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ABSTRACT

This paper describes a toolkit for semi-automatically mea-
suring and modeling static and dynamic characteristics of
applications in an architecture-neutral fashion. For pre-
dictable applications, models of dynamic characteristics have
a convex and differentiable profile. Our toolkit operates on
application binaries and succeeds in modeling key applica-
tion characteristics that determine program performance.
We use these characterizations to explore the interactions
between an application and a target architecture. We ap-
ply our toolkit to SPARC binaries to develop architecture-
neutral models of computation and memory access patterns
of the ASCI Sweep3D and the NAS SP, BT and LU bench-
marks. From our models, we predict the L1, L2 and TLB
cache miss counts as well as the overall execution time of
these applications on an Origin 2000 system. We evaluate
our predictions by comparing them against measurements
collected using hardware performance counters.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms

Algorithms, Measurement, Performance

Keywords

Performance Analysis, Modeling, Prediction

1. INTRODUCTION

Modeling the characteristics and performance of applica-
tions in an automatic way has been a long-standing goal
of computer science research. Accurate models of program
execution characteristics have many uses. Understanding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMETRICS/Performance’04, June 12—16, 2004, New York, NY, USA.
Copyright 2004 ACM 1-58113-664-1/04/0006 ...$5.00.

how an application’s performance will scale given different
problem sizes and predicting how it will perform on pro-
posed future architectures are two particularly important
problems.

Building accurate performance models for sequential or
parallel applications is difficult. Simple metrics, such as the
number of floating-point operations executed, provide little
indication of a code’s performance. Scientific applications
rarely approach peak performance on microprocessor-based
systems; memory hierarchy bandwidth and latency are sig-
nificant limiting factors. Also, an application’s instruction
mix can dramatically affect performance. Today’s super-
scalar processors can execute multiple instructions in paral-
lel if they are provided with the right mix of instructions.
For parallel programs, communication frequency, commu-
nication bandwidth and serialization complicate the situ-
ation further. While architecture simulators can provide
detailed information about a program’s behavior on a par-
ticular input, to understand how a program’s behavior will
scale as data and system vary, scientists typically manu-
ally construct analytical models of an application’s perfor-
mance [9, 17]. Although this approach can produce highly
accurate models, constructing such models is enormously la-
bor intensive and requires a thorough understanding of the
algorithms used, as well as their implementation.

Our research is based upon the belief that it should be
possible to characterize the performance of sequential and
parallel applications in a semi-automatic way with a reason-
able accuracy. In this paper we describe our work on mod-
eling the characteristics of sequential codes and predicting
their execution behavior on different architectures. Build-
ing parameterized performance models of an application is
difficult because of the large number of variables that af-
fect performance, including architecture-dependent factors,
algorithm choices, and input data parameters. Moreover,
these factors interact in complex ways, yielding a perfor-
mance function that is non-convex and non-smooth in this
multivariate parameter space.

This paper presents a strategy for separating the contri-
bution of application-specific factors from the contribution
of architectural characteristics to overall application perfor-
mance. It describes a methodology for constructing models
of an application’s characteristics parameterized by prob-
lem size or other input parameter. The benefits of this
approach are twofold. First, modeling application-specific
factors in isolation yields architecture-neutral models that



can predict execution characteristics on different platforms.
Second, models that describe the algorithmic and applica-
tion choices are typically monotonic polynomial functions;
in general, models based on measurements on a particular
architecture are not. The goal of this research is to produce
tools that are useful to application writers for predicting
the performance and scalability of algorithms, and to ar-
chitecture designers for understanding the impact of design
alternatives.

We synthesize models to predict the behavioral character-
istics and execution time of applications by using a combi-
nation of static and dynamic analysis of application bina-
ries, as we explain in the following sections. By operating
on application binaries instead of program source code, we
are able to build language-independent tools that can natu-
rally analyze applications with modules written in different
languages or linked with third party libraries. To accurately
predict performance, it is easier to analyze a mix of machine
instructions with a predictable latency than to estimate the
execution cost for high-level language constructs.

The rest of this paper is organized as follows. Section 2
describes in more detail the design and the implementation
of our toolkit for analysis, modeling, and prediction of pro-
gram performance. Section 3 presents and discusses the re-
sults of using our toolkit to predict performance for several
applications. Section 4 describes the most closely related
work. Section 5 presents our conclusions and plans for fu-
ture work.

2. TOOLKIT DESCRIPTION

Our performance modeling toolkit, depicted in Figure 1, is
a collection of programs and scripts designed to support con-
struction of architecture neutral, parameterized models for
predicting application behavior and performance. The three
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Figure 1: Toolkit architecture overview.

principal functions of toolkit components are (1) static anal-
ysis of application binaries, (2) instrumentation of binaries
along with run-time measurement and analysis to charac-
terize application behavior, and (3) synthesis of detailed,
architecture-neutral, parameterized models of application
behavior and performance by combining static information
with dynamic measurements and a description of a target
machine’s resources. In the following sections, we describe
each of these capabilities in turn.

