
Hybrid MPI/OpenMP Power-Aware Computing

Dong Li† Bronis R. de Supinski? Martin Schulz? Kirk Cameron† Dimitrios S. Nikolopoulos‡
† Virginia Tech

Blacksburg, VA, USA
{lid,cameron}@cs.vt.edu

? Lawrence Livermore National Lab
Livermore, CA, USA

{bronis,schulzm}@llnl.gov

‡ FORTH-ICS and University of Crete
Heraklion, Crete, GREECE

dsn@ics.forth.gr

Abstract—Power-aware execution of parallel programs is
now a primary concern in large-scale HPC environments. Prior
research in this area has explored models and algorithms
based on dynamic voltage and frequency scaling (DVFS) and
dynamic concurrency throttling (DCT) to achieve power-aware
execution of programs written in a single programming model,
typically MPI or OpenMP. However, hybrid programming
models combining MPI and OpenMP are growing in popularity
as emerging large-scale systems have many nodes with several
processors per node and multiple cores per processor. In this
paper we present and evaluate solutions for power-efficient
execution of programs written in this hybrid model targeting
large-scale distributed systems with multicore nodes. We use
a new power-aware performance prediction model of hybrid
MPI/OpenMP applications to derive a novel algorithm for
power-efficient execution of realistic applications from the ASC
Sequoia and NPB MZ benchmarks. Our new algorithm yields
substantial energy savings (4.18% on average and up to 13.8%)
with either negligible performance loss or performance gain (up
to 7.2%).

Keywords-MPI; OpenMP; performance modeling; power-
aware high-performance computing.

I. INTRODUCTION

The large energy footprint of high-end computing systems
motivates holistic approaches to energy management that
combine hardware and software solutions. Thus, software-
controlled power-aware execution of HPC applications on
large-scale clusters has become an important research
topic [1], [2], [3], [4]. Most researchers have focused on
processor-level power management schemes since proces-
sors dominate power consumption in HPC environments.

Two primary power-aware computing approaches cur-
rently exist for large-scale systems. Many state-of-the-art
algorithms for software-controlled dynamic power manage-
ment [5], [6], [7], [8] use dynamic voltage and frequency
scaling (DVFS) to dilate computation into slack (any non-
overlapped hardware or algorithmic latency) that occurs
between MPI communication events, thus reducing energy
consumption. Alternatively, dynamic concurrency throttling
(DCT) [9], [10] controls the number of active threads
executing pieces of parallel code, particularly in shared-
memory programming models like OpenMP, to save energy
and to improve performance simultaneously [11].

These software-controlled power-aware execution
schemes for HPC applications have been integrated
within a single parallel programming model, such as

MPI or OpenMP. However, none have been applied to
applications written in hybrid programming models, such
as MPI/OpenMP. Since multicore nodes with larger core
counts and less memory per node are becoming prevalent,
we anticipate hybrid programming models will become
common. Hybrid programming models complicate power
management since any solution must consider inter-node
and intra-node effects simultaneously. Thus, several new
research issues arise when applying DCT and DVFS to
hybrid programming models. We explore these issues in the
context of the hybrid MPI/OpenMP programming model,
to provide answers to the following questions:
• Does using DCT within one MPI task affect the exe-

cution in other tasks?
• How can we identify slack due to intra- and inter-node

interactions in hybrid programs?
• How should we coordinate DCT and DVFS to save

energy?
We contribute a new power-aware modeling methodology
for the hybrid MPI/OpenMP model. Based on it, we de-
sign and implement a power-aware runtime library that
adaptively applies DVFS and DCT to hybrid MPI/OpenMP
applications. Our modeling approach and runtime library
implementation answer the above research issues. Our main
contributions are:
• A formalization of the interactions between MPI tasks

under DCT control that identifies the impact of DCT
on other tasks;

• A novel DCT coordination scheme;
• A new analysis of the implicit penalty of concurrency

throttling on last-level cache misses and a DCT algo-
rithm that aggregates OpenMP phases to overcome this
problem;

• A unified intra- and inter-node method to identify the
slack available for DVFS control in hybrid applications;

• A novel combined DCT/DVFS system in which the
DVFS scheduler accounts for the effects of DCT includ-
ing explicit prediction of the time required for OpenMP
phases at different concurrency levels;

• A study of power-saving opportunities in both strong
and weak scaling of hybrid applications at unprece-
dented system scales of up to 1024 cores.

Our results, obtained with applications from the ASC Se-

quoia and the NAS Parallel Benchmark Multizone suites, on
two systems with relatively wide shared-memory nodes (8
and 16 cores per node) show that our power-aware runtime
library leverages the energy-saving opportunities in hybrid
MPI/OpenMP applications while maintaining performance.
Our scaling study demonstrates that power saving opportuni-
ties continue or increase under weak scaling but diminish un-
der strong scaling. Overall, our power-aware runtime library
for hybrid programming models saves significant energy—
4.2% on average and as much as 13.8% in certain cases—
with either negligible performance loss or performance gain
up to 7.2%.

The rest of this paper is organized as follows. Section II
provides background terminology for this work. Section III
presents our power-aware performance prediction model for
hybrid MPI/OpenMP applications. Section IV presents our
execution time prediction methodology for OpenMP phases
under DCT and DVFS control. Section V presents our
dynamic concurrency throttling schemes and Section VI
presents our dynamic voltage and frequency scaling schemes
for hybrid MPI/OpenMP applications. Section VII presents
our experimental analysis. Section VIII discusses related
work and Section IX concludes the paper.

II. HYBRID MPI/OPENMP TERMINOLOGY

Large-scale system trends motivate our consideration of
hybrid programming models. HPC systems are rapidly in-
creasing in scale in terms of numbers of nodes, numbers of
processors and numbers of cores per processor, with declin-
ing main memory and secondary cache sizes per core. These
trends encourage the use of shared-memory models within
a node to exploit fine-grain parallelism, to achieve better
load balance, to reduce application memory footprints and
to improve memory bandwidth utilization [12]. However,
message-passing remains preferable between nodes since it
simplifies minimization of communication overhead.

