Silla, and J. Duato, “A New Task Map-
ping Technqiues for Communication-aware Scheduling
Strategies,” in Proceedings of International Conference
on Parallel Processing (ICPP-2001), 2001.

[26] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R. Subramonian, and T. von Eicken,
“LogP: A Practical Model of Parallel Computation,”
Communications of ACM, vol. 39, pp. 78–85, 1996.

[27] A. Alexandrov, M. Ionescu, K. Schauser, and
C. Scheiman, “LogGP: Incorporating Long Messages
into the LogP model - One step closer towards a
realistic model for parallel computation,” in 7th Annual
Symposium on Parallel Algorithms and Architectures,
1995.

[28] S. Kim and S. Lee, “Measurement and Prediction of
Communication Delays in Myrinet Network,” Journal
of Parallel and Distributed Computing, vol. 61, pp.
1692–1704, 2001.

[29] M. Martinasso and J.-F. Mehaut, “Model of Concurrent
MPI Communications over SMP Clusters,” in Techni-
cal Report 00071352, HAL-INRIA, 2006.

[30] J. Vienne, M. Martinasso, J.-M. Vincent, and J.-F.
Mehaut, “Predictive Models for Bandwith Sharing in
High Performance Clusters,” in Proceedings of the
IEEE Cluster Conference, 2008.

[31] B. Rountree, D. Lowenthal, S. Funk, V. Freeh, B. R.
de Supinski, and M. Schulz, “Bounding Energy Con-
sumption in Large-Scale MPI Programs,” in SC ’07:
Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, 2007.

[32] B. Rountree, D. K. Lownenthal, B. R. de Supinski,
M. Schulz, V. W. Freeh, and T. Bletsch, “Adagio: Mak-
ing DVS Practical for Complex HPC Applications,” in
Proceedings of the 23rd international conference on
Supercomputing, 2009.

[33] R. Springer, D. Lowenthal, B. Routree, and V. Freeh,
“Minimizing Execution Time in MPI Programs on an
Energy-Constrained, Power-Scalable Cluster,” in Pro-
ceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming

(PPoPP), 2006.