The toolkit’s binary analysis capabilities are built upon
the Executable Editing Library (EEL) [11], which supports

analysis and instrumentation of SPARC binaries. The focus
on SPARC binaries is not a significant limitation since our
toolkit uses them to construct architecture-neutral models
for predicting application behavior and performance on ar-
bitrary RISC-like architectures by convolving these models
with a description of the resources of a target machine.

2.1 Static Analysis

The static analysis subsystem shown in Figure 1 is not
a standalone application but rather a component of every
program in our toolkit. The toolkit employs static analysis
to reconstruct the control flow graph (CFG) for each rou-
tine, identify the natural loops in each CFG using interval
analysis [18], and determine loop nesting. It also uses static
analysis to recover application characteristics such as the
instruction mix in basic blocks or loop bodies, and identify
schedule dependencies between instructions.

There are two types of schedule dependencies between
instructions: register dependencies (one instruction uses a
register computed by another) and memory dependencies
(two memory operations access the same location and at
least one of them is a write). Register dependencies are
easily identified. We perform register renaming at basic
block boundaries to ensure that each register definition has
a unique name. Following renaming, all register dependen-
cies between instructions are readily apparent as a DEF and
subsequent USEs of the same register. Determining mem-
ory dependences accurately from machine code is a difficult
problem and is the subject of the remainder of this section.

On modern microprocessors, the location referenced by a
memory instruction is first computed into a register by a se-
ries of integer arithmetic instructions. Disentangling these
computations can be difficult because optimizing compilers
often store in registers not only the starting address of a data
structure, but addresses of particular fields as well. Also,
multiple base registers used in a basic block may contain
related addresses. To determine if two memory instructions
access the same location, we derive a formula indicating the
location that each instruction will access. For each memory
instruction inside loops, we compute a formula describing
how the referenced location changes between iterations. To
compute an access formula, we traverse CFG edges back-
ward from the target memory reference. Each formula is
restricted to sums of general terms including values from
constant addresses, values from the caller’s stack frame (an
argument passed as reference), constant values, and regis-
ters whose formulas cannot be written as a sum of these
terms (e.g. representing a multiply or divide of two non-
constant formulas, a value from a non constant address). A
non-constant formula may also be multiplied by a constant.
By subtracting the formulas corresponding to two memory
references, we have three possible cases:

1. their difference is a non-zero constant: the references
access different locations and are independent.

2. their difference is 0: the two references access the same
location; there is a dependency between the instruc-
tions if at least one is a store.

3. the difference is in a non-constant formula: we cannot
tell if the accesses are independent. A command line
argument to the scheduler enables us to make opti-
mistic or pessimistic assumptions about dependences.



2.2 Dynamic Analysis

Often, many of the important characteristics of an appli-
cation’s execution behavior, such as how it traverses data
or how the amount of computation depends upon input pa-
rameters, can only be understood accurately by measuring
them at run time. Our toolkit uses binary rewriting to aug-
ment an application to monitor and log information about
various aspects of its execution behavior.

To understand the nature and volume of computation per-
formed by an application for a particular program input, we
collect histograms indicating the frequency with which par-
ticular control flow graph edges are traversed at run time.
To understand an application’s memory access patterns, we
collect histograms of the reuse distance [4, 14, 7]—the num-
ber of unique memory locations accessed between a pair of
accesses to a particular data item—observed by each load
or store instruction. These measures quantify key charac-
teristics of an application’s execution behavior upon which
performance depends. By design, these measures are inde-
pendent of any architectural details. We describe the ap-
proach for collecting each of these measures in turn.

2.2.1 Collecting Execution Frequency Histograms

The goal of our dynamic monitoring of computation is
to produce a histogram of executed basic blocks. However,
we do not need to insert a counter into each basic block to
measure its precise execution frequency. Knuth and Steven-
son [10] prove that a necessary and sufficient condition for
recovering edge and node execution frequency in a CFG ex-
ecution is to add counters to a set of CFG edges so that each
cycle in the undirected CFG has a counter on at least one
edge. Ball noted [3] that a spanning tree of CFG edges has
the maximum number of edges that do not contain a cycle.
Building a spanning tree for the CFG and adding a counter
to each edge not included monitors exactly one edge in each
cycle—the minimum necessary.

Since an undirected graph with cycles does not have a
unique spanning tree, the problem of placing counters on
CFG edges does not have a unique solution. The solution we
desire is one with counters on a set of edges that execute as
infrequently as possible to minimize the cost of runtime mon-
itoring. To achieve this, we apply Kruskal’s algorithm [6] to
construct a maximum-weight spanning tree (MST) of the
CFG—an acyclic subset of edges with maximum total edge
weight that connects all vertices—with edges weighted by
their expected execution frequency [3]. Our scheme for esti-
mating execution frequency is described later in this section.