Most hybrid programming models exploit coarse-grain
parallelism at the task level and medium-grain parallelism
at the loop level. Thus, we consider programs that use
the common THREAD MASTERONLY model [13]. Its
hierarchical decomposition closely matches most large-scale
HPC systems, which are comprised of clustered nodes, each
of which has multiple cores per node, distributed across
multiple processors. In this model, a single master thread
invokes all MPI communication outside of parallel regions.
Almost all MPI programming environments support the
THREAD MASTERONLY model. OpenMP directives par-
allelize the sequential code of the MPI tasks. This solution
exploits fast intra-task data communication through shared
memory via loop-level parallelism. While other mechanisms
(e.g., POSIX threads) could add multi-threading to MPI
tasks, OpenMP supports incremental parallelization and,
thus, is widely adopted by hybrid applications.

Figure 1: Simplified typical MPI/OpenMP scheme
Iterative parallel computations dominate the execution

time of scientific applications. Hybrid programming models
exploit these iterations. Figure 1 depicts a typical itera-
tive hybrid MPI/OpenMP computation, which partitions the
computational space into subdomains, with each subdomain
handled by one MPI task. The communication phase (MPI
operations) exchanges subdomain boundary data or compu-
tation results between tasks. Computation phases that are
parallelized with OpenMP constructs follow the commu-
nication phase. We use the term OpenMP phases for the
computation phases delineated by OpenMP parallelization
constructs.

Collections of OpenMP phases delineated by MPI oper-
ations form OpenMP phase groups, as shown in Figure 1.
Typically, MPI collective operations (e.g., MPI Allreduce
and MPI Barrier) or grouped point-to-point completions
(e.g., MPI Waitall) delineate OpenMP phase groups. No
MPI primitives occur within an OpenMP phase group. MPI
operations may include slack since the wait times of different
tasks can vary due to load imbalance. Based on notions
derived from critical path analysis, the critical task is the
task upon which all other tasks wait.

Our goal is to adjust configurations of OpenMP phases
of hybrid MPI/OpenMP applications dynamically. A con-
figuration includes CPU frequency settings and concurrency
configurations. The concurrency configuration specifies how
many OpenMP threads to use for a given OpenMP phase
and how to map these threads to processors and cores.
This can be done by OpenMP mechanisms for controlling
the number of threads and by setting the CPU affinity of
threads using system calls. We use DCT and DVFS to adjust
configurations so as to avoid performance loss while saving
as much energy as possible. Also, configuration selection
should have negligible overhead. For this selection process,
we sample selected hardware events during several iterations
in the computation loop for each OpenMP phase, and collect
timing information for MPI operations. From this data,
we build a power-aware performance prediction model that
determines configurations that—according to predictions—
can improve application-wide energy-efficiency.

III. POWER-AWARE MPI/OPENMP MODEL

Our power-aware performance prediction model estimates
the energy savings that DCT and DVFS can provide for
hybrid MPI/OpenMP applications. Table I summarizes the

M Number of OpenMP phases in a OpenMP phase group

∆Edct
ij Energy saving by DCT during OpenMP phase j of task i

xij ,yij Number of processors (xij) and number of cores per processor (yij) used by OpenMP
phase j of task i

X ,Y Maximum available number of processors (X) and number of cores (Y) per processor on a
node

Tij Time spent in OpenMP phase j of task i under a configuration using X processors and Y
cores per processor

tij Time spent in OpenMP phase j of task i after DCT
ti Total OpenMP phases time in task i after DCT

ti,j,thr Time spent in OpenMP phase j of task i using a configuration thr with thread count |thr|
N Number of MPI tasks
f0 Default frequency setting (highest CPU frequency)

∆tijk Time change after we set frequency fk during phase j of task i

Table I: Power-aware MPI/OpenMP model notation
notation of our model. We apply the model at the granularity
of OpenMP phase groups. OpenMP phase groups exhibit
different energy-saving potential since each group typically
encapsulates a different major computational kernel with
a specific pattern of parallelism and data accesses. Thus,
OpenMP phase groups are an appropriate granularity at
which to adjust configurations to improve energy-efficiency.
We discuss the implications of adjusting configurations at
the finer granularity of OpenMP phases in Section V.

DCT attempts to discover a concurrency configuration
for an OpenMP phase group that minimizes overall energy
consumption without losing performance. Thus, we prefer
configurations that deactivate complete processors in order
to maximize the potential energy savings. The energy saving
achieved by DCT for task i is:

∆Edct
i =

X
1≤j≤M

∆Edct
ij , (1)

Where ∆Edctij is the energy savings for phase j relative
to using all cores, when we use xij ≤ X processors and
yij ≤ Y cores per processor. If the time for phase j, tij ,
is no longer than the time using all cores Tij , as we try to
enforce, then ∆Edctij ≥ 0 and DCT saves energy without
losing performance.

Ideally, DCT selects a configuration for each OpenMP
phase that minimizes execution time and, thus, the total
computation time in any MPI task. We model this total
execution time of OpenMP phases in MPI task i as:

ti =

MX
j=1

min
1≤|thr|≤X·Y

ti,j,thr (2)

The subscript thr in Equation (2) represents a configuration
with thread count |thr|.

The critical task has the longest execution time, the
critical time, which we model as:

tc = max
1≤i≤N

MX
j=1

min
1≤|thr|≤X·Y

ti,j,thr (3)

The time difference between the critical task and other
(non-critical) tasks in an OpenMP phase group is slack that
we can exploit to save energy with DVFS. Specifically, we
can use a lower CPU frequency during the OpenMP phases
of non-critical tasks. These frequency adjustments do not
incur any performance loss if the non-critical task, executed
at the adjusted frequencies, does not spend more time inside
the OpenMP phase group than the critical time. The slack

Figure 2: Leveraging slack to save energy with DVFS
time that we can disperse to the OpenMP phase group of a
non-critical task i by DVFS is:

∆tslack
i = tc − ti − tcomm send

i − tdvfs (4)

Equation (4) reduces the available slack by the DVFS
overhead (tdvfs) and the communication time (tcomm send

i)
for sending data from task i in order to avoid reducing the
frequency too much. We depict two slack scenarios for MPI
collective operations and MPI Waitall in Figure 2. In each
scenario, Task 0 is the critical task and Task 1 disperses its
slack to its OpenMP phases.

