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Abstract

In this work, we describe new strategies for scheduling
and executing Workflow applications on Grid resources us-
ing the GrADS [18] infrastructure. Workflow scheduling is
based on heuristic scheduling strategies that use applica-
tion component performance models. The Workflow is exe-
cuted using a novel strategy to bind and launch the appli-
cation onto heterogeneous resources. We apply these strate-
gies in the context of executing EMAN, a Bio-imaging work-
flow application, on the Grid. The results of our experi-
ments show that our strategy of performance model based,
in-advance heuristic workflow scheduling results in 1.5 to
2.2 times better makespan than other existing scheduling
strategies. This strategy also achieves optimal load balance
across the different Grid sites for this application.

1. Introduction

For the past several years, theGrid Application Develop-
ment Software (GrADS) Projecthas been developing tools
to make the construction of applications for the Grid eas-
ier, while maintaining a high standard of overall perfor-
mance. This work has led to the development of a pro-
totype software infrastructure called GrADSoft that runs
on top of Globus and facilitates the scheduling, launch-
ing, and performance monitoring of tightly coupled Grid
applications, particularly those that require MPI commu-
nications. At the heart of the GrADS infrastructure is the
notion that each Grid program be represented as aconfig-
urable object programconsisting of the application code
plus amapper, which would determine how to assign tasks
in the application to different components of a collection of
grid resources, and aresource selection performance model,
which could be used to estimate the overall performance of
the application when run on a collection of grid resources
using a task assignment produced by the mapper. The key
to this strategy has been to provide tools for automatic and

semi-automatic construction of mappers and performance
models. The GrADS team has explored this approach by
implementing and executing a number of prototype appli-
cations on GrADS software layer running on a special col-
lection of geographically distributed clusters that form the
GrADS Testbed.

Although this work has focused on tightly-coupled ap-
plications, it became clear to us that the strategy could also
be used to improve the development and execution of so-
called workflow applications in which the overall workflow
is represented by a directed acyclic graph in which each ver-
tex is an application that forms a component of the overall
work to be done and each edge represents a data dependency
between specific application components. Usually substan-
tive data transfers takes place along edges in the workflow
graph.

Currently, there are a number of tools supporting the ex-
ecution of workflow applications, the most prominent be-
ing the Condor DAGMan [7] tool. However, most of these
tools schedule the workflow dynamically at each step, so
that the overall mapping and schedule is determined by the
state of the Grid at the series of points when the application
components are ready to execute. A much better outcome
can be achieved in some cases by applying in-advance static
scheduling to the process to ensure that the key computa-
tional steps are executed on the right resources and large-
scale data movement is minimized.

In this paper, we present a strategy that extends the
GrADS approach of using performance estimators to sched-
ule workflow applications. In addition, we present results of
our experiments with the extended GrADSoft infrastructure
on a workflow application taken from the domain of medi-
cal image reconstruction.

The rest of the paper is structured as follows. Section
2 defines Workflow applications. In section 3, we describe
the techniques used for component performance modeling
and the heuristic workflow scheduling algorithm using these
models. Section 4 describes the novel strategies to execute
the workflows. In section 5, we present an experimental



evaluation of our scheduling techniques by comparing it
with existing scheduling strategies on workflows from a real
biomedical application. Section 6 presents related work.
Section 7 concludes the paper and discusses some future
work.

2. Workflow Applications

Many important Grid applications fall into the category
of Workflow Applications, examples being LIGO [1] pulser
search on the Grid, image processing on the Grid [15], Mon-
tage [11] etc. Instead of the application being a single
large component doing all the tasks, the Workflow Appli-
cation consists of a collection of several interacting compo-
nents that need to be executed in a certain partial order for
successful execution of the application as a whole. These
components have specific control and data dependencies
between them. In most cases, the Application Workflow
can be represented as a directed acyclic graph (DAG) where
each node in the DAG represents an application component
and the edges denote control/data dependencies. In the most
general case, some of the application components can be
parallel components like MPI jobs. The main issues for ex-
ecuting Workflow Applications on the Grid are

• the ability for the components to seamlessly access
the required Grid resources

• efficient selection of resources for the components in
order to achieve good performance

• satisfying all dependencies and automating the Grid
execution of the entire workflow

We intend to address these issues in the following sec-
tions. The next section describes our approach to schedul-
ing Workflow application components.

