
Critical Path-Based Thread Placement for NUMA Systems

ChunYi Su
Virginia Tech

Blacksburg, VA, USA
sonicat@vt.edu

Dong Li
Oak Ridge National Lab

Oak Ridge, TN, USA
lid1@ornl.gov

Dimitrios S. Nikolopoulos
∗

FORTH-ICS
Heraklion, Crete, GREECE

dsn@ics.forth.gr

Matthew Grove
Virginia Tech

Blacksburg, VA, USA
mat@vt.edu

Kirk Cameron
Virginia Tech

Blacksburg, VA, USA
cameron@vt.edu

Bronis R. de Supinski
LLNL

Livermore, CA, USA
bronis@llnl.gov

ABSTRACT
Multicore multiprocessors use a Non Uniform Memory Architec-
ture (NUMA) to improve their scalability. However, NUMA in-
troduces performance penalties due to remote memory accesses.
Without efficiently managing data layout and thread mapping
to cores, scientific applications may suffer performance loss, even
if they are optimized for NUMA. In this paper, we present al-
gorithms and a runtime system that optimize the execution of
OpenMP applications on NUMA architectures. By collecting
information from hardware counters, the runtime system di-
rects thread placement and reduces performance penalties by
minimizing the critical path of OpenMP parallel regions. The
runtime system uses a scalable algorithm that derives place-
ment decisions with negligible overhead. We evaluate our al-
gorithms and the runtime system with four NPB applications
implemented in OpenMP. On average the algorithms achieve be-
tween 8.13% and 25.68% performance improvement, compared
to the default Linux thread placement scheme. The algorithms
miss the optimal thread placement in only 8.9% of the cases.

Categories and Subject Descriptors
D.4 [Operating Systems]: Thread Management Scheduling

Keywords
Multicore processors, NUMA, Thread Placement, OpenMP,
Critical Path, Shared Resource Contention

1. INTRODUCTION
Many shared-memory multicore multiprocessors use a Non Uni-
form Memory Architecture (NUMA) to dedicate different mem-
ory lanes to different processors and to distribute system DRAM
between processors. High-end systems such as the Cray XMT [9]
and ones based on multicore processors, such as the IBM Power
7 [13] and the Intel Single-chip Cloud Computer (SCC) [7], use
a NUMA organization for off-chip DRAM. NUMA systems pro-
vide more memory bandwidth per core compared to UMA sys-
tems. Thus, their scalability is superior to that of UMA systems.

Performance optimization for NUMA systems typically relies
on data localization, so that each thread accesses local off-chip
memory upon cache misses. These optimizations use either
NUMA-aware data placement or NUMA-aware thread place-
ment. Most NUMA systems use first-touch or round-robin page
placement on DRAM to balance initial distribution of memory
accesses between nodes. However, maximizing local accesses

∗Also with the Department of Computer Science, University of
Crete, Heraklion, Crete, Greece.

can create contention on the local cache hierarchy and mem-
ory controllers (MC) by placing too many threads on the same
memory node. Moving some data to a remote memory node
may alleviate contention on shared resources and outperform a
thread or data placement scheme that enforces strict localiza-
tion. NUMA performance limitations due to either contention or
remote memory accesses may limit application scalability [12].

NUMA may also break performance and power optimizations,
such as Dynamic Concurrency Throttling (DCT) [3, 5, 11].
DCT dynamically adjusts thread counts of parallel regions,
based on a performance prediction that indicates the optimal
concurrency configuration (number and layout of core usage) of
each parallel region. Theoretically, appropriately selecting the
number and placement of threads for each parallel region can
achieve optimal performance, if the implicit overhead of DCT
is ignored. Unfortunately, applying DCT on a NUMA system
is challenging, because adjusting the number and placement of
threads between parallel regions can break any data localiza-
tion and the balancing of memory accesses that may have been
performed initially in the application.

Conventional operating system (OS) schedulers do not ade-
quately address the NUMA issue. They emphasize other op-
timization criteria, such as fairness, throughput and responsive-
ness. OS schedulers often migrate threads without consider-
ing data locality. They ignore important application-specific
information, such as application execution phases with different
memory access intensity and memory access patterns, or the
criticality of threads in an application, i.e., the threads that exe-
cute the critical path. By contrast, such information is available
in the runtime system of languages used to parallelize applica-
tions. In this work, we leverage critical path analysis to optimize
the thread placement of OpenMP applications on NUMA sys-
tems.

We propose several algorithms to place threads effectively on
NUMA systems and apply these algorithms to OpenMP appli-
cations. Our algorithms differentiate from prior work by using
critical path analysis to guide thread placement. When schedul-
ing threads, our algorithms consider data locality and avoid local
resource contention. We make the following contributions:

• We propose a stable algorithm to address the critical path
problem. This algorithm determines the best thread map-
ping in linear time with low overhead. This scalable algo-
rithm is suitable for many-core systems.