We select a CPU frequency setting for each OpenMP
phase based on the non-critical task’s slack (∆tslacki). We
discuss how we select the frequency in Section VI. We
ensure that the selected frequency satisfies the following two
conditions: X

1≤j≤M

∆tijk ≤ ∆tslack
i (5)

X
1≤j≤M

tijkfk ≤ tif0 (6)

Equation (5) sets a time constraint: ∆tijk refers to the time
change after we set the frequency of the core or processor
executing task i in phase j to fk. Equation (5) requires that
the total time changes of all OpenMP phases at the selected
frequencies do not exceed the available slack we want to
disperse. Equation (6) sets an energy constraint: tijk refers
to the time taken by phase j of task i running at frequency
fk. We approximate the energy consumption of the phase as
the product of time and frequency. Equation (6) requires that
the energy consumption with the selected frequencies does
not exceed the energy consumption at the highest frequency.

Intuitively, energy consumption is related to both time
and CPU frequency. Longer time and higher frequency lead
to more energy consumption. By computing the product

of time and frequency, we capture the effect of both. Our
energy estimation is not contradictory to previous CMOS
models [5], [14], in which power and CPU frequency are
related quadratically since we are estimating total system
energy. Empirical observations [15] found average system
power is approximately linear in frequency under a certain
CPU utilization range. These observations support our esti-
mate since HPC applications usually have very high CPU
utilization under different CPU frequencies (e.g., all of our
tests have utilization beyond 82.4%, well within the range
of a near-linear relationship between frequency and system
power).

IV. TIME PREDICTION FOR OPENMP PHASES

Our DVFS and DCT control algorithms rely on accurate
execution time prediction of OpenMP phases in response
to changing either the concurrency configuration or voltage
and frequency. Changes in concurrency configuration should
satisfy Equation 2. Changes in voltage and frequency should
satisfy Equations 5 and 6.

We design a time predictor that extends previous work
that only predicted IPC since intra-node DCT only requires
a rank ordering of configurations [9], [11], [16]. We require
time predictions in order to estimate the slack to disperse.
We also require time predictions to estimate energy con-
sumption. We use execution samples collected at runtime on
specific configurations to predict the time on other, untested
configurations. From these samples, our predictor learns
about each OpenMP phase’s execution properties that impact
the time under alternative configurations. The input from the
sample configurations consists of elapsed CPU clock cycles
and a set of n hardware event rates (e(1···n,s)) observed for
the particular phase on the sample configuration s, where
the event rate e(i,s) is the number of occurrences of event i
divided by the number of elapsed cycles during the execution
of configuration s. The event rates capture the utilization
of particular hardware resources that represent scalability
bottlenecks, thus providing insight into the likely impact
of hardware utilization and contention on scalability. The
model predicts time on a given target configuration t, which
we call Timet. This time includes the time spent within
OpenMP phases plus the parallelization overhead of those
phases.

For an arbitrary collection of samples, S, of size |S|, we
model Timet as a linear function:

T imet =

|S|X
i=1

(T imei ·α(t,i)(e(1···n,i))) +λt(e(1···n,S)) +σt (7)

The term λt is defined as:

λt(e(1···n,S))=
Pn

i=1(
P|S|−1

j=1 (
P|S|

k=j+1(µ(t,i,j,k)·e(i,j)·e(i,k))))+P|S|−1
j=1 (

P|S|
k=j+1(µ(t,j,k,time)·Timej ·Timek))+lt (8)

Equation (7) illustrates the dependency of terms α(t,i),
λt and σt on the target configuration. We model each

target configuration t through coefficients that capture the
varying effects of hardware utilization at different degrees
of concurrency, different mappings of threads to cores and
different frequency levels. The term α(t,i) scales the ob-
served Timei on the sample configurations up or down
based on the observed values of the event rates in that con-
figuration. The constant term σt is an event rate-independent
term. It includes the overhead time for parallelization or
synchronization. The term λt combines the products of
each event across configurations and of Timej/k to model
interaction effects. Finally, µ is the target configuration-
specific coefficient for each event pair and l is the event
rate-independent term in the model.

We use multivariate linear regression (MLR) to obtain the
model coefficients (α, µ and constant terms) from a set of
training benchmarks. We select the training benchmarks em-
pirically to vary properties such as scalability and memory
boundedness. The observed time Timei, the product of the
observed time Timei and each event rate and the interaction
terms on the sample configurations are independent variables
for the regression while Timet on each target configuration
is the dependent variable. We derive sets of coefficients and
model each target configuration separately.

We use the event rates for model training and time pre-
diction that best correlate with execution time. We use three
sample configurations: one uses the maximum concurrency
and frequency, while the other two use configurations with
half the concurrency—with different mappings of threads
to cores—and the second highest frequency. Thus, we gain
insight into utilization of shared caches and memory band-
width while limiting the number of samples.

We verify the accuracy of our models on systems with
three different node architectures. One has four AMD
Opteron 8350 quad-core processors. The second has two
AMD Opteron 265 dual-core processors. The third has
two Intel Xeon E5462 quad-core processors. We present
experiments with seven OpenMP benchmarks from the NAS
Parallel Benchmarks suite (v3.1) with CLASS B input. We
collect event rates from three sample configurations and
make time predictions for OpenMP phase samples in the
benchmarks. We then compare the measured time for the
OpenMP phases to our predictions. Figure 3 shows the
cumulative distribution of our prediction accuracy, i.e., the
total percentage of OpenMP phases with error under the
threshold indicated on the x-axis. The results demonstrate
high accuracy of the model in all cases: more than 75% of
the samples have less than 10% error.

V. DYNAMIC CONCURRENCY THROTTLING

This section describes our two schemes (“profile-driven
static mapping” and “one phase approach”) for applying
DCT. We predict performance for each OpenMP phase under
all feasible concurrency configurations at the default fre-
quency setting (highest frequency) with input from samples

Figure 3: Cumulative distribution of prediction accuracy
of hardware event counters collected at runtime. We predict
the execution time of each phase as discussed in Section IV.
We cannot apply DCT in OpenMP phases where the code
in each thread depends on the thread identifier, since this
would violate correct execution. Also, we cannot make
accurate time predictions for very short OpenMP phases due
to the overhead of performing adaptation as well as accuracy
limitations in performance counter measurements. We have
empirically identified a threshold of one million cycles as
the minimum DCT granularity for an OpenMP phase. We
simply use the active configuration of the preceding phase
for each phase below this threshold.