3. Scheduling Workflow Applications

The design space for Grid Schedulers in general is very
rich. First, it depends on what objective function the user
wants to minimize or maximize – examples being minimiz-
ing overall job completion time, minimizing communica-
tion time and volume, and maximizing resource utilization
or throughput. Second, it depends on how the job require-
ments, job performance models, and Grid resource models
are specified and used. The scheduler must also carefully
choose between different implementations of user authen-
tication, allocation, and reservation. Other choices include
scheduling application components for single or multiple
users and whether rescheduling or re-planning is required.
In our Workflow scheduling work, we have chosen the fol-
lowing design parameters. Our objective function is to min-
imize overall job completion time or the makespan of the

application. The makespan of a Workflow application is de-
fined as the time at which the last component in the work-
flow finishes execution. We develop Grid resource model
through calls to different Grid services - Monitoring and
Discovery Service (MDS) [12] and Network Weather Ser-
vice (NWS) [31]. We derive application component perfor-
mance models using methods described in a later section.
The scheduling problem we are trying to solve can be stated
as follows.

3.1 Problem Statement

Given a DAG of the Workflow representation of the ap-
plication, let the set of available application components
from the DAG be denoted byC = {c1, c2, ...cm} and the
set of available Grid resources beG = {r1, r2, ...rn}. The
scheduling problem is to output a mapping from elements
of C onto elements ofG, or in other words, to output a
mapping of which component runs on which Grid resource
in what order.

3.2 Approach

We take a two-stage approach to solve the problem. In
the first stage, for each component, we rank the resources
and assign specific rank values to each resource on which
the component can be mapped. Rank values reflect the ex-
pected performance of a particular component on a particu-
lar resource. We will explain how to assign these rank val-
ues in detail in the next section. As a result of this step, we
will have associated rank values for a set of resources for a
particular component. In the second stage, we take the rank
values for each component and build up a Performance Ma-
trix. We then use certain known heuristics to obtain a map-
ping of components to resources. These steps are explained
in detail below.

3.2.1 Calculation of rank values

Calculating rank values involves matching a specific com-
ponent to a set of resources and then ranking the resources.
For this purpose, we assign rank values for each possible
mapping of the component to an available resource. Ac-
cording to our ranking convention, resources with a lower
rank are a better match for the component. The rank value
for each resource is assigned in the following manner.

• At first it is checked whether the Grid resource meets
certain hard requirements [like required OS, required
memory, storage, required minimum CPU speed etc.]
for the component. If the resource doesn’t meet the
hard requirements, it is given a rank value of infin-
ity. The resource properties are derived from calls to
MDS services.
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• Next, the rank values for the eligible resources are
evaluated. Rank value is a weighted linear combi-
nation of expected execution time on the resource,
rj for the component,ci denoted byeCost(ci, rj)
and expected cost of data movement denoted by
dCost(ci, rj).

rank(ci, rj) = w1×eCost(ci, rj)+w2×dCost(ci, rj)
(1)

The weights can be customized to give more impor-
tance to one over the other.eCost(ci, rj) is derived
from Application component performance model and
is described in the next section.dCost(ci, rj) is cal-
culated as follows. Letmap(ci) denote the resource
on whichci has been mapped to,vol(ci) denote the
volume of data produced byci, Parent(ci) denote
the set of parent components forci andTx(rp, rq)
denote the unit data transfer time from resourcerp to
resourcerq. ThendCost(ci, rj) is defined as

dCost(ci, rj) =
∑

p∈Parent(ci)

vol(p)×Tx(map(p), rj)

(2)
Tx(rp, rq) is estimated from latency/bandwidth in-
formation from the NWS. Note that when the rank
for the current set of available components is being
calculated, the mapping for the parents of the current
components will be already known. For a single com-
ponent, the resource having the lowest rank may be
returned as the best match.

eCost(ci, rj) values are calculated using application com-
ponent performance modeling as follows.