There are two remaining issues to address when adding
counters: we want to count how many times a routine is
entered and some of the edges in the CFG cannot be easily
instrumented, so we must avoid placing counters on them.
To address these issues, we exploit the property that coun-
ters are placed only on edges not in the spanning tree. When
we construct the spanning tree, rather than starting with an
empty set of tree edges, we initialize the set of tree edges to
include the uninstrumentable edges and a virtual edge, ey,
added between the CFG entry and exit nodes. Adding e,
to the CFG ensures that there is at least one cycle. Adding
ey to the initial set of spanning tree edges ensures that a
counter will be placed on a real CFG edge to count routine
frequency. In practice, the set of uninstrumentable edges
will not include a cycle; otherwise, there would be no feasi-
ble counter placement to recover the counts needed.

Figure 2: (a) Sample routine CFG; (b) Add a virtual
edge from the EXIT node to the ENTRY node and
estimate edges execution frequency; (c) Build the
MST of the modified CFG; (d) Insert counters on
edges that are not part of the MST.

We use the following heuristic to estimate edge execution
frequency, which we supply to the MST algorithm as edge
weights:

e the entry node in the CFG has a weight of one;

e the weight of a vertex is divided equally among all its
outgoing edges if none of these edges is a loop exit
edge’;

e each loop has a multiplicative factor equal to ten;

e the weight of a node is the sum of the weights of its
incoming edges.

In addition to these four rules, a separate algorithm handles
the loop exit edges and the nodes in which the exit edges
originate. In most cases exit edges have their tail node in
the program scope immediately outside the one that con-
tains its head node. However, we have encountered cases in
which an exit edge crosses several levels of a loop nest. To
accommodate these cases, we apply the following algorithm
to compute the estimated weight of an exit edge (e;):

1. determine the outermost loop (L) for which this edge
is an exit edge;

2. find the number (Nez4t) of edges that exit loop L;

3. the weight of e; is the weight of the loop L’s head
divided by Negit;

4. all the other outgoing edges of the e;’s head node re-
ceive an equal fraction of the remainder weight of that
node, after the newly computed weight of e; is sub-
tracted.

The final step consists of placing counters on the edges
that are not part of the maximum spanning tree. Figure 2
presents a sample CFG with one loop and the steps that
must be performed to determine the optimal insertion place
for the counters. We count only the edges existent in the
original CFG. From Figure 2(d) we can recover the execution
frequency for all the blocks and edges in the CFG.

Bl=B3=B5=cl;B4=c2;B2=cl+ 2

LA loop exit edge has its head node as part of a loop and
its tail node outside the loop.



2.2.2  Monitoring Memory Access Behavior

During execution, we characterize the memory access be-
havior of an application by monitoring the memory reuse
distance seen by each reference. Characterizing memory ac-
cess behavior in this way for programs has two important
advantages. First, data reuse distance is independent of
cache configuration or architecture details. Second, reuse
distance is a scalable measure of data reuse which is the
main determinant in cache performance.

For a fully-associative cache, one can predict if a memory
access is a hit or a miss by comparing its reuse distance
with the cache size (see Figure 3). Beyls and D’Hollander [5]
show that reuse distance predicts the number of cache misses
accurately even for caches with a low associativity level or
direct mapped caches. However, reuse distance alone cannot
predict conflict misses.

L1 size L2 size
4 +

L1 Hits L2 Hits

Number of]
References|

Reuse Distance

Figure 3: Example of reuse distance histogram. All
references with reuse distance less than the cache
size are hits.

We collect reuse distance information separately for each
reference in the program?®. Before each memory reference we
invoke a library routine that updates a histogram of reuse
distance values (see Figure 3) for the reference. In addition
to the address of the reference, the event handler needs to
know the address of the memory location referenced and the
number of bytes touched by this instruction.

Our implementation of the event handler collects a com-
plete histogram of the reuse distances seen by each memory
reference. To compress the volume of output data, we coa-
lesce each reference’s histogram bins with similar distances
before the data is written out. Our compression scheme has
no noticeable effect upon the precision of our reuse distance
models, but the reduction in space is often significant.

To monitor reuse distance, an event handler routine incre-
ments a logical clock by one each time a memory instruction
is executed. A hash table is used to associate the logical
time of last access with every memory block referenced by
the program. The timestamp enables us to determine the
reuse distance between a pair of accesses to the same da-
tum. Alone, this data structure is only sufficient to count
how many memory operations were executed since the last
access to the same datum. To determine the number of
distinct memory locations accessed between accesses to a
particular datum, we use a balanced binary tree with a node
for each memory block referenced by the program. The sort-
ing key for each node in the tree is the logical time of the
last access to the memory location the node represents.

By using a unit size memory block, we can collect pure
temporal reuse distance information. However, using this

2Late in section 2.3.2, we explain that we actually collect
histograms for reference groups to improve modeling accu-
racy. Until that point, for simplicity we describe the process
here as if each reference is handled separately.

approach, we fail to observe spatial reuse in cache lines. By
setting the memory block to a non-unit cache line size, we
can also measure spatial reuse because we collect the reuse
distance of data blocks rather than data elements. To cor-
rectly account for spatial locality, we need to use a memory
block size equal to the size of the cache line on the target
architecture. Currently, to predict the performance of an
application on arbitrary systems, we need to collect reuse
distance data for all cache line sizes that might be encoun-
tered in practice. The most common cache line sizes in use
today are 32, 64 and 128 bytes. Because of the reuse distance
data’s dependence on cache line size, our characterizations of
application behavior are almost architecture independent,
instead of totally independent. The size of the memory block
our runtime library uses is defined by an environment vari-
able; therefore collecting data for different cache line sizes
does not require re-instrumenting the code or re-compiling
the event handler routine.