A. Profile-driven Static Mapping

Intuitively, using the best concurrency configuration for
each OpenMP phase should minimize the computation time
of each MPI task. We call this DCT strategy the profile-
driven static mapping. To explore how well this strategy
works in practice, we applied it to the AMG benchmark
from the ASC Sequoia Benchmark suite. AMG has four
OpenMP phases in the computation loop of its solve phase.
Phases 1 and 2 are in phase group 1, phases 3 and 4 are
in phase group 2, and the phase groups are separated by
MPI Waitall. We describe AMG in detail in Section VII.
We run these experiments on two nodes, each with four
AMD Opteron 8350 quad-core processors.

We first run the benchmark with input parameters
P = [2 1 1], n = [512 512 512] under a fixed configuration
throughout the execution of all OpenMP phases in all tasks
for the entire duration of the run. We then manually select
the best concurrency configuration based on these static
observations, thus avoiding any prediction errors. Figure 4
shows the results with the fastest configuration for each
task and OpenMP phase shown in stripes. Scalability varies
across the phases and even within the same phase when
executed in different tasks, due to differences in workload
and data sets. The configuration of 4 processors and 2
threads per processor, shown as the first bar in each group
of bars in Figure 5, has the lowest total time in the solve
phase and, thus, is the best static mapping that we use as
our baseline in the following discussion.

Under this whole-program configuration, each individual
OpenMP phase may not use its best concurrency configu-
ration. We select the best configuration for each OpenMP
phase based on the results of Figure 4 and rerun the
benchmark, as the second bar in each group of bars in
Figure 5 shows. We profile each OpenMP phase with this

Figure 4: AMG phase performance

Figure 5: Impact of different DCT policies on AMG

Figure 6: Phase profiles of task 0 under DCT policies

profile-driven static mapping, which we compare with the
best static mapping to explore the source of the performance
loss. Figure 6 shows the last-level cache misses that each
OpenMP phase incurs normalized to the results with the
static mapping. Three of the four OpenMP phases incur
more misses with the profile-driven static mapping, lead-
ing to lower overall performance despite using the best
configuration based on the fixed configuration runs. This
increase arises from frequent configuration changes from
one OpenMP phase to another under the profile-driven static
mapping, thus confirming that cache interference causes the
performance loss.

Previous work [9], [11] showed that the profile-driven
static mapping can outperform the best static mapping.
These results combine with ours to demonstrate that the
profile-driven static mapping has no performance guaran-
tees: it benefits from improved concurrency configurations
while often suffering additional cache misses. We would
have to extend our time prediction model to consider the
configuration of the previous OpenMP phase in order to
capture the impact on cache hit rates. We would also need
to train our model under various thread mappings instead of
a unique thread mapping throughout the run, which would
significantly increase the overhead of our approach.

B. One Phase Approach

A simple solution to avoid cache misses caused by chang-
ing configurations is to use the same concurrency config-
uration for all OpenMP phases in each task in isolation.
We can predict time for this combined phase and select
the configuration that minimizes the time of the combined
phase in future iterations under this one phase approach.
Figure 5 shows that this strategy greatly reduces the perfor-
mance loss for AMG compared to the profile-driven static
mapping. Figure 6 shows that cache misses are also reduced
significantly. However, we still incur significant performance
loss compared to the best static mapping. Further analysis
reveals that the one phase approach can change the critical
task for specific phases despite minimizing the time across
all OpenMP phases.

This problem arises because configurations are selected
without coordination between tasks. Instead, each task
greedily chooses the best configuration for each combined
phase regardless of the global impact. Under our improved
one phase approach, each task considers the time at the
critical task when making its DCT decision. Each task
selects a configuration that does not make its OpenMP phase
groups longer than the corresponding ones in the critical
task. Although this strategy may result in a configuration
where performance for a task is worse than the one achieved
with the best static mapping, it maintains performance as
long as the OpenMP phase group time is shorter than the
corresponding one in the critical task. Unlike the profile-
driven static mapping, this strategy has a performance guar-

antee: it selects configurations that yield overall performance
no worse than the best static mapping, as Figure 5 shows.

The profile-driven static mapping adjusts configurations at
a fine granularity and suffers from the performance impact
of cache interference between adjacent OpenMP phases. The
one phase approach throttles concurrency at the coarsest
granularity, thus ignoring that particular OpenMP phases
may miss opportunities to execute with better configurations.
The improved one phase approach strives for a balance
between the two approaches by introducing task coordina-
tion and considering performance at a medium granularity
(OpenMP phase groups).

VI. DVFS CONTROL FOR ENERGY SAVING

We follow DCT with DVFS to exploit further energy
saving opportunities during OpenMP phases. The CPU fre-
quency setting should satisfy the constraints of Equations 5
and 6. We use two steps for DVFS control: (1) identifying
and estimating the slack available for DVFS; and (2) picking
the appropriate frequency for each OpenMP phase given the
slack.

A. Slack Estimation

Ideally, we can compute slack from Equation 4 in our
model. We can estimate the communication time in the
model a priori, using a communication benchmark such as
MPPtest [17]. In practice, however, several factors can cause
inaccuracies in our computed slack estimates. First, our
execution time predictions for OpenMP phases have error, as
shown in Section IV, and hence impact the computed slack.
Second, since the workload of OpenMP phases can vary
between outer iterations of the computation, our sampled
iterations may have a different workload from that in other
iterations. We introduce an error tolerance, ε, that adjusts our
computed slack to compensate for these inaccuracies, thus
preventing reductions of the frequency beyond the actual
slack, which is the maximum time we can disperse to the
OpenMP phases by DVFS without incurring performance
loss. We modify our slack model in Equation 4 to:

∆tslack
i = (tc − ti − tcomm send

i − tdvfs)/(1 + ε) (9)

In most cases, Equation (9) works well with a low value
for ε. However, even a large ε (> 0.3) can lead to excessive
frequency reductions in a few cases, which in turn hurts
performance. Our analysis found that the actual slack can
be shorter than the computed slack due to communication
phases. To explain how communication can affect slack,
Figure 7 illustrates a scenario observed in the IRS bench-
mark from the ASC Sequoia Benchmark Suite. In this case,
three tasks execute OpenMP phase group 2, non-blocking
MPI communication, MPI Waitall, OMP phase group 3, and
MPI Allreduce. Due to load imbalance, the tasks arrive at
MPI Allreduce at different times. Task 0, the most heavily
loaded, arrives late. Task 2 arrives earlier and can disperse
the slack that our model computes. However, point-to-point

Figure 7: Impact of communication on slack with IRS
communication between group 2 and group 3, reduces the
slack by ∆t. In particular, task 2 starts executing OpenMP
phase group 3 later than task 0, which reduces the available
slack by ∆t.