3.2.2 Component Performance Modeling

This section describes how to estimate the execution time
of an application component on a Grid resource using ap-
plication component performance modeling. The Workflow
scheduler uses performance models to determine the run-
time resources needed by an application, and to compute
a mapping for different components that minimizes the ap-
plication makespan. To estimate the execution cost of an
application on arbitrary grid configurations, we analyze an
application’s behavior by modeling its characteristics in iso-
lation of any architectural details. We then estimate the ap-
plication’s execution cost on a target platform described by
its available hardware resources (e.g. number and type of
execution units, cache size and memory access latency etc.).

To characterize an application’s single node perfor-
mance, we consider both the number of floating point op-
erations executed as well as its memory access pattern. We
do not aim to predict an exact execution time, but rather give
an estimated execution time to the scheduler so that it can

determine the hardware configuration that is most effective
for the application components from the set of nodes avail-
able on the Grid. To understand the amount of computation
performed by an application for a particular program input,
we use hardware performance counters to collect floating-
point operation counts from several executions of the pro-
gram with different, small-size input problems. We then ap-
ply least square curve-fitting on the collected data to predict
for an actual input data-set.

To understand an application’s memory access pattern,
we collect histograms of memory reuse distance (MRD) -
the number of unique memory blocks accessed between a
pair of references to the same block - observed by each load
and store instruction [23]. Characterizing memory access
behavior for programs in this way has two major advan-
tages. First, data reuse distance is independent of cache
configuration or architecture details. Second, reuse distance
is a measure of data reuse, which is the main determinant in
cache performance.

We collect reuse distance information separately for each
reference in the program, for several, small-size input prob-
lems. We use the memory reuse distance data to model the
behavior of each memory instruction, and to predict the
fraction of hits and misses for a given problem size and
cache configuration. Our modeling strategy dynamically
finds groups of accesses that have a similar growth func-
tion for the reuse distance, and models each such group by
two polynomials: one models how the number of accesses
in that group changes with problem size, and one models
how the average reuse distance of those accesses changes
with problem size. To determine the cache miss count for a
different problem size and cache configuration, we evaluate
the MRD models for each reference at the specified problem
size, and count the number of references with reuse distance
greater than the target cache size.

As mentioned above, our goal is to indicate better ma-
chines for execution rather than predict the exact execution
time for the application. We use the following simplified
model.

EstExecT ime(psize) =
A + B + C + D

CpuClock(arch)
(3)

A = k0 ×
totalFp(psize)

FpPipelineNum(arch)
× FpRptRt(arch) (4)

B = k1 × L1MissCnt(psize)× L1MissPnlty(arch) (5)

C = k2 × L2MissCnt(psize)× L2MissPnlty(arch) (6)

D = k3 × L3MissCnt(psize)× L3MissPnlty(arch) (7)

In the equations,{k0, k1, k2, k3} are constants,psize
is the problem size andarch is the target architecture.
FpRptRt(arch) is the repeat rate of the floating point
pipeline. It is the number of cycles that occur between the
issue of one instruction and the issue of the next instruction
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to the same execution unit. MissPnlty, the penalty for a miss
in an arbitrary level of the memory hierarchy, is the differ-
ence between the access time to the next memory level and
the access time to the current memory level.

L(j)MissPnlty(arch) = P −Q (8)

P = L(j + 1)Latency(arch) (9)

Q = L(j)Latency(arch) (10)

The rank values can now be determined using the per-
formance models and equation (1). We build a matrix using
these rank values and call it the Performance Matrix,M ,
where the entrypij denotes the rank value of executing the
i− th component on thej− th resource. Once we have this
matrix, we can solve for the final mapping of components
to resources.