• We develop a runtime system to predict optimal thread
mappings for applications written in OpenMP.

• We implement and evaluate the runtime system for opti-
mizing thread placement in OpenMP programs. The run-
time system provides placement error-resilience for threads
that are poorly mapped initially.

Our runtime system improves performance of NPB OpenMP ap-
plications on average by 8.13% and up to 25.68% compared to
the default scheduler. We mispredict the optimal thread place-
ment for only 8.9% of the parallel execution phases.

Figure 2. The performance difference of 85 thread mappings of

13.07%

25.00%

3.77%

45.09%

18.31%

46.03%

30.69%

8.79%

12.30%
11.13%

16.71%

9.97%

6.96%

4.01%

8.99%
7.55%

13.88%

16.85%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

region1 region2 region3 region4 region5 region6 region7 region8 region9

Sp.A performance differences

8 threads, 85 kinds of mappings
cache

memory

P P P P

cache

memory

HyperTransport

Interconnect

P

cache

memory

P P P P

cache

memory

Figure 1: Performance difference of NAS SP mappings

2. BACKGROUND AND MOTIVATION
NUMA performance issues arise in two cases. First, multicore
processors often have multiple MCs distributed within the same
chip. Access by a core to the memory attached to the closest
MC on the chip has lower latency than access to the memory
attached to another MC. For example, the 48-core Intel Single-
chip Cloud Computer processor has four DDR3 MCs [12]. The
four MCs are placed at the four corners of the SCC 2D on-die
mesh, which implies non-uniform memory access latencies for
cores within the socket. Second, remote accesses across sockets
may result in varying latencies. Accesses to memory attached
to the MC on the same socket complete faster than accesses
to memory attached to another socket. Our platform has four
quad-core AMD Opteron 8350 processors (16 cores in total),
with an MC for each socket with a memory nodes attached
to each MC (i.e., 4 memory nodes in total). Besides remote
memory access latency, NUMA may reduce performance due to
congestion on the interconnect and bandwidth saturation when
accessing memory.

NUMA system performance is sensitive to the page placement
policy of the OS. Typically, the OS uses a ”first touch“ policy
that places physical pages on the node on which the thread that
first touches the page executes. Other page allocation policies,
such as round robin and interleaving, are also used, as they
produce balanced distribution of data between nodes. Our work
assumes data always uses the first touch policy, which is also the
default setting in Linux.

The performance of an OpenMP parallel region is sensitive to
how OpenMP threads are mapped to processor cores. Figure 1
shows the performance of the SP benchmark from the NAS par-
allel benchmark suite (OpenMP version) with 85 possible map-
pings and with the system default scheduling on our test plat-
form. The first bar of each group shows the performance dif-
ference between the best and worst case mappings. The second
bar of each group shows the performance difference between the
default OS mapping and the best case. Performance with the
default OS scheduling can be as much as 16.85% (region 9) worse
than the best case. Thus, relying on the default thread map-
ping without information on data location is far from enough
to achieve best performance. Motivated by this example, we
explore new algorithms for NUMA-aware thread placement.

We base our algorithms on the following assumptions:

• Applications are iterative. The outermost iterations ex-
ecute sequentially and typically correspond to simula-
tion time steps. Within the outermost application loop,
OpenMP directives parallelize code regions. Many scien-
tific applications conform with this assumption [3, 5];

• Application data is already touched at the initial phase,
so memory locations are fixed across iterations of the out-
ermost loop.

• Applications use the static OpenMP loop scheduling.

Thread
#

Memory
Node
1

Memory
Node
2

Memory
Node
3

Memory
Node
4

1 1770108 1765296 1766348 1765584
2 1631249 1530389 1529758 1532284
3 1554151 1554991 1552323 1552409
4 331659 330097 330903 329727
5 984706 985755 987233 987138
6 985833 986215 985754 988217
7 988661 986670 989070 988749
8 984706 985755 987233 987138

Table 1: A TNT with 8 threads

Symbol Definition
N Number of threads
Nd Number of memory nodes, or sockets
NUMA factor The ratio of remote access latency to

local access latency
e(Ti, Dj) An element at ith row and jth column

on TNT table
e.Ti Thread ID of element e(Ti, Dj). The ith

row of TNT
e.Dj Memory node ID of element e(Ti, Dj).

The jth column of TNT
Vij NMemory requests of element e(Ti, Dj).
LMA Local memory accesses
RMA Remote memory accesses
IF(e(Ti, Dj)) The performance Impact Factor of the

thread Ti on memory node Dj toward
critical path

Table 2: Notation used in this paper

• The OS NUMA-aware page placement policy is the first
touch, which is the default setting under Linux.