To capture the impact of communication on slack,
we record the wait time in MPI operations (particularly
MPI Allreduce in Figure 7) and use it as an upper-bound
of the slack we can disperse. The rationale is that any gap
(∆t) will be reflected as a shortened wait time and our slack
should never be longer than the wait time. If the computed
slack is longer than the wait time, we simply disperse the
wait time minus DVFS overhead. This heuristic enhances
the accuracy of our prediction and decreases the effective ε
value from 1.6 to 0.2 for IRS.

Simply using the wait time to estimate the slack is
insufficient. The wait time, including communication time,
has higher variance across iterations due to minor network
perturbations. Thus, recorded wait time can lead to too high
an estimate of slack. The slack computed from Equation (9),
on the other hand, reflects the slack which is actually
available in the tasks and therefore is a more reliable value
that is often less than the actual wait time.

The selection of an appropriate ε depends on prediction
accuracy and other factors as discussed above. According to
our results (shown in Figure 3) and practical experiences, a
value between 0.1 and 0.2 effectively compensates for errors
while allowing energy-saving in most cases. We use ε ≤ 0.2
for our evaluation, which results in negligible performance
loss. This value corresponds to prediction errors of 20% or
less, which captures most of our results.

B. Selecting Frequencies

We choose an appropriate frequency for each OpenMP
phase based on predictions of slack and computation time
for each OpenMP phase under different frequency config-
urations. We adjust the frequency used for all phases that
meet our time constraint (Equation 5) and minimize energy
consumption (Equation 6).

We formulate the problem of selecting frequencies for
OpenMP phases as a knapsack problem. Each OpenMP
phase time under a particular frequency is an item. We
associate a weight w = ∆tijk and a value p = tijkfk with
each item. The weight is the time change under frequency
fk and the value captures relative energy. The total weight

of all phases must be less than the slack, ∆tslacki , and the
total value of all phases should be minimized. Some items
cannot be selected at the same time since we cannot select
more than one frequency for each OpenMP phase. This is
a variant of the 0-1 knapsack problem [18], which is NP-
complete.

Dynamic programming can solve the knapsack problem
in pseudo-polynomial time. If each item has a distinct value
per unit of weight (v = p/w), the empirical complexity is
O((log(n))2) where n is the number of items. We designed
a unique dynamic programming solution to our problem.
For convenience in its description, we replace tijkfk with
[(−1) · tijkfk] to solve the problem of maximizing the total
value. Let L be the number of available CPU frequency
levels, w(i−1)∗L+1, w(i−1)∗L+2, . . . ,wi∗L be the available
weights of OpenMP phase i, and p(i−1)∗L+1, p(i−1)∗L+2,
. . . ,pi∗L be the available values of OpenMP phase i. We
denote the maximum attainable value with weight less than
or equal to Y using items up to j as A(j, Y), which we
define recursively as:

A(0, Y) = −∞, A(j, 0) = −∞ (10)

A(j, Y) = A(j − L, Y) + pj ,

if all wj−1, . . . , wj−L+1are greater than Y.
(11)

A(j,Y)=max (A(j−L,Y)+pj , maxi(pi+A(j−L,Y−wi))),

for any i ∈ [j − L+ 1, j − 1], and wi ≤ Y.
(12)

We solve this problem by calculating A(n,∆tslackx) for task
x, where n is the number of items. For a given total weight
limitation W , the time complexity of this solution is linear
in n.

VII. PERFORMANCE EVALUATION

We implemented our power-aware MPI/OpenMP system
as a runtime library that performs online adaptation of DVFS
and DCT. The runtime system predicts execution times of
OpenMP phases based on collected hardware event rates and
controls the execution of each OpenMP phase in terms of
the number of threads, their placement on cores and the
DVFS level. To use our library, we instrument applications
with function calls around each adaptable OpenMP phase
and selected MPI operations (collectives and MPI Waitall).
This instrumentation is straightforward and could easily be
automated using a source code instrumentation tool, like
OPARI [19], in combination with a PMPI wrapper library.

In this section, we evaluate our model with the Multi-
Zone versions of NPB benchmarks (NPB-MZ) and two
benchmarks (AMG and IRS) from the ASC Sequoia bench-
mark suite. The NPB-MZ [20] suite has three benchmarks
(LU-MZ, SP-MZ and BT-MZ). Each has the same program
flow, which Figure 8 shows. The benchmark loop has one
procedure to exchange boundary values using point-to-point
MPI communication. Therefore, the entire benchmark loop
has only one OpenMP phase group. A bin-packing algorithm

Figure 8: NPB-MZ
flow graph Figure 9: Simplified

IRS flow graph

Figure 10:
Simplified

AMG flow graph

balances the workload of the OpenMP phases between all
tasks. Under this algorithm, LU-MZ and SP-MZ allocate
the same number of zones for each task and each zone
has the same size. For BT-MZ, zones have different sizes
and each task owns a different number of zones, however
each task has almost the same total zone size. For our
experiments, we introduce an artificial load imbalance in
BT-MZ by modifying the load balancing code so that each
task owns the same number of zones, but each task has a
different total zone size. This load imbalance increases the
energy saving opportunities of slack reclamation.

IRS uses a preconditioned conjugate gradient method for
inverting a matrix equation. Figure 9 shows its simplified
computational kernel. We group the OpenMP phases into
four groups. Some OpenMP phase groups include serial
code. We regard serial code as a special OpenMP phase
with the number of threads fixed to 1. Although DCT
is not applicable to serial code, it could be imbalanced
between MPI tasks and hence provide opportunities for
saving energy through DVFS. We use input parameters
NDOMS=8 and NZONES PER DOM SIDE=90. The IRS
benchmark has load imbalance between the OpenMP phase
groups of different tasks.

AMG [21] is a parallel algebraic multigrid solver for
linear systems on unstructured grids. Its driver builds linear
systems for various 3-dimensional problems; we choose a
Laplace type problem (problem parameter set to 2). The
driver generates a problem that is well balanced between
tasks. We modified the driver to generate a problem with
imbalanced load. The load distribution ratio between pairs
of MPI tasks in this new version is 0.45:0.55.