3.3 Solving for final mapping

The mapping problem is an NP-Complete problem
since Minimum Multiprocessor Scheduling problem is NP-
Complete [13] and can be reduced to our mapping problem.
An optimal approach for solving the mapping problem is
to model the problem as an Integer Linear Programming
(ILP) problem and solve the corresponding ILP. But it turns
out that, in our case, with the ILP modeling we came up
with, the number of variables in the corresponding ILP is
too large for the available solvers. So we resorted to known
heuristics to solve the mapping problem.

3.3.1 Heuristic Approach

We have chosen to apply three heuristics from the domain
of scheduling parameter sweep applications [5, 30]. These
heuristic approaches to finding a mapping run in polynomial
time but don’t guarantee an optimal mapping. The three
heuristics we chose are

• Min-min heuristic : For each component, the re-
source having the minimum estimated completion
time (ECT) is found. Denote this as a tuple (C, R, T),
where C is the component, R is the resource for which
the minimum is achieved and T is the corresponding
ECT. In the next step, the minimum ECT value over
all such tuples is found. The component having the
minimum ECT value is chosen to be scheduled next.
This is done iteratively until all the components have
been mapped. The intuition behind this heuristic is
that the makespan increases the least at each iterative
step with the hope that the final makespan will be as
small as possible.

• Max-min heuristic : The first step is exactly same as
in the min-min heuristic. In the second step the max-
imum ECT value over all the tuples found is chosen

and the corresponding component is mapped instead
of choosing the minimum. The intuition behind this
heuristic is that by giving preference to longer jobs,
there is a hope that the shorter jobs can be overlapped
with the longer job on other resources.

• Sufferage heuristic: In this heuristic, both the min-
imum and second best minimum ECT values are
found for each component in the first step. The dif-
ference between these two values is defined as the
sufferage value. In the second step, the component
having the maximum sufferage value is chosen to be
scheduled next. The intuition behind this heuristic is
that jobs are prioritized on relative affinities. The job
having a high sufferage value suggests that if it is not
assigned to the resource for which it has minimum
ECT, it may have an adverse effect on the makespan
because the next best ECT value is far from the mini-
mum ECT value. A high sufferage value job is chosen
to be scheduled next in order to minimize the penalty
of not assigning it to its best resource.

We run all three heuristics and choose the mapping that de-
livers the minimum makespan. In the pseudo-code for the
overall Workflow scheduling presented below, ECT(j,R) is
the estimated completion time of a particular component on
a particular resource. EAT(R) is the expected time at which
the resource, R will be next available [probably after the
previous component finishes on the same resource]. The
overall algorithm described in Algorithm 1 works as fol-
lows. For each heuristic, until all components in the work-
flow are mapped, the current set of available components
are found. The rank matrix is then obtained for the set of
available components. Then, Algorithm 2 is invoked with
the current rank matrix, available components and heuristic
as arguments. Algorithm 2 implements the core scheduling
heuristics. Depending on the current heuristic, it returns a
mapping for the current set of available components. Algo-
rithm 1 updates the mappings and current makespan. When
the outer loop of Algorithm 1 finishes execution, we have
the mappings and makespans corresponding to the three
heuristics. We choose the mapping that gives the minimum
makespan among the three and output that as the final map-
ping.

4. Workflow Execution

In this section we address the issue of automating the
Grid execution of the entire Workflow. We have used and
extended the GrADSoft infrastructure to handle launching
of Workflow style applications. The application along with
the performance model is handed over to the Workflow En-
gine, which in unison with the Workflow Scheduler sched-
ules the application components onto available resources.
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foreachheuristicdo
while all components not mappeddo

Find availComponents; // satisfy dependencies
Calculate the rank matrix;
findBestSchedule(availComponents, heuristic);

endwhile
endforeach
Select mapping with minimum makespan among three;
Output selected mapping;