We use performance counters to collect memory access infor-
mation during the first few iterations of the application and
to direct thread mapping to cores. In particular, we monitor
the event CPU TO DRAM REQUESTS TO TARGET NODE X,
where X indicates the target memory node. This event counts
all DRAM read and write requests generated by cores on the lo-
cal node to the targeted node in the coherent fabric. This event
can be used to observe processor data affinity [1]. By monitor-
ing this event, we can set up a thread-node table (TNT) that
records the number of memory references to each memory node
from each thread. TNT provides data distribution information
that we use to design our thread mapping algorithms. Table 1
shows an example TNT. The data is collected from the NPB
MG benchmark using 8 OpenMP threads. We use this table as
an example to describe our algorithm in the following sections.

3. DESIGN
This section presents three algorithms that assign threads to
cores to optimize performance of OpenMP regions. The algo-
rithms use the TNT to keep snapshots of the distribution of
memory references for each OpenMP thread. Each element of
the TNT table is represented by e(Ti, Dj). Table 2 shows our
notation. The algorithms attempt to maximize the total local
memory accesses (LMA) across all threads for an OpenMP re-
gion. With this policy, the algorithms attempt to reduce remote
memory references, thus optimizing data access locality.

3.1 Algorithm 1
Algorithm 1, based on the memory reference information col-
lected in the TNT, enumerates all possible thread mappings
and calculates the total number of LMA for each mapping. The
algorithm then selects the mapping with the highest LMA. This
algorithm must enumerate all possible mappings so its runtime
overhead increases quickly. For example, an OpenMP region
executed on 4 quad-core processors must enumerate (16!) /
(4!4!4!4) = 63,063,000 mappings. As the number of cores in-
creases, the overhead can easily offset any performance benefit.

3.2 Algorithm 2

Algorithm 2 also tries to find the optimal thread mapping in
terms of LMA. However, it uses a sorting algorithm that signifi-
cantly reduces runtime overhead. We discuss the time complex-
ity of the algorithms in Section 3.4. In this section, we describe
Algorithm 2 in detail. To find the maximal LMA, Algorithm 2
first sorts all elements Vij in the TNT in descending order and
generates a linked list. The algorithm then iteratively selects the
element with the “max” value from the list until all threads are
selected. Each selection iteration chooses an element e(Ti, Dj)
to pin thread i to a processor attached to memory node j. Al-
gorithm 2 has two additional properties. First, the assigned
number of threads per processor should not be higher than the
available number of cores per processor. Otherwise, the pro-
cessor will be oversubscribed. Second, the algorithm considers
contention on the memory node when placing multiple threads
on processors attached to the same node. To avoid contention,
the algorithm does not always select the element with the max-
imum value at a specific iteration. Instead, it may choose an
element with a lower value that alleviates contention in some
memory nodes. The element with the maximum value in the
specific iteration is then deferred to a later iteration.

We use the example in Table 1 to illustrate how Algorithm 2
avoids contention. At first, The algorithm finds the element
e(1,1), has the maximum value (1770108) after sorting, so it
places thread 1 on processor 1, which is attached to the memory
node 1. The elements e(1,2), e(1,3), e(1,4) are removed from
the list since thread 1’s position has been fixed. The algorithm
then adds the memory reference count of e(1,1), 1770108, to the
total number of local memory references of node 1: LC [1] + =
1770108. Next, the algorithm finds that element e(2,1) has
the maximum value, so it attempts to place thread 2 on the
processor attached to the memory node 1 to maximize the local
memory references of thread 2. However, the memory node 1 is
already assigned thread 1. Placing thread 2 close to the memory
node 1 will introduce contention and load imbalance. In this
situation, the algorithm pins thread 2 close to another memory
node by considering the elements e(2,2), e(2,3) and e(2,4)). In
this situation, the algorithm sacrifices some locality to reduce
contention.

Selecting cases in which reduced locality is beneficial merits fur-
ther discussion. We use an example to explain this point further.
Assume the element e(Ti, Dj) has the maximum value of local
memory references in an iteration, but the algorithm attempts
to place thread i to the remote memory node k instead of the
local node j to avoid contention. From the TNT table, the
algorithm finds that the number of memory references to the
memory node k for thread i is T by checking element e(Ti, Dk).
Pinning thread i to the memory node k instead of the memory
node j is beneficial only if the remote memory access time to
the memory node k is no less than the local memory access time
to the memory node j :

T · RMA latency ≥ MAX V ALUE · LMA latency (1)

Equation 1 implies that:

T ≥ MAX V ALUE

(RMA latency)/(LMA latency)
=

MAX V ALUE

NUMA Factor
(2)

In Equation 2, the NUMA Factor is the ratio of the remote
memory latency to the local memory latency. It usually varies
between 1.5 and 2, depending on the interconnect [8] The MAX
VALUE is the maximum number which the algorithm is able
to select in current selecting iteration. In our test platform we
set NUMA Factor=1.5. Threshold T is used to decide whether
sacrificing locality is beneficial. The memory references to the
remote memory node k should be above T for the algorithm
to decide to sacrifice locality. In other words, the algorithm
reduces local memory accesses by no more than:

MAX V ALUE − MAX V ALUE

NUMAFactor

= MAX V ALUE · (1− 1

NUMAFactor
) (3)

In our example, since e(2,1) has the largest value in the second

Algorithm 2 Maximize total LMA in all threads.