Our implementation of the event handler executes the
following pseudo-code for a memory access to the location
addr;, which refers to the memory block b;, by the program
instruction insty:
step 1 Set alogical timestamp ¢;'" equal to the value of the
global timestamp counter and increment the counter.

step 2 Search the hash table for the memory block b; (com-
plexity O(1)). If b; is not found, then this is the first
access to block b;; increment the number of cold misses
seen by insty, insert a new entry (key=b;, value=t;°")
into the hash table (all operations O(1)), and go to
step 5. If b; is found in the hash table, then block b;
was accessed before; go to the next step.

step 3 Let timestamp t.** correspond to the previous ac-
cess to b;, update the hash table entry for block b; with
the current timestamp ¢;*¢*

step 4 Delete the node with key ¢\*** from the binary search
tree. While searching for the node with key t1%*¢, we
count the number of nodes, B, with the key greater
than t***. Each node with key greater than t.*** rep-
resents one distinct memory block that has been ref-
erenced since the previous access to b;. Each node of
the tree maintains a field size representing the num-
ber of nodes in the sub-tree rooted at it. For a binary
search tree with larger keys to the right, B is a sum
of terms (node;.size —nodej.le ftChild.size), for every
node; with key greater than t!*** that is encountered
on the path from the root of the tree to the node to
be deleted. The delete and count operations have an
aggregate O(log N) time complexity, where N is the
number of distinct memory blocks touched by the ap-
plication until that moment. Next, record that insty
performed an access with reuse distance B.

step 5 Insert a node with key ¢**“ into the binary tree.
This step has complexity O(logN).

The time complexity for computing the reuse distance
seen by one memory access is O(log N). Overall, the over-
head of collecting memory reuse distance information for the
entire execution is O(M log N), where M is the number of
memory accesses the program executes, and the space re-
quired by the data structures for monitoring reuse distance



is O(N). Time and space complexities are both significant
even with these optimized data structures.

The instrumentation infrastructure that we developed for
collecting data about program behavior is quite flexible and
can be easily adapted to collect other information or to per-
form different types of online analysis.

2.3 From Data to Parameterized Models

Though the mechanics of data collection are somewhat
complex, assimilating the collected data into accurate mod-
els of application behavior is a fundamentally more difficult
undertaking. In this work, we aim to build parameterized
models that enable us to predict application behavior and
performance for data sizes that we have not measured. A
program’s performance is a function of application charac-
teristics and resources available on the target architecture.
An architecture-neutral model considers only application-
specific factors. The key application factors that influence
the performance of a sequential execution are the number of
instructions executed, the mix of instructions, the instruc-
tion schedule dependencies in the most frequent executed
loops, and the memory access pattern exhibited by the ap-
plication.

To model a program’s behavior, we first collect data from
multiple runs with different and determinable input parame-
ters. To compute a curve parameterized by an input param-
eter, we use data from multiple runs in which that parameter
is modified and all the others are maintained constant.

2.3.1 Building models of execution frequency

To build models for the execution frequency of each edge
counter parameterized by the problem size (or other suitable
input parameter), we use quadratic programming [13] on the
edge counter’s execution frequency data, collected from mul-
tiple runs with different problem sizes. We use a modeling
strategy implemented in Matlab to determine the function
that best approximates the input data we collected. The ap-
proximation function is written as a linear combination of
a set of basis functions. The program uses either a default
monomial base or a set of user-provided bases in symbolic
form so that logarithmic or other non-linear contributions
to the model can be considered. The modeling program
computes the coefficients of the basis functions in the linear
combination that closest approximates the collected data.
We include restrictions to reduce or remove oscillations of
the resulting fit and to ensure that the computed function
is either convex or concave, depending upon the program
characteristic that is modeled. Our approach works best
with scientific codes that have predictable execution pat-
terns, namely, ones that do not use adaptive algorithms.
For such applications, we have computed accurate models
of multiple parameters, although the process is somewhat
more complex [12, pages 46-53]. For adaptive algorithms,
we can produce an approximate model with reasonable ac-
curacy in one parameter.

The execution frequency measurements recorded by our
toolkit are first processed by a filter program that can be
configured to either output counter frequencies or the num-
ber of executed instructions. Command line arguments con-
trol the output in each case. For example, counters can be
sorted either by location (grouped by routines) or by fre-
quency with the most executed ones first. Optionally, the
output can be pruned relative to a significance threshold.

Instructions are classified by type and can be aggregated
at any level in the scope-tree of the program. We defined
a set of generic RISC instruction classes and a module for
translating native SPARC instructions into generic RISC
instructions. The filter computes the number of executed
instructions for each generic class and each basic block in
the program. Using static analysis of the binary, the fil-
ter builds a scope-tree that reflects the program structure.
There are three possible scopes that can be used to describe
the program structure:

e Program scope - the root of the tree; its children are
routines;

e Routine scope - the second level in the tree; its children
are loops;

e Loop scope - can include any other number of loops.