Algorithm 1. Workflow Scheduling

while all availComponents not mappeddo
foreachComponent, jdo

foreachResource, Rdo
ECT(j,R)=rank(j,R)+EAT(R);

endforeach
Find minECT(j,R) over all R;
Find 2nd-minECT(j,R) over all R;

endforeach
Calculate min(minECT(j,R)) over all j; //min-min
Calculate max(minECT(j,R)) over all j; //max-min
Calculate min(2nd-minECT(j,R)-minECT(j,R))
over all j; //sufferage
Store mapping;
Update EAT(R) and makespan;

endwhile

Algorithm 2. findBestSchedule

The Workflow Scheduler consults the GrADS information
system for MDS/NWS information and uses the available
performance models. Once the set of resources are cho-
sen, the GrADS Application Manager is invoked. The
GrADS Application Manager is the central controller for
the GrADS execution system. It interacts closely with the
GrADS Binder to launch the Workflow Application compo-
nents onto actual Grid resources.

The GrADS Binder provides the final modifications to
the application before it is launched on the grid. The Binder
is a distributed component and executes on all resources on
which the application is launched. It is responsible for com-
piling the GrADS application, optionally optimizing it for
the target machine, and launching the program on the grid.

The Binder executes on each resource that is chosen by
the workflow scheduler. At each resource, the Binder must
be aware of the locations of software resources. These soft-
ware resources consist not only of application specific li-
braries and header files, but also of Binder code and li-
braries on the resource. One approach to solve this would
be to specify software installation locations for every re-
source. However, we found this approach to be overly re-

strictive. Hence, the Binder uses the GrADS Information
Service (GIS) to locate necessary software on the scheduled
resource. On execution, the Binder first queries GIS for the
location of the local Binder code. It then launches the lo-
cal copy of the Binder which further queries GIS for the
locations of application-specific libraries. Having obtained
resource-specific information, the Binder analyzes and in-
struments the code by inserting AutoPilot code senors [26]
to enable runtime monitoring.

The final function of the Binder is to enable the actual
launch of the application. The computational resources in
the testbed varies from site to site. Currently, there are Pen-
tium IA-32 machines, Opteron machines and IA-64 based
Itanium machines on the GrADS testbed. Consequently, the
GrADS Binder has to deal with heterogeneity in the target
machines. The design of the Binder was carefully chosen
to accommodate differences in machine characteristics. By
using a high-level representation of the program and con-
figuring and compiling it only at the target machine, the
code is not specialized for a particular architecture when
the Binder receives it. As a result, the Binder can suc-
cessfully cope with heterogeneous architectures by config-
uring, compiling and linking the application components at
the target resources and then launching them. Preserving
high-level program information provides opportunities for
architecture-specific optimizations.

5. Experimental Evaluation

In this section, we evaluate our heuristic workflow
scheduling strategy by comparing it with other workflow
scheduling strategies. We describe briefly salient features
of an example workflow application, the other scheduling
strategies and the Grid testbed on which the application is
scheduled and executed. We then present the results of the
experiments.

5.1 A Workflow Application Test Case - EMAN

We apply the scheduling strategies in the context of
launching EMAN [Electron Micrograph ANalysis] [21], a
Bio-Imaging workflow application onto the Grid. EMAN
has been developed at the Baylor College of Medicine and
primarily deals with 3D reconstruction of single particles
from electron micrographs. Figure-1 gives an overview of
the EMAN application.

A preliminary 3D model is constructed from electron mi-
crographs. The preliminary 3D model is iteratively refined
to obtain the final 3D model of the particle. Human inter-
vention and expertise is needed to come up with a prelimi-
nary 3D model. The refinement from a preliminary model
to the final 3D model is fully automated. This refinement
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Figure 1. EMAN Overview

Figure 2. EMAN Refinement Workflow

step is the most computationally intensive step and bene-
fits from harnessing the power of the Grid. In this work
we have scheduled and executed the refinement workflow
for EMAN. The different components in the EMAN refine-
ment Workflow is described in Figure-2. It is essentially a
linear Workflow with some of the components being paral-
lel parameter sweep steps. ’proc3d’, ’project3d’, ’proc2d’
etc. are relatively inexpensive sequential components that
are executed toward the beginning of the workflow. The
next component, ’classesbymra’, is the most compute in-
tensive parameter sweep step and takes up more than 90%
of the total time to do the refinement. Efficient scheduling
of the ’classesbymra’ instances is very important to achieve
a good makespan. While ’classesbymra’ can be distributed
across multiple clusters, the next parallel component in the
workflow, ’classalign2’, can only be run on a single cluster.