We categorize hybrid MPI/OpenMP applications based on
their OpenMP phases’ workload characteristics: (1) imbal-
anced and constant workload per iteration (e.g., modified
BT-MZ) or nearly constant workload per iteration (e.g.,
IRS); (2) imbalanced and non-constant workload per iter-

Figure 11: Adaptive DCT/DVFS control of NPB-MZ

Figure 12: Adaptive DCT/DVFS control of AMG and IRS
ation (e.g., AMG); (3) balanced workload (e.g., SP-MZ and
LU-MZ).

We first run all benchmarks on two homogeneous nodes,
each with four AMD Opteron 8350 quad-core processors (a
total of 16 cores per node). The baseline is the execution
under the configuration using 4 processors and 4 cores per
processor, all running at the highest processor frequency.
DVFS on the AMD Opteron 8350 has five frequency settings
and we apply DVFS to the whole processor (all cores on a
single socket). Figures 11 and 12 show the results.

Our DCT scheme selects the same concurrency configura-
tion as the performance baseline for BT-MZ, which leads to
no performance or energy gains. Due to good scalability of
the OpenMP phases, the DCT strategy maintains maximum
concurrency and cannot save energy. However after we apply
DVFS, we achieve energy savings (10.21%) at ε = 0.2 with
no performance loss. When ε < 0.2, we run each processor
at a lower frequency but consume more energy due to
increased execution time. The OpenMP phases in SP-MZ do
not scale well, so we can save energy (5.72%) by applying
DCT alone (pure DCT). Due to the balanced load in SP-

MZ, our DVFS algorithm cannot save energy, as shown by
Pure DCT and DCT+DVFS, ε = 0 having the same energy
consumption. The LU-MZ benchmark has scalable OpenMP
phases and balanced load and hence our runtime system
does not have any opportunity to save energy. However,
this test case shows that our system has negligible overhead
(0.736%).

Our AMG problem has non-constant workload per it-
eration, which makes our predicted configurations based
on sampled iterations incorrect in later iterations. After
profiling its OpenMP phases, we find that AMG has a
periodic workload. OpenMP phase group 1 has a period of
14 iterations and OpenMP phase group 2 has a period of
7 iterations. Thus, we can still apply our control schemes,
but with application-specific sampling. Since the workload
within a period varies from one iteration to another, we select
configurations for every iteration within a period. We use
more sample iterations during at least one period and change
configurations for each iteration within a period. The results
show that pure DCT achieves 11.56% energy saving and
7.39% performance gain. The best energy saving (13.80%)
is achieved by applying DCT plus DVFS (ε = 0.1) and
the performance gain with DCT plus DVFS is 7.21%. In
IRS, we observe 7.5% performance gain and 12.25% energy
saving by applying only DCT. By applying DVFS, we can
further reduce energy however with a slight performance
loss, compared to the performance of pure DCT because the
workload in OpenMP phases varies slightly and irregularly.
The selection of our DVFS scheme based on sample itera-
tions may hurt performance in the rest of the run. The best
energy saving (13.31%) is achieved with combined DCT
and DVFS with a performance loss of only 1.91%. We can
reduce the performance loss by increasing ε, but this reduces
energy saving while having limited performance gains.

To summarize, our hybrid MPI/OpenMP applications
present different energy-saving opportunities and the energy-
saving potential depends on workload characteristics. Our
model can detect and leverage this potential. In particular, for
imbalanced and constant (or close to constant) per iteration
workloads, our algorithm is effective, saving energy while
maintaining performance. For imbalanced and non-constant
per iteration workload, if the workload is periodic, we can
still apply our algorithm after detecting the periodicity of the
workload; if the workload is totally irregular, our algorithm
can fail. For balanced workloads, if OpenMP phases are non-
scalable, we can save energy with pure DCT; if OpenMP
phases are scalable, our algorithm does not save energy,
but also does not hurt performance. We could detect the
period of a workload by testing the applications with small
problem sets. Alternatively, many scientific applications use
a recursive computation kernel, thus creating a periodic
workload that we could track based on the stack trace depth.

We extend our analysis into larger scales in order to
investigate how our model reacts as the number of nodes

changes. The following experiments consider the power
awareness scalability of HPC applications, which we call
the scalability of energy saving opportunities. We present
results from experiments on the recently built System G
supercomputer at Virginia Tech. System G is a unique
research platform for Green HPC, with thousands of power
and thermal sensors. System G has 320 nodes powered by
Mac Pro computers, each with 2 quad-core Xeon processors.
Each processor has two frequency settings for DVFS. The
nodes are connected by Infiniband (40Gb/s). We vary the
number of nodes and study how our power-aware model per-
forms under strong and weak scaling. We use the execution
under the configuration using 2 processors and 4 cores per
processor and running at the highest processor frequency,
which we refer to as (2,4), as the baseline by which we
normalize reported times and energy.

Figure 13 displays the results of AMG and IRS under
strong scaling input (i.e., maintaining the same total problem
size across all scales). Actual execution time is shown
above normalized execution time bars, to illustrate how
the benchmark scales with the number of nodes. On our
cluster, the OpenMP phases in AMG scale well, and hence
DCT does not find energy-saving opportunities in almost
all cases although, with 64 nodes or more, DCT leads to
concurrency throttling on some nodes. However due to the
small length of OpenMP phases at this scale, DCT does
not lead to significant energy savings. When the number
of nodes reaches 128, the per node workload in OpenMP
phases is further reduced to a point where some phases
become shorter than our DCT minimum phase granularity
threshold and DCT simply ignores them. On the other
hand, our DVFS strategy saves significant energy in most
cases. However, as the number of nodes increases, the
ratio of energy-saving decreases from 3.72% (4 nodes) to
0.121% (64 nodes) because the load difference between tasks
becomes smaller as the number of nodes increases. With 128
nodes, load imbalance is actually less than DVFS overhead,
so DVFS becomes ineffective. In IRS, our DCT strategy
leads to significant energy-saving when the number of nodes
is more than 8. We even observe performance gains by DCT
when the number of nodes reaches 16. However DCT does
not lead to energy-saving in the case of 128 nodes for similar
reasons to AMG. DVFS leads to energy-saving with less
than 16 nodes but does not provide benefits as the number
of nodes becomes large and the imbalance becomes small.