If the binary contains source line mapping information, the
routine and loop scopes are annotated with source file infor-
mation, including the name of the source file and the range of
line numbers corresponding to that scope in the source file.
When loops have overlapping ranges of line numbers and the
same parent in the scope-tree, the filter performs a normal-
ization step that folds together information for the loops.
Overlapping ranges are the result of compiler optimizations
such as loop fission, software pipelining, loop-invariant code
motion, or tiling. A model of dynamic instruction count can
be accumulated at program level, routine level or individual
loop level.

2.3.2  Building models of memory reuse distance

The simplest possible model for a memory reference’s reuse
distance would predict its average value for each problem
size. However, such a model is almost always useless. Con-
sider a reference performing stride one loads. Its first access
to a cache line yields a long reuse distance; accesses to sub-
sequent words yield short reuse distances. An average dis-
tance model can predict either all hits or all misses; neither
prediction is accurate.

To understand a reference’s access behavior for different
problem sizes, we must predict its histogram of reuse dis-
tances for each problem size. A reuse-distance histogram for
a reference contains a separate bin for each distinct distance
encountered. Executions using different problem sizes result
in histograms that each have a different number of bins and
frequency counts; the varying number of bins complicates
modeling.

One possible approach for modeling is to divide histograms
for all references and problem sizes into an identical num-
ber of bins, regardless of the distribution of the data. How
many bins to consider has an important impact on the size
and accuracy of the models. A small number of bins pro-
duces a compact model but lacks precision. A large number
of bins improves accuracy, but adds unnecessary complexity
and cost for many references that see only one or a few dif-
ferent reuse distances. To avoid this problem, we examine
a reference’s collected data and pick an appropriate num-
ber of bins and their boundaries to adequately represent its
histogram data across the range of problem sizes.

Histogram bins are sorted by increasing distance; thus,
the first bin corresponds to the smallest distance seen by a
reference. We begin our analysis by examining the leading
bins of a reference’s histogram for each problem size. If the



leading bins show a set of constant reuse distances across all
problem sizes, they contain the fraction of accesses that have
experienced spatial reuse in the innermost loop containing
that reference. The values of the constants depend on the
shape of the code in that loop, namely, how many other
data structures are referenced before the next element of
this data structure is accessed again. These small distances
are constant across all problem sizes because the shape of
the code is invariant across problem sizes. If a reference’s
histograms have such bins with a small constant distance,
we model them separately. Since their reuse distance is con-
stant, we model only the frequencies in these bins. The
fraction of accesses that have spatial reuse is usually not
constant across all problem sizes. It is a concave curve that
tends towards 1 —reference_stride/cache_line_size as prob-
lem size increases, and we are able to capture this behavior
with our technique.

The remaining bins and their parameters are determined
using a recursive algorithm. We start by computing an av-
erage distance for all the references that were not modeled
in the first step and we build a model for it. Next, we recur-
sively split the set of accesses in two and compute a model for
each subset. This process continues until the two resulting
models are similar. We apply this algorithm to determine a
partitioning of the data into an appropriate number of bins
by considering the data for all problem sizes at once. At
each step, we use a heuristic to determine how to partition
the accesses. Its decisions influence the convergence speed,
the accuracy and the stability of the final model.

In our experiments, the partitioning heuristic that yielded
the most stable and accurate results was one that selects
partition boundaries so that the ratio between the number
of references in the two partitions resulting from a split is the
same across all problem sizes. The ratio is selected so that
the two resulting subsets cover equal parts of the remaining
range of reuse distances. The two subsets may contain a
very different fraction of accesses, but they will span an
approximately equal range of reuse distance. This speeds
convergence by keeping together large fractions of accesses
with similar reuse distance, yet only binning small fractions
of accesses where the reuse distance varies abruptly.

After partitioning, we perform a (rarely needed) coalesc-
ing step that examines adjacent bins and aggregates them
together if they have similar polynomials describing their
reuse distance. Each bin is modeled by two polynomials,
one that models how the number of accesses in that bin
changes with problem size and one that models how the av-
erage reuse distance of accesses in that bin changes with
problem size. Our approach produces a minimal number of
bins with almost no loss in accuracy. If a large fraction of ac-
cesses has the same reuse distance accross all problem sizes,
all accesses go into one bin. However, if part of a reference’s
histogram is composed of many small fractions of accesses
with different reuse distance, our approach produces a large
number of bins for that part of the histogram, and success-
fully captures the instruction’s complex behavior.