We have scheduled EMAN Refinement Workflow com-
ponents using the Workflow Scheduler and executed the
Workflow on distributed, heterogeneous platforms using the
GrADS Binder and the rest of the GrADS execution system.

5.2 Design of Experiments

We wanted to investigate the importance of performance
models and heuristics in scheduling workflows. Hence, we
experimented with four scheduling strategies to isolate the
effects of each of these factors on the quality of sched-
ule [hence quality of application makespan] obtained. We
picked the random scheduling as a baseline case. This is in
essence what is used in the Condor DAGMan tool, where
the available components are dynamically mapped to re-
sources without any consideration of the resulting overall
makespan. In order to investigate the value of (1) use of
performance models and (2) use of heuristics for taking the
scheduling decisions when using a plan-ahead whole work-
flow scheduling, the following scheduling four strategies
were compared.

• RN: Random Scheduling with no performance mod-
els. In this scheme the application components are
mapped randomly. Each available component is
mapped to a resource that is randomly picked from
the universe of resources.

• RA: Weighted random scheduling with accurate per-
formance models - RA. In this scheme, the number
of instances mapped to a randomly picked resource
depends on the accurate performance model of the
instance on that resource. Proportionally more in-
stances are mapped to ’better’ resources.

• HC: Heuristic Scheduling with crude performance
models based on CPU power of the resources. In this
scheme, we use the scheduling heuristics described in
this paper, but with only crude performance models
to determine the rank values. Rank value of a com-
ponent on a resource is just the relative value [ratio]
of the CPU speed of the resource to the CPU speed of
the resource having the best MHz rating.

• HA: Heuristic Scheduling with accurate performance
models generated semi-automatically. This is the
Workflow scheduling scheme described so far in the
paper.

We compare the makespan of the ’classesbymra’ step for
each scheduling strategy. We also evaluate the load balanc-
ing capabilities of the HA strategy.
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5.3 Testbed and Data-set for Experiments

The testbed for the experiments consisted of distributed,
heterogeneous resources from multiple participating insti-
tutions. There were 64 dual processor 900MHz Itanium IA-
64 nodes at the Rice University Terascale Cluster [RTC].
There were 16 2009MHz Opteron nodes at the University
of Houston Opteron cluster [medusa] and 60 dual processor
1300MHz Itanium IA-64 nodes at the University of Hous-
ton Itanium cluster [acrl]. 7 Pentium IA-32 nodes from the
torc cluster at the University of Tennessee, Knoxville were
also used for some experiments. Note that the testbed was
heterogeneous in terms of architecture, CPU speeds, mem-
ory and storage.

Two EMAN refinement data-sets were used for the ex-
periments. One was a moderately large data-set correspond-
ing to a virus particle called ’rdv’. The input data-set was
2GB and was replicated across all the clusters. The other
data-set was relatively small corresponding to the ’groel’
particle. The input data-set was 200MB and was replicated
across all clusters.

5.4 Results

Table-1 and Figure-3 hows the results of comparisons of
the 4 scheduling strategies for the rdv data-set run across
the Itanium RTC and Opteron medusa clusters. The table
shows for each scheduling strategy, the number of ’classes-
bymra’ instances mapped to each cluster [i(R) for RTC and
i(M) for medusa], the number of nodes picked in each clus-
ter by the scheduling strategy [n(R) for RTC and n(M) for
medusa], the execution time in minutes at each cluster [t(R)
for RTC and t(M) for medusa] and the overall makespan
[MS]. The results show that the makespan obtained using
the HA strategy is better than the one obtained using the
RN strategy by a factor of 2.21 and is better than the ones
obtained using the HC and RA strategies by a factor of 1.5.
This shows that good makespan is attributed to both the fac-
tors - the heuristics used and accurate relative performance
models. With either of them, we get a makespan improve-
ment of a factor of 1.5, while using both gives a makespan
improvement of a factor of 2.21.