Input: TNTTable t
Output: Map mapMaxLocal //A mapping with maximum lo-

cal memory references
1: Int lc[Nd]= 0; //Local memory references
2: ElementList sortedList = SortTable(t);
3: while sizeof (mapMaxLocal) 6= N do
4: Element emax(Ti, Dj)=GetNextMax(sortedList);
5: mapMaxLocal.Insert(emax(Ti, Dj));
6: RemoveElementsWithThread(sortedList, e.Ti);
7: Return mapMaxLocal;
8: end while

9: getNextMax(List l)
Input: List l; //A sorted list
Output: Element edecide //An element with smallest local con-

tention;
10: Element emax = GetFistMaxElement(l)
11: ElementList el= FindAllPossibleCandidateElements(emax);
12: edecide= FindLowestLocalContentionElement(el);
13: RemoveThreadFromList(edecide.Ti);
14: AppendLocalContention(edecide.Dj ,edecide.Vij);
15: Return edecide;

iteration, T is calculated as 1631249/1.5=1087500 for the ele-
ment e(2,1). The elements e(2,2), e(2,3), e(2,4) are above T.
Further, the algorithm finds that e(3,2), e(3,3), and e(3,4) are
more eligible than e(2,2), e(2,3), e(2,4) because they have more
local memory references. The algorithm eventually chooses
e(3,2) because it has the most local memory references. The
elements e(3,1), e(3,3), and e(3,4) are removed. The algo-
rithm maps thread 3 to the processor attached to the mem-
ory node 2, instead of mapping thread 2 to the processor at-
tached to the memory node 1. Eventually, the algorithm adds
the value of e(3,3), to the total local memory references of node
2: LC [2] + = 1554991, and finishes the second iteration. The
algorithm keeps e(2,1) in the sorted list and waits for next selec-
tion iteration. The pseudo-code of Algorithm 2 is listed above.

In essence, Algorithm 2 tries to improve the performance of each
thread by maximizing LMA. However, it is unaware of the crit-
ical path and thus cannot ensure the critical thread has higher
optimization priority. Algorithm 3 addresses this problem.

3.3 Algorithm 3
Ideally, computation and data are evenly assigned to each thread
and thus all threads have the same execution time. However,
the execution time of threads can vary in practice. The thread
with computation time longer than that of all other threads is
on the critical path. Changes in the memory access latency of
threads may also change the critical path.

The critical path can be hard to identify because memory ref-
erence time is influenced by many factors, such as last level
cache (LLC) misses, resource contention on memory controllers
and memory links from other memory operations, prefetch-
ing, cache coherence protocol and even page faults. Previous
work [2, 14] uses LLC misses as a simple metric to compare
the performance of threads. However, LLC misses is insufficient
to estimate memory performance. Instead, we use the event
CPU TO DRAM REQUESTS TO TARGET NODE X to es-
timate the memory performance of threads. This event not
only measures accesses to the LLC but also all DRAM access
requests, including resent requests due to resource contention
on shared resources and data prefetch requests.

Algorithm 3 is NUMA and critical path aware. Estimating the
execution time of the thread in the critical path is difficult.
The algorithm avoids directly estimating the time of the critical
path; instead, it uses Impact Factor (IF) to represent memory
reference effects on performance:

IF (Ti, Dj) = number of local requests +

NUMA Factor · Σ(number of remote requests) (4)

IF represents the effects of memory references on the memory

Algorithm 3 Find a map with minimal critical path

Input: TNTTable t
Output: Map mapMinCp
1: Map mapMinCp = Φ
2: Int cpImpact[Nd]= 0; //Impacting Extent on each domain
3: ElementList sl= SortElementInTable(t);
4: while sizeof(mapMinCp) 6= N do
5: Element e(Ti, Dj)=GxetMinCritcalPathElement(sl);
6: mapMinCp.Add(e(Ti, Dj));
7: end while
8: Return mapMinCp

9: GetMinCritcalPathElement(Listl)
Input: ElementList l //a sorted ElementList
Output: Element edecide //an element with smallest impacting

to critical path;
10: Element emax = GetFistMaxElement(l);
11: ElementList lc=FindAllPossibleCandiateElements(emax);
12: edecide=FindLowestCPElement(cpImpact,lc);
13: RemoveThreadFromList(edecide.Ti);
14: AppendCirticalPathImact(cpImpact,IF(edecide));
15: Return edecide