Figure 4(a) shows the reuse distance histogram data col-
lected by our tool for one of the most frequently executed
memory accesses in the ASCI Sweep3D code [1]. Figure 4(b)
presents our parameterized model for that instruction. In
this figure, we can see the result of modeling the small con-
stant reuse distance separately, and how the fractions pro-
duced by the recursive modeling step have different widths

Memory reuse distance
Memory reuse distance

Normalized frequency ~ ° ° Problem size Normalized frequency ~ ° ° Problem size

(a) Collected data (b) Constructed model

Figure 4: The surface on the right is the parame-
terized model for one of the most frequently exe-
cuted memory accesses in Sweep3D. On the left is
the reuse distance histogram collected for that in-
struction. The x axis represents the problem size,
on the y axis is normalized number of accesses and
the z axis represents the reuse distance.

depending on how fast the reuse distance changes. On each
graph, the x axis represents the problem size (from 8 to 46
in this case); the y axis represents the normalized number
of accesses for each problem size; and the z axis represents
the reuse distance. The problem of determining the ratio
of hits and misses for a given cache size C is equivalent to
determining the intersection of the model with the plane
defined by z = C. Similarly, the problem of computing the
expected behavior for one instruction at a given problem size
P is equivalent to determining the intersection of the surface
and the plane defined by x = P. We can also determine the
minimum cache size such that the hit-ratio is . The solu-
tion to this problem is the intersection of the model and the
plane defined by y = H. Any two of these three problems
can be combined and the solution is the intersection of the
surface with the corresponding two orthogonal planes. We
can use this approach to predict the ratio of misses for a
given problem size and cache size.

For the reference modeled in Figure 4, approximately 75%
of the executed accesses see a small, constant memory reuse
distance due to spatial reuse; these will be hits for any prob-
lem size. The other 25% end up in several bins, each one
having a distinctive monotonically increasing function for
the reuse distance. The cache line considered in the model
is 32 bytes long and four elements (of type double) can be
packed into it. The first access to a line yields a large reuse
distance while the next three stride-1 accesses to the cache
line have a small reuse distance.

Figure 5 illustrates how the memory reuse distance model
presented in Figure 4(b) translates into a prediction of cache
misses. The model is evaluated for problem size 100 and
we consider an architecture with 1024 L1 blocks and 256k
L2 blocks. Because the maximum reuse distance predicted
for this reference is six orders of magnitude larger than the
size of the L1 cache, the curve on the right is shown on a
logarithmic y-axis. The model predicts a ratio of about 74%
hits in the L1 cache and 96% hits in the L2 cache.

Modeling spatial reuse distance as opposed to temporal
reuse distance has an important drawback. Because spatial
reuse distance uses a non-unit memory block size, it is sen-
sitive to data alignment and array dimensions. While the
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Figure 5: An instantiation of the model in Fig-
ure 4(b) for problem size 100. The curve on the
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ear coordinates. The curve on the right is shown on
a logarithmic y-axis and includes the cuts for the L1
and L2 cache sizes.

total number of cache misses at the loop level does not de-
pend on the alignment of data, the spatial reuse distance for
individual references is affected differently for distinct prob-
lem sizes and is a source of errors in the modeling step [12,
pages 53-60]. To address this, we aggregate reuse distance
histograms for references that are part of the same loop and
access the memory with the same pattern. At instrumen-
tation time, we determine sets of memory references that
are part of the same loop and have the same stride across
all levels of the loop nest containing them; we insert code
that collects a single reuse distance histogram for every such
set. Whenever we refer to the reuse distance histogram for
a reference, we mean the reuse distance histogram for a set
of memory references that were aggregated by our analysis.

2.4 Mapping Models to a Target Architecture

Our post-processing tool constructs an annotated CFG
that contains information about loop nesting structure and
the execution frequency of each basic block. We build this
annotated CFG by combining information gathered using
static analysis of the application binary with dynamic mea-
surements of its execution behavior or an instantiation of the
parameterized model. From this representation, we identify
paths in the CFG and compute their associated frequencies.
Inside nested loops, we work from the inside out; no basic
block is considered at more than one loop level. These paths
serve as input for an instruction schedule analysis tool that
computes an estimate for the execution cost of each path.

To compute the execution cost associated with a path for
a (possibly different) target architecture, we translate the
instructions present in the basic blocks of the (SPARC) ap-
plication binary into instances of generic RISC instruction
classes. We defined a set of generic RISC instruction classes
and a module for translating SPARC binary instructions
into generic instructions. We built a configurable sched-
uler that is initialized with an architecture description. The
scheduler enables us to predict instruction execution times
for a specific target architecture. The architecture descrip-
tion defines the number and type of execution units, and
a characterization of each generic instruction class in terms

of hardware resources required. Each generic RISC instruc-
tion has an associated set of execution units onto which it
can be scheduled, a latency and a repeat rate. The current
version of the scheduler considers each memory access as a
primary cache hit. An ongoing effort is focused on translat-
ing our data on memory reuse distance into an estimation of
latency for a given target memory hierarchy. Currently, we
perform static and dynamic analysis of application binaries
on a SPARC processor; we use the scheduling tool to pre-
dict performance on a MIPS R12000 or Itanium2 processor;
and we validate our predictions against actual executions
on these processors by collecting performance measurements
with hardware counters.

3. RESULTS

In this section, we apply our methodology to predict the
cache miss counts and the overall execution time for several
programs. We use six benchmarks in this study, including;:
ASCI Sweep3D [1], BT and SP from NPB 2.3-serial [2] , and
BT, LU and SP from NPB 3.0.