Table-2 shows that the HA strategy achieves good load
balance when ’classesbymra’ is launched across the three
clusters - RTC, medusa and acrl. Depending on the perfor-
mance models and the heuristics, the scheduler mapped 29
instances to the 43 available RTC nodes, 42 instances to the
14 available medusa Opteron nodes and 39 instances to the
39 Itanium acrl nodes. t(R), t(M) and t(A) are the execution
times for i(R), i(M) and i(A) instances at RTC, medusa and
acrl clusters respectively. The difference in execution times
between any two clusters is less than the granularity of the
fastest execution time of a single instance of ’classesbymra’
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Figure 3. Comparison of different scheduling
strategies

i(R) i(M) n(R) n(M) t(R) t(M) MS
(inst) (inst) (node) (node) (min) (min) (min)

HA 50 60 50 13 386 505 505
HC 58 52 50 13 757 410 757
RN 89 21 43 9 1121 298 1121
RA 57 53 34 10 762 530 762

Table 1. Comparison of makespans for differ-
ent scheduling strategies with rdv data
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i(R) i(M) i(A) t(R) t(M) t(A) MS
(inst) (inst) (inst) (min) (min) (min) (min)

29 42 39 383 410 308 410

Table 2. Load balancing of the ’classesbymra’
instances using the HA strategy

on the best resource. This implies that load balancing of the
instances had been optimal for this case.

Also, the relative performance models of an instance on
the sites matched closely to the relative actual execution
times on the sites. The ratio of performance model values
for an instance on a RTC node and a medusa node was 3.41
while the ratio of actual execution times for an instance on
a RTC node and a medusa node was 3.82. The same set of
values for an acrl node and a medusa node are 2.36 and 3.01
respectively.

We have obtained similar results when we ran the same
experiment across 7 nodes at the UTK torc cluster and 6
nodes at the Itanium cluster at University of Houston. The
scheduler mapped 68 instances to the 6 nodes on the Ita-
nium cluster and 42 instances to the 7 nodes on the torc clus-
ter. The execution time at the Itanium cluster was 84 hours
30 minutes and at the torc cluster was 81 hours 41 minutes,
which resulted in a makespan of 84 hours and 30 minutes.
Load balancing was optimal in this case too. The results
are similar for the smaller ’groel’ data-set. Other experi-
ments with the smaller data-set have shown that inaccurate
performance models and loading on the resources can have
adverse impact on the makespans. The experiments for the
results in Table-1 used only two clusters because hardware
problems in the acrl cluster rendered it unusable during the
course of these experiments.

We are currently working on applying the scheduling
algorithm for mapping workflows from the Montage ap-
plication [11]. Preliminary results from this application
show that our scheduling strategy obtains upto 13 times bet-
ter makespan than random strategy on heterogeneous plat-
forms.

6. Related Work

Scheduling application components onto multiproces-
sors is a hard problem that has been studied extensively in
the literature. In most cases the problem is NP-complete,
since the minimum multiprocessor scheduling problem is
NP-complete [13]. Therefore, most of the literature deals
with finding good heuristic solutions. There is a body
of work on multiprocessor scheduling of independent ap-
plication components. [30] gives an overview of differ-
ent heuristics including min-min, max-min and sufferage.

[5] extends some of these heuristics and presents a new
heuristic to consider data movement, which is important in
the Grid context. Simple heuristics for dynamic matching
and scheduling of independent jobs onto heterogeneous re-
sources are presented in [22, 3]. [16] applies a modified
min-min heuristic to schedule independent components on
the Grid. Our work deals with scheduling tasks whose de-
pendencies with each other form a directed acyclic graph
(DAG) so these heuristics can’t be directly applied. How-
ever, we use min-min, max-min and sufferage during the
overall scheduling process.