16: FindLowestCPElement(UINT64 cpImpact[], Listl)
Input: ElementList l//a sorted ElementList;
Output: Element element //an element with smallest impact-

ing to critical path;
17: minV al=UINT64 MAX; element edecide = Φ;
18: for all Element e in l do
19: if (IF (e) + cpImpact[e.Dj]) < minV al then
20: minV al=IF (e) + cpImpact[e.Dj]);edecide = e;
21: end if
22: end for

element IF (e.Ti, e. Dj) CPImpact[e.Dj] IF (e.Ti, e. Dj)+
CPImpact[e.Dj]

e(2,1) 4592431 9715950 14308381
e(3,2) 4659723 0 4658883
e(3,3) 4661551 0 4661551
e(3,4) 4661465 0 4661465

Table 3: IF and CPImpact comparison

system, including both local and remote memory references. A
thread with a large IF value has high tendency to be on the
critical path. Table 3 provides an example using the data from
Table 1. Algorithm 3 sorts the TNT then picks the element
with the maximum value and the rest of the candidates in other
nodes, similarly to Algorithm 2. Algorithm 3 uses an array,
CPImpact of size Nd to record the IF on each domain.

Table 3 illustrates the main idea of Algorithm 3. Assume the
algorithm has already selected e(1,1) and pinned thread 1 to
memory node 1. It then assigns CPImpact[1]+= IF(1,1) to
record the IF from placing thread 1 on the memory node 1.
In the next iteration, the algorithm chooses the next element
with maximum local references, e(2,1) and three other candi-
dates e(3,2), e(3,3) and e(3,4) on the other three memory nodes.
Then the algorithm selects one with the lowest value by com-
puting IF (e.Ti, e.Dj) + CPImpact[e.Dj].

According to Table 3, the algorithm will select e(3,2), and add
IF(3,2) to CPImpact[2], (i.e., CPImpact[2]+= IF(3,2)). Algo-
rithm 3 improves upon Algorithm 2 by considering additional
remote memory contention while estimating the IF, while Algo-
rithm 2 only uses local memory contention. The pseudo code of
Algorithm 3 is given above.

3.4 Time Complexity Analysis
Algorithm 1 uses a brute-force method to find all possible thread
mappings. Thus it is cumbersome, slow and impractical. Its
time complexity is O(N!). Since it has many redundant thread
combinations, we can select some “good” mappings by avoiding
the check of symmetric cases. “Good”here means load balanced
and symmetric [4]. The time complexity of Algorithm 2 and 3 is
determined by the sorting algorithm and the iterative selection

process. The process of iterative selection can be done in linear
time: O (k ·N ·Nd), where k is a constant, N · Nd is the total
number of elements in the TNT.

Our implementation uses parallel radix sort as our sorting
method. Theoretically, we can achieve a constant time complex-
ity for parallel radix sort. The time complexity of the parallel
radix sort is O(1

p
· k · N · Nd), where k is a constant, p is the

level of parallelism, N · Nd is the total number of elements in
the TNT. When we use p = N , the time complexity becomes a
constant, O(k ·Nd). Since Algorithms 2 and 3 use parallel radix
sort, their time complexity is dominated by the linear itera-
tive selection process, which scales only with N. Theoretically,
if N = 16, Algorithm 2 and 3 can be 12300 times faster than
Algorithm 1. Algorithm 2 and 3 are thus more scalable and
suitable for many-core systems.

4. PERFORMANCE
4.1 Experimental Environment
We used a system with four quad-core AMD Opteron 8350 HE
processors (16 cores in total), each with private L1 and L2 cache
per core and a shared 2MB L3 cache. Each processor has one
memory controller. The machine has 64GB of RAM. The inter-
processor communication is enabled by a HyperTransport inter-
connect. We tested OpenMP implementations of benchmarks
from the NAS Parallel Benchmarks Suite, version 3.1 using Intel
C/C++ compilers and Fortran compilers with“-O”optimization
flag. The OS was Linux version 2.6.32.

4.2 Results
Due to limited space we only discuss the performance results of
Algorithms 2 and 3. First, we demonstrate the ability of Al-
gorithm 2 to adapt to good thread mappings regardless of the
initial thread mapping. Figure 2 shows a histogram generated
from 100 runs of the SP and BT benchmarks. The experiment
is conducted as follows: First, we randomly map 16 threads on
cores using a balanced mapping (one thread per core) and mea-
sure total execution time of iterations 1 through 20 (we do not
measure iteration 0 to avoid warm-up effects). Then, we use 4
more iterations to collect snapshots of memory behavior in the
TNT, apply Algorithm 2, make a prediction of the new mapping
and measure the execution time of the next 20 iterations, from
25 to 44. The results in Figure 2 show the ratio of execution
time (iterations 25–44) after prediction to the execution time
before prediction (iterations 1–20) with random balanced map-
ping (less than 100% means better). In most cases, Algorithm
2 improves performance. The algorithm outperforms the ran-
dom mapping by up to 28%, therefore it is robust and adapts
effectively regardless of the initial mapping.