We compare our predictions against measurements per-
formed using hardware performance counters on an Origin
2000 system. The Origin 2000 system used for validation
measurements is a NUMA machine with 16 R12000 CPUs
at 300MHz and 10GB of RAM. Each CPU has a 2-way set-
associative 32KB L1 data cache, and a TLB with 64 entries,
where each TLB entry maps two consecutive 16KB pages.
Each pair of CPUs shares a large 8MB 2-way set-associative
unified L2 cache. The L1 cache uses a line size of 32 bytes,
and the L2 cache has a line size of 128 bytes.

To compute the predictions, we compiled the benchmark
applications on a Sun UltraSPARC-II system using the Sun
WorkShop 6 update 2 FORTRAN 77 5.3 compiler, and the
optimization flags: -xarch=v8plus -x04 -depend -dalign
-xtypemap=real:64. Measurements on the Origin 2000 sys-
tem were performed on binaries compiled with the SGI For-
tran compiler Version 7.3.1.3m and the optimization flags:
-03 -r10000 -64 -LNO:opt=0. We used the highest opti-
mization level but we disabled the high level loop nest opti-
mizations because the sets of loop nest transformations im-
plemented in the Sun and SGI compilers are different. Loop
nest optimizations are tailored to each target architecture
and they interfere with our ability to make cross-architecture
and cross-compiler predictions, as we discuss below.

Loop nest transformations have little impact on the num-
ber of floating point operations performed by an applica-
tion. Their aim is to reduce a program’s traffic to memory,
to hide the latency observed by the most frequently exe-
cuted memory references, or to increase the instruction level
parallelism inside inner loops. To achieve these goals, the
loop nest optimizations use dependence analysis to change
the execution order of a program in a way that reduces the
demand on the memory sub-system, and/or increases the
number of operations that can be executed in parallel every
cycle. By changing the execution order of a program, these
transformations alter the application’s memory access pat-
tern and its instruction schedule dependencies, effectively
changing the application’s algorithm and its specific factors
that are modeled by our toolkit. When trying to perform
cross-platform performance predictions and validate them
using different compilers on each platform, significant dif-
ferences in compiler capabilities make accurate predictions
hard. However, cross-architecture predictions can incorpo-



rate machine-specific optimizations. We could compile an
application on SPARC with optimizations appropriate for
the target architecture on which we want to predict per-
formance. Models and predictions based on this code will
reflect the effects of these optimizations on the target archi-
tecture.

The performance data numbers presented in this section
were measured or predicted for executions of the binaries
with a number of time steps different than each applica-
tion’s default value. We used a lower number of iterations
to reduce the time needed for all the measurements. The
actual number of time steps used for analyzing Sweep3D,
BT, LU and SP are 6, 20, 50 and 50 respectively.

3.1 Predictions of cache and TLB miss counts

To compute predictions of cache and TLB miss counts for
an application, we use memory reuse distance (MRD) his-
tograms collected for it by our toolkit. The TLB behaves
exactly like an LRU cache with a number of blocks equal
to the number of entries in the TLB and the size of each
block equal to the memory size mapped by each entry. For
the R12000 processor we view the TLB as a cache with 64
blocks of 32KB each, because each entry maps two consec-
utive pages. Therefore, we collected MRD histograms using
memory block sizes of 32, 128 and 32768 bytes, correspond-
ing to the L1 cache line size, L2 cache line size and the
double page block mapped by a TLB entry, respectively.

For the NAS benchmarks, we collected MRD for a range
of problem sizes between 20 and 50, and for the Sweep3D
application we collected MRD histograms for arbitrary sizes
between 20 and 57. The problem sizes inside these ranges
were randomly selected. We collected data on relatively
small input problems to limit the cost of executing the in-
strumented binaries, which is the most time consuming step
of the entire process. Next, we built models of the reuse
distance for each application with each model parameter-
ized by mesh size. Finally, to compute predictions of cache
miss counts, we evaluated these models at each problem size
of interest. We estimated the number of misses by deter-
mining how many references in the predicted reuse distance
histogram for the proper block size have a reuse distance
greater than the number of blocks in that cache level.

The NAS benchmarks use statically allocated data struc-
tures, with the maximum size of the working mesh specified
at compile time®. We used static and dynamic analysis of
the class A binaries to construct the models. The measure-
ments for each mesh size on the Origin 2000 system were
performed on the binary of minimum class that accomo-
dates that particular size (e.g. class A for mesh sizes from
10 to 64, class B for mesh sizes from 65 to 102, class C for
mesh sizes from 105 to 162, and our non-standard class L
(see footnote) for mesh sizes from 165 to 200).