Our work is also related to work in the area of approxi-
mation algorithms for different scheduling problems. The
closest areas are minimum job-shop scheduling [28] and
minimum precedence constrained scheduling [20]. The
minimum job-shop scheduling problem is different from
our problem because of a number of reasons. There are
no precedence constraints between the operations belong-
ing to different jobs. Also, the jobs take fixed amount of
time on each processor and communication delays are not
considered. These assumptions are not true for the prob-
lem at hand. In the case of the minimum precedence con-
strained scheduling, the tasks are of unit length and there are
no communication delays. These assumptions are not true
for our problem. There are approximation algorithms for
variations like unit communication costs [25] and non-unit
length tasks on ’uniformly related’ processors [6]. Since
our problem has stronger constraints like non-uniform task
and communication costs, these algorithms can’t be applied.
The workflow scheduling problem can be precisely formu-
lated as a multi-mode resource-constrained project schedul-
ing problem with schedule dependent setup times [24]. We
are not aware of any approximation algorithm for the same.

[19] gives a survey on different heuristic scheduling
techniques for scheduling application DAGs onto homo-
geneous platforms. These heuristics also can’t be ap-
plied directly to grids because grids are highly heteroge-
neous. [29] considers DAG scheduling for heterogeneous
platforms. Most of the heuristics are generalizations of
the list-scheduling based heuristics for homogeneous plat-
forms, which have several drawbacks in grids. First, they do
not consider the global effect of the current scheduling de-
cision. Second, they do not group tasks for scheduling and
third, the dramatic heterogeneity of grids makes the average
values they use for edge and node weights questionable.

Our work has some similarities with the Levelized Min
Time heuristic [29] in the sense that we also consider the
nodes level by level. The work in [2] on workflow-based
approaches to plan whole workflows uses more sophisti-
cated heuristics at each level and randomizes the decisions
at each level to reduce the probability of being caught in lo-
cal minima. It also compares static, whole workflow based
scheduling with dynamic, task-based scheduling. The work
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in [27] on a hybrid scheduling heuristic for DAG schedul-
ing onto heterogeneous systems is most closely related to
ours. Unlike their work, we consider resource speeds and
bandwidths, to reflect the heterogeneity of the Grid.

Current Grid workflow management systems use sim-
ple approaches to scheduling such as first-come-first-served
with matchmaking as in Condor DAGMan [8], Data Grid
resource broker [14] and GridLab resource broker [17],
or random allocations or round-robin as in Pegasus [10].
The GridFlow [4] scheduler performs Workflow manage-
ment and Scheduling side-by-side. It is mostly concerned
with scheduling workflows of parallel message passing
jobs. They take a hierarchical view of scheduling con-
sisting of Global workflow Management with local sub-
workflow scheduling. The GrADS MPI scheduler [9] is a
modular, application level scheduler based on application
performance model and mapping strategies. It is also con-
cerned with scheduling parallel MPI jobs. Work in the Grid-
Lab group [24] uses genetic algorithms, simulated anneal-
ing and tabu search for workflow scheduling. However we
are not aware of an experimental evaluation of their tech-
niques. Our work is novel in its use of performance mod-
els and heuristic strategies for in-advance global workflow
scheduling.

7. Conclusions and Future Work

In this work, we have come up with novel, in-advance
global strategies to schedule application workflows onto the
Grid using performance models and heuristics. We have
implemented these strategies in the context of executing
the EMAN application on the Grid. We have used the
GrADS execution system that uses a novel binding scheme
to deal with heterogeneity on the Grid. Our experiments on
comparisons with other scheduling strategies have shown
the value of performance models and heuristics in taking
scheduling decisions. These strategies also result in good
load balance across the Grid resources.

In the future, we plan to investigate better global heuris-
tics that conditionally map the key steps in the workflow and
solve the other mappings top-down and bottom-up. We also
plan to work on optimizations like minimizing data move-
ment by ’fusing’ workflow nodes, potentially sacrificing
some parallelism to reduce expensive communication. We
plan to look into the issues on scheduling multiple DAGs
and hierarchical workflow scheduling onto virtualized Grid
resources.
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