Figure 3 shows the execution time histogram for the system de-
fault (Linux first-touch policy) and Algorithm 2. Because it does
not consider the critical path, Algorithm 2 cannot outperform
the default. In most cases, the performance of the predicted
mapping is the same as the default.

We test Algorithm 3 under the following scenario: We first as-
sign a random number of threads to run from iteration 1 to
20, then we change the number of threads to a specific number
(i.e., 4, 8, 12 or 16) to run the next 20 iterations (21–40), using
the system default scheduler. We use iterations 41–44 to col-
lect snapshots of memory behavior in the TNT, then we apply
Algorithm 3 and measure the execution time of the next 20 it-
erations (45–64). Figure 4 shows this histogram of MG, SP, and
FT using Algorithm 3 with 4, 8, 12, and 16 threads in iterations
20 to 64. We find that Algorithm 3 performs well with 4, 8,
or 12 threads. With 16 threads, the performance of Algorithm
3 is usually the same as the default. In executions with fewer
threads Algorithm 3 is better because the default tends to se-
lect an imbalanced thread mapping after the number of threads
changes. These mappings lengthen the critical path.

To validate the accuracy of the derived mappings (in terms of
whether the algorithms find the optimal mapping), we exhaus-
tively ran each benchmark 100 times with 4 and 8 threads, for
a total of 800 runs. We classify thread mappings with a perfor-
mance rate under 99% of the default as “correct”, larger than

4.2 Results

Figure 7. Performance comparison between the Algorithm 2 and the random mapping

X-Axis: Execution time under the Algorithm 2 divided by the execution time under the random mapping

0

2

4

6

8

10

7
2

.0
0

%

7
4

.0
0

%

7
6

.0
0

%

7
8

.0
0

%

8
0

.0
0

%

8
2

.0
0

%

8
4

.0
0

%

8
6

.0
0

%

8
8

.0
0

%

9
0

.0
0

%

9
2

.0
0

%

9
4

.0
0

%

9
6

.0
0

%

9
8

.0
0

%

1
0

0
.0

0
%

1
0

2
.0

0
%

1
0

4
.0

0
%

Algorithm 2, SP.C (16 threads)

0

2

4

6

8

10

12

14

Algorithm 2, BT.C (16 threads)

8
2

.0
0

%

8
3

.0
0

%

8
4

.0
0

%

8
5

.0
0

%

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

Algorithm 2, SP.C (16 threads) Algorithm 2, BT.C (16 threads)

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
…

1
0

1
.0

0
…

1
0

2
.0

0
…

1
0

3
.0

0
…

1
0

4
.0

0
…

1
0

5
.0

0
…

Algorithm 3, MG. B (4 threads)

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

1
0

2
.0

0
%

1
0

3
.0

0
%

1
0

4
.0

0
%

1
0

5
.0

0
%

1
0

6
.0

0
%

(8 threads)

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

Figure 2: Performance comparison between Algorithm 2 and random mapping. X-Axis: Execution time under
Algorithm 2 divided by execution time under random mapping

Figure 8. Performance comparison between the Algorithm 2 and the system default mapping

0

10

20

30

40

50

60

70

80

90

8
2

.0
0

%

8
3

.0
0

%

8
4

.0
0

%

8
5

.0
0

%

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

Algorithm 2, SP.C (16 threads)

0

10

20

30

40

50

60

Algorithm 2, BT.C (16 threads)

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
…

1
0

1
.0

0
…

1
0

2
.0

0
…

1
0

3
.0

0
…

1
0

4
.0

0
…

1
0

5
.0

0
…

Algorithm 3, MG. B (4 threads)

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

1
0

2
.0

0
%

1
0

3
.0

0
%

1
0

4
.0

0
%

1
0

5
.0

0
%

1
0

6
.0

0
%

(8 threads)

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

Figure 3: Performance comparison between Algorithm 2 and the system default mapping. X-Axis: Execution
time under Algorithm 2 divided by execution time under the system default mapping

Figure 9. Performance comparison between the Algorithm 3 and the system default mapping

65 94.22% 29 94.37% 86 96.24% 83 92.00%

2 103.25% 42 104.10% 1 103.21% 8 106.35%

61 95.43% 81 91.95% 96 90.74% 95 84.21%

12 03.88% 4 103.08% 0 100.00% 2 105.79%

0

5

10

15

20

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
…

1
0

1
.0

0
…

1
0

2
.0

0
…

1
0

3
.0

0
…

1
0

4
.0

0
…

1
0

5
.0

0
…

Algorithm 3, MG. B (4 threads)

0

2

4

6

8

10

12

14

16

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

1
0

2
.0

0
%

1
0

3
.0

0
%

1
0

4
.0

0
%

1
0

5
.0

0
%

1
0

6
.0

0
%

Algorithm 3, MG. B (8 threads)