Figures 14 displays the weak scaling results. We adjust
the input parameters (AMG and IRS) or change the input
problem definition (BT-MZ) as we vary the number of
nodes so that the problem size per node remains constant
(or close to it). For IRS and BT-MZ, the energy-saving
ratio grows slightly as we increase the number of nodes
(from 1.9% to 2.5% for IRS and from 5.21% to 6.8% for
BT-MZ). Slightly increased imbalance, as we increase the
problem size, allows additional energy savings. For AMG,

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes 128 nodes

701.39s 703.01s
706.22s

357.29s 357.31s
359.12s

182.69s 182.91s 182.96s 88.71s

89.18s
89.39s

44.83s

45.13s
45.01s

23.21s

23.38s 23.36s

AMG

4 nodes 8 nodes
16 nodes 32 nodes 64 nodes

128 nodes

1336.52s 1340.08s 1343.11s 722.82s 723.00s 727.16s 176.80s 178.04s 178.17s 124.93s 125.50s 125.51s 96.68s
98.03s

362.51s
358.24s 360.08s

98.10s

IRS

Figure 13: Results from strong scaling tests of our adaptive DCT/DVFS control on System G

we observe that the ratio of energy-saving stays almost
constant (2.17%∼2.22%), which is consistent with AMG
having good weak scaling. Since the workload per node is
stable, energy saving opportunities are also stable as we vary
the number of nodes.

In general, energy-saving opportunities vary with work-
load characteristics. They become smaller as the number of
nodes increases under a fixed total problem size because the
subdomain allocated to a single node becomes so small that
the energy-saving potential that DVFS or DCT can leverage
falls below the threshold that we can exploit. An interesting
observation is that, when the number of nodes is below the
threshold, some benchmarks (e.g., IRS with less than 16
nodes) present good scalability of energy saving opportu-
nities for DCT because of the changes in their workload
characteristics (e.g., scalability and working data sets) as the
allocated sub-domain changes. With weak scaling, energy-
saving opportunities are usually stable or increasing and
actual energy-saving from our model tends to be higher than
with strong scaling. Most importantly, under any case our
model can leverage any energy saving opportunity without
significant performance loss as the number of nodes changes.

VIII. RELATED WORK

Several software-controlled techniques use DVFS to save
energy in MPI programs. A heuristic by Freeh et al. [1] pri-
marily attacks intra-node (memory) bottlenecks by choosing
frequencies based on previously executed program phases.
Kappiah et al. [8] address inter-node bottlenecks by using
DVFS to exploit the net slack expected in an iteration. A
scheduler that Springer et al. [4] propose selects node counts
and CPU frequencies to minimize energy consumption and
execution time. Rountree et al. [3] develop an offline method
that uses linear programming to estimate the maximum en-
ergy saving possible for MPI programs based on critical path
analysis. Subsequent work [22] provides a critical path-based
online algorithm that uses simple predictions of execution
times for program regions based on prior executions of the
regions.

Our work differs from prior DVFS-based power man-
agement approaches in three ways. First, we choose CPU
frequency configurations based on a scalable performance
model instead of direct measurements or static analysis of
slack time. Increasing numbers of processors, cores and
available frequencies make scalable prediction models that
prune the optimization space essential. Second, we consider
hybrid MPI programs with nested OpenMP parallel phases
that can be scaled using DVFS and DCT. Thus, the solution
design space is more challenging although potential energy-
efficiency improvements are also higher. Third, we consider
systems with larger node counts and cores per node than
earlier studies and, thus, derive insight into the implications
of strong scaling, weak scaling, and multi-core processors
for power management.

Curtis-Maury et al. study prediction models for adaptation
via DCT and/or DVFS [9], [11], [16]. Their work targets
pure OpenMP programs running on shared memory multi-
core systems. They estimate performance for each OpenMP
phase in terms of useful instructions per second for DVFS
and DCT, which is sufficient within a shared memory
node. We target hybrid MPI/OpenMP programs running
on large-scale distributed systems and therefore must con-
sider the implications of MPI communication on slack and
the interactions between MPI communication events and
OpenMP phases. Thus, our model must generalize their
multi-dimensional prediction models for OpenMP phases
and directly use the predicted time. We also address a
shortcoming of their work, namely the lack of analysis of
the implicit penalty of DCT on memory performance, which
we analyze to design a new coordinated DCT algorithm that
mitigates the penalty. Finally, we choose CPU frequencies
under the constraints of both slack time and minimizing
energy consumption instead of minimizing only execution
time or only energy consumption.

Extensive prior research has explored optimization of
power/thermal and performance properties of programs us-
ing feedback from hardware event counters. Isci et al. [7]
and Merkel et al. [23] use hardware event counters to

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes 128 nodes

354.92s
357.40s 357.50s

358.41s 360.78s 361.18s
359.80s 361.84s 362.13s

362.23s
367.49s 368.21s

395.19s
399.22s 400.51s

397.69s 399.58s
401.71s

AMG

8 nodes 27 nodes 64 nodes 125 nodes 216 nodes

781.74s
783.16s 783.32s

1161.47s
1163.96s 1165.18s

1521.17s
1524.22s

1525.89s

1880.98s

1886.02s 1887.21s

2654.85s
2660.47s

2664.87s

IRS

4 nodes 8 nodes 16 nodes 32 nodes 64 nodes 128 nodes

1122.35s
1123.79s

1124.91s
1283.46s

1285.71s 1285.91s
1561.84s 1562.37s

1564.01
1969.22s 1970.84s

1975.31s

2412.91s 2413.16s 2414.21s 2908.28s 2911.39s
2914.14s

BT-MZ

Figure 14: Results from weak scaling tests of our adaptive DCT/DVFS control on System G

determine the degree of utilization of each functional unit in
a processor, from which they estimate power consumption
or temperature. Based on these power and temperature
estimates, they propose process scheduling algorithms. We
use hardware event counters to capture statistical correlation
between event samples and performance. By collecting spe-
cific counter events in sample iterations, our model learns
program execution properties and makes accurate prediction
for untested configurations thus reducing the design space
for energy-efficiency optimization of large-scale, multicore
systems.