0

5

10

15

20

25

Algorithm 3, MG. B (12 threads)

0

10

20

30

40

50

8
5

.0
0

%

8
6

.0
0

%

8
7

.0
0

%

8
8

.0
0

%

8
9

.0
0

%

9
0

.0
0

%

9
1

.0
0

%

9
2

.0
0

%

9
3

.0
0

%

9
4

.0
0

%

9
5

.0
0

%

9
6

.0
0

%

9
7

.0
0

%

9
8

.0
0

%

9
9

.0
0

%

1
0

0
.0

0
%

1
0

1
.0

0
%

1
0

2
.0

0
%

1
0

3
.0

0
%

Algorithm 3, MG.B (16 threads)

0

2

4

6

8

10

7
8

.0
0

%

8
0

.0
0

%

8
2

.0
0

%

8
4

.0
0

%

8
6

.0
0

%

8
8

.0
0

%

9
0

.0
0

%

9
2

.0
0

%

9
4

.0
0

%

9
6

.0
0

%

9
8

.0
0

%

1
0

0
.0

0
%

1
0

2
.0

0
%

1
0

4
.0

0
%

1
0

6
.0

0
%

1
0

8
.0

0
%

1
1

0
.0

0
%

1
1

2
.0

0
%

1
1

4
.0

0
%

1
1

6
.0

0
%

Algorithm 3, SP.C (4 threads)

0

1

2

3

4

5

6

7

8

6
4

.0
0

%

6
6

.0
0

%

6
8

.0
0

%

7
0

.0
0

%

7
2

.0
0

%

7
4

.0
0

%

7
6

.0
0

%

7
8

.0
0

%

8
0

.0
0

%

8
2

.0
0

%

8
4

.0
0

%

8
6

.0
0

%

8
8

.0
0

%

9
0

.0
0

%

9
2

.0
0

%

9
4

.0
0

%

9
6

.0
0

%

9
8

.0
0

%

1
0

0
.0

0
%

1
0

2
.0

0
%

1
0

4
.0

0
%

1
0

6
.0

0
%

Algorithm 3, FT.B (8 threads)

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

N
um

be
r

of
 r

un
s

Figure 4: Performance comparison between Algorithm 3 and the system default mapping X-Axis: Execution time
under Algorithm 3 divided by the execution time under the system default mapping

Statistical results of NPB bench-
marks

MG FT BT SP

Test
counts

average Test
counts

average Test
counts

average Test
counts

average

thread num=4 correct 65 94.22% 29 94.37% 86 96.24% 83 92.00%
wrong 2 103.25% 42 104.10% 1 103.21% 8 106.35%
same as sys-
tem default

33 100.00% 29 100.00% 13 100.00% 9 100.00%

thread num=8 correct 61 95.43% 81 91.95% 96 90.74% 95 84.21%
wrong 12 103.88% 4 103.08% 0 100.00% 2 105.79%
same as sys-
tem default

27 100.00% 15 100.00% 4 100.00% 3 100.00%

Table 4: Statistical results of NPB benchmarks

101% compared to the default as “wrong” and between 99% and
101% of the default as “same as system default”. Table 4 shows
the statistical results and average ratio of execution time com-
pared to the system default of four NPB benchmarks. We found
that only 8.9% of the predictions are wrong. These predictions
incur a 4.27% weighted performance loss. 74.50% of the pre-
dictions are correct and achieve 8.13% weighted performance
gain. 16.63% of the predictions are the same as system default.
When the system default has a suboptimal mapping, Algorithm
3 can improve performance by up to 27.29%, 35.09%, 17.08%
and 23.26% for MG, FT, SP and BT respectively.

5. RELATED WORK
Terboven et al. [12] proposed a data placement policy, “next
touch”, to migrate pages with heavy remote accesses dynami-
cally. Ribeiro et al. [10] used different data access patterns to
guide the memory placement policy on NUMA systems. Both
attempted to improve performance by changing data placement.
However, they do not guarantee that the benefit surpasses the
penalty of migrating data.

Majo et al. [6] proposed a NUMA-aware task scheduler by mea-
suring LLC pressure and NUMA penalty. Their algorithm re-
quires application parameters that must be obtained offline,
which prevents dynamic adjustments to improve performance.
Zhuravlev et al. [2, 14] argue that LLC misses are not the only
factor that causes performance degradation and that the mem-
ory controller and prefetch mechanism are also important. They
propose an online task scheduler but they still use LLC miss rate
as a metric to measure the extent of local contention. McCurdy
et al. [8] argue that NUMA problems can be identified by the
help of hardware counters that track remote memory references.
These crossbar events can now be counted in modern AMD and
Intel architectures. We find that LLC misses are not the only
factor of performance degradation and use the memory request
event mentioned by Blagodurov et al. [2] as the metric to cap-
ture NUMA performance degradation.

Curtis-Maury et al. [3] proposed the concept of DCT to adjust
thread counts in different OpenMP regions dynamically to im-
prove performance. Li et al. [5], extended the concept of DCT
and built a power-aware prediction model to save energy with
Hybrid MPI/OpenMP programs. We extend their work with
algorithms that optimize thread placement on NUMA systems.

6. CONCLUSIONS
NUMA architectures raise significant performance issues due to
mismatches between data and thread placement. We presented
NUMA-aware, thread placement algorithms that consider the
critical path to address NUMA issues in OpenMP programs.
To the best of our knowledge, these algorithms are the first to
use prediction and critical path analysis to derive nearly opti-
mal thread mappings. In the future, we plan to validate the
performance of our tool on non-NUMA optimized benchmarks,
such as Parsec and Sequoia benchmarks. We also plan to release
a beta-version of the tool.

7. ACKNOWLEDGMENTS
This work is partially supported by a Marie Curie International
Reintegration Fellowship, through the I-Cores project (Grant

ID FP7-MCF-IRG-224759). Partly performed under the aus-
pices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

8. REFERENCES
[1] AMD. BIOS and Kernel DeveloperŠs Guide (BKDG) For AMD

Family 10h Processors. AMD, 2010.
[2] Blagodurov, S., Zhuravlev, S., Fedorova, A., and Kamali, A. A

Case for NUMA-Aware Contention Management on Multicore
Systems. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques (New York,
NY, USA, 2010), PACT ’10, ACM, pp. 557–558.

[3] Curtis-Maury, M., Shah, A., Blagojevic, F., Nikolopoulos, D. S.,
de Supinski, B. R., and Schulz, M. Prediction Models for
Multi-dimensional Power-Performance Optimization on Many
Cores. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (New York,
NY, USA, 2008), PACT ’08, ACM, pp. 250–259.

[4] Klug, T., Ott, M., Weidendorfer, J., Trinitis, C., and Mu”nchen,
T. U. autopin – Automated Optimization of Thread-to-Core
Pinning on Multicore Systems.

[5] Li, D., de Supinski, B., Schulz, M., Cameron, K., and
Nikolopoulos, D. Hybrid MPI/OpenMP Power-Aware Computing.
In Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on (April 2010), pp. 1 –12.

[6] Majo, Z., and Gross, T. R. Memory Management in NUMA
Multicore Systems: Trapped between Cache Contention and
Interconnect Overhead. In Proceedings of the International
Symposium on Memory Management (New York, NY, USA, 2011),
ISMM ’11, ACM, pp. 11–20.

[7] Mattson, T. G., Riepen, M., Lehnig, T., Brett, P., Haas, W.,
Kennedy, P., Howard, J., Vangal, S., Borkar, N., Ruhl, G., and
Dighe, S. The 48-Core SCC Processor: The Programmer’s View. In
Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis
(Washington, DC, USA, 2010), SC ’10, IEEE Computer Society,
pp. 1–11.

[8] Mccurdy, C., and Vetter, J. Memphis: Finding and Fixing
NUMA-Related Performance Problems on Multi-core Platforms. In
Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS) (2010).

[9] Mizell, D., and Maschhoff, K. Early Experiences with Large-Scale
Cray XMT Systems. In Parallel Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on (may 2009),
pp. 1 –9.

[10] Ribeiro, C., Mehaut, J.-F., Carissimi, A., Castro, M., and
Fernandes, L. Memory Affinity for Hierarchical Shared Memory
Multiprocessors. In Computer Architecture and High Performance
Computing, 2009. SBAC-PAD ’09. 21st International Symposium
on (Oct. 2009), pp. 59 –66.

[11] Singh, K., Curtis-Maury, M., McKee, S. A., Blagojević, F.,
Nikolopoulos, D. S., de Supinski, B. R., and Schulz, M. Comparing
Scalability Prediction Strategies on an SMP of CMPs. In
Proceedings of the 16th International Euro-Par Conference on
Parallel Processing: Part I.

[12] Terboven, C., an Mey, D., Schmidl, D., Jin, H., and Reichstein, T.
Data and Thread Affinity in OpenMP Programs. In Proceedings of
the 2008 Workshop on Memory Access on Future Processors: A
Solved Problem? (New York, NY, USA, 2008), MAW ’08, ACM,
pp. 377–384.

[13] Ware, M., Rajamani, K., Floyd, M., Brock, B., Rubio, J., Rawson,
F., and Carter, J. Architecting for Power Management: The IBM
POWER7 Approach. In High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on (Jan.
2010), pp. 1 –11.

[14] Zhuravlev, S., Blagodurov, S., and Fedorova, A. Addressing
Shared Resource Contention in Multicore Processors via Scheduling.
In Proceedings of the Fifteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2010), ASPLOS ’10, ACM,
pp. 129–142.