IX. CONCLUSIONS

In this paper, we presented models and algorithms for
energy-efficient execution of hybrid MPI/OpenMP applica-
tions and we characterized energy-saving opportunities in
these applications, based on the interaction between com-
munication and computation. We used this characterization,
to propose algorithms using two energy-saving tools, DCT
and DVFS, to leverage energy-saving opportunities without
performance loss.

Our work improves existing DCT techniques by charac-
terizing the potential performance loss due to concurrency
adjustment. We use this insight to provide performance
guarantees in our new “one phase approach”, which balances
between DCT performance penalties and energy savings. We
also present a more accurate model for measuring slack time
for DVFS control and solve the problem of frequency selec-
tion using dynamic programming. We apply our model and
algorithm to realistic MPI/OpenMP benchmarks at larger
scales than any previously published study. Overall, our
new algorithm yields substantial energy savings (4.18% on
average and up to 13.8%) with either negligible performance

loss or performance gain (up to 7.2%). Further, our results
are the first to characterize how energy saving opportunities
vary under strong and weak scaling, on systems with large
node and core counts.

In future work we intend to tune the accuracy of our
prediction model. In particular, we will explore predictions
that reflect the interference between concurrency-adjusted
neighboring OpenMP phases. We will also include more
factors that affect performance into our time prediction,
which in turn should provide better guidelines for DCT and
DVFS.

ACKNOWLEDGMENT

This work has been supported by NSF (CNS-
0905187, CNS-0910784, CCF-0848670, CNS-0709025,
CNS-0720750) and the European Commission through the
MCF IRG project I-Cores (IRG-224759) and the HiPEAC
Network of Excellence (IST-004408, IST-217068). Part of
this work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344 (LLNL-
PROC-422990).

REFERENCES

[1] V. Freeh and D. Lowenthal, “Using Multiple Energy
Gears in MPI Programs on a Power-Scalable Clus-
ter,” in Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2007.

[2] R. Ge, X. Feng, and K. W. Cameron, “Performance-
Constrained Distributed DVS Scheduling for Scientific
Applications on Power-Aware Clusters,” in SC ’05:

Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, 2005.

[3] B. Rountree, D. Lowenthal, S. Funk, V. Freeh, B. R.
de Supinski, and M. Schulz, “Bounding Energy Con-
sumption in Large-Scale MPI Programs,” in SC ’07:
Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, 2007.

[4] R. Springer, D. Lowenthal, B. Rountree, and V. Freeh,
“Minimizing Execution Time in MPI Programs on an
Energy-Constrained, Power-Scalable Cluster,” in Pro-
ceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), 2006.

[5] A. Miyoshi, C. Lefurgy, E. Hensbergen, R. Rajamony,
and R. Rajkumar, “Critical Power Slope: Understand-
ing the Runtime Effects of Frequency Scaling,” in Proc.
of the International Conference on Supercomputing
(ICS), 2002.

[6] C.-H. Hsu and W.-C. Feng, “A Power-Aware Run-Time
System for High-Performance Computing,” in SC ’05:
Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, 2005.

[7] C. Isci and M. Martonosi, “Runtime Power Monitoring
in High-End Processors: Methodology and Empirical
Data,” in Proc. of the Annual International Symposium
on Microarchitecture, 2003.

[8] N. Kappiah, V. Freeh, and D. Lowenthal, “Just In Time
Dynamic Voltage Scaling: Exploiting Inter-Node Slack
to Save Energy in MPI Programs,” in Proceedings of
the 2005 ACM/IEEE Conference on Supercomputing,
2005.

[9] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos,
and D. S. Nikolopoulos, “Online Power-Performance
Adaptation of Multithreaded Programs using Event-
Based Prediction,” in Proc. of the 20th ACM Interna-
tional Conference on Supercomputing (ICS), 2006.

[10] M. A. Suleman, M. K. Qureshi, and Y. N. Patt,
“Feedback-Driven Threading: Power-Efficient and
High-Performance Execution of Multi-Threaded Work-
loads on CMPs,” in Proceedings of the 13th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), 2008.

[11] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos,
and D. S. Nikolopoulos, “Prediction-Based Power-
Performance Adaptation of Multithreaded Scientific
Codes,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), 2008.

[12] W. D. Gropp, “MPI and Hybrid Programming Models
for Petascale Computing,” in Proceedings of the 15th
European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, 2008.

[13] R. Rabenseifner and G. Wellein, “Communication and

Optimization Aspects of Parallel Programming Models
on Hybrid Architectures,” Int.J.High Perform. Comput.
Appl., vol. 17, 2003.

[14] T.Mudge, “Power: A First-Class Architectural Design
Constraint,” IEEE Computer, vol. 34, no. 4, 2001.

[15] T. Horvath and K. Skadron, “Multi-Mode Energy Man-
agement for Multi-Tier Server Clusters,” in Proc. of
the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2008.

[16] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S.
Nikolopoulos, B. R. de Supinski, and M. Schulz,
“Prediction Models for Multi-dimensional Power-
Performance Optimization on Many Cores,” in Proc.
of the 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), 2008.

[17] W. Gropp and E. Lusk, “Reproducible Measurements
of MPI Performance Characteristics,” in Proceedings
of the 6th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 1999.

[18] M. Silvano and P. Toth, Knapsack Problems: Algo-
rithms and Computer Implementations. John Wiley
and Sons, 1990.

[19] B. Mohr, A. D. Malony, S. Shende, and F. Wolf,
“Design and Prototype of a Performance Tool Interface
for OpenMP,” in Proceedings of LACSI 2001, 2001.

[20] H. Jin and R. Van der Wijingaart, “Performance Char-
acteristics of the Multi-Zone NAS Parallel Bench-
marks,” in Proc. of the International Parallel and
Distributed Processing Symposium (IPDPS), 2004.

[21] V. E. Henson and U. M. Yang, “BoomerAMG: A Par-
allel Algebraic Multigrid Solver and Preconditioner,”
Applied Numerical Mathematics, vol. 41, 2000.

[22] B. Rountree, D. K. Lownenthal, B. R. de Supinski,
M. Schulz, V. W. Freeh, and T. Bletsch, “Adagio: Mak-
ing DVS Practical for Complex HPC Applications,” in
Proceedings of the 23rd International Conference on
Supercomputing, 2009.

[23] A. Merkel and F. Bellosa, “Task Activity Vectors: A
New Metric for Temperature-Aware Scheduling,” in
Third ACM SIGOPS EuroSys Conference, 2008.