Figure 6 presents measured and predicted miss counts
for both L1 and L2 caches, as well as for the TLB. Each
subfigure presents the normalized number of misses for one
application. For all applications the z axis represents the
mesh size and the y axis represents the number of misses
per cell, per iteration. (All applications considered in this
paper work on a cubic mesh, therefore the number of cells

3The benchmarks can be compiled in several standard
classes named A, B and C, which have a maximum mesh
size of 64, 102 and 162, respectively. We created an extra
class L with a maximum mesh size of 200.

is equal to mesh_size®.) This view of the data enables us
to understand how the application characteristics scale with
problem size, and at the same time enables a more clear
view of the plotted data which otherwise would span many
orders of magnitude on the y axis. Because of differences in
the range of cache misses at different levels, for some of the
applications we scaled the L2 and/or the TLB miss counts
by a constant so that we could comfortably plot them with
the L1 misses for that application. The scaling factor, if any,
is specified in the legend of each subfigure.

The figures show that in general the predictions approxi-
mate well the measured values. With a few exceptions, the
predictions are within 10% of the miss counts measured with
hardware performance counters on actual runs of the appli-
cations. When we report prediction errors, the errors we
report are relative to the number of measured misses, not
the number of memory references. Overall the L2 and TLB
miss rate is relatively small for all these applications when
running on the Origin. For example, BT 3.0 has a peak miss
rate in L2 of just under 0.5%; BT 2.3 and SP 2.3 have the
largest L2 miss rates at around 3%. A 10% error relative
to these measured misses is corresponds to less than 0.3%
error relative to the number of executed references.

Some factors that may affect the accuracy of memory pre-
dictions are: conflict misses which cannot be predicted by
memory reuse distance alone, but which can be kept under
control by several optimization techniques; the unified L2
cache of the Origin 2000 for which code footprint reduces
the effective cache size available for data; and the fact that
we compute predictions not only cross architecture, but also
cross compiler, which makes the predictions vulnerable to
differences in compiler optimizations.

In the case of L2 miss predictions, the largest errors cor-
respond to a critical range of problem sizes, different for
each application, where the size of the active memory foot-
print transitions from fitting in the cache to exceeding the
cache capacity. In this critical range, the difference between
the fully associative cache assumed by the memory reuse
distance models and the real 2-way set-associative cache is
most pronounced. For Sweep3D with problem size 90, we
used a simulator to explore differences between L2 measure-
ments and predictions. For this problem size, conflict misses
were nearly a factor of 2 more than capacity misses. This
causes us to underpredict L.2 misses by a factor of 3 for this
problem size. Our simulation results validate both our 2-way
set associative measurements and our fully-associative pre-
dictions for this problem size. In a fully associative cache,
as cache capacity is exceeded the number of cache misses
grows abruptly. In a low level set-associative cache, conflict
misses cause smoother growth. This effect is particularly
prominent in the L2 curves for Sweep3D and LU 3.0 shown
in figure 6.

In the TLB miss predictions for both the NAS bench-
marks and Sweep3D, there are some discrepancies between
the measured and predicted values. Although the largest
difference between measured and predicted TLB misses was
36% (Sweep3D, problem size 60), the overall TLB miss rates
were very low and their potential impact on performance is
very small. For Sweep3D at problem size 60, simulations
of a fully-associative TLB with all of its entries devoted to
data was 19% under the measured value. Code pages oc-
cupying TLB entries could be responsible for some of these
differences. For the NAS benchmarks, the most significant
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Figure 6: L1, L2 and TLB cache miss predictions for 5 NAS benchmarks and Sweep3D. Each graph presents
the measured and the predicted miss counts for L1, L2 and TLB.

prediction errors were for the larger problem sizes, namely,
those measured with class C and class L binaries. A fac-
tor complicating reuse-distance based predictions for these
codes is that we construct MRD models from data collected
with a class A binary with a fixed data size. Collecting data
for fixed data sizes, even though problem sizes vary, obscures
the relationship between stride and problem size, which can
cause modeling errors.

3.2 Predictions of execution time

To estimate execution time for an application on a target
architecture, we must consider both the cost of the mem-
ory hierarchy latency experienced by the application on the
target machine and the cost of the computation itself. An
application’s computation cost is a function of not just how
often each basic block is executed, but also how well its in-
struction level parallelism matches the number and the type
of execution units available on the target architecture and
how much instruction dependencies reduce the compactness
of the instruction schedule.

To predict basic block execution frequency of applications
for arbitrary problem sizes, we construct models of basic
block execution frequency using data from edge counter ex-

ecution histograms collected for a set of small problem sizes?.
Next, we derived models of the execution frequency for each
edge counter and evaluated the models at each problem size
of interest.

We used our scheduler, initialized with a description of the
R12000 architecture, to estimate execution time for each ap-
plication when all memory references hit in the cache closest
to the CPU (L1 for the R12000). Figure 7 presents the pre-
dicted instruction execution time when all memory accesses
are cache hits; this prediction is labeled in the graph as
Scheduler latency. As with the graphs of cache miss counts,
we present the execution time relative to the amount of use-
ful work, or the number of mesh cells, and normalized per
iteration. The z axis represents the mesh size, and the y
axis represents the number of cycles per cell per time step.

How to translate the cache miss counts implied by our
models of memory reuse distance into an expected latency
for each memory reference, on an arbitrary architecture, is
still an open problem. On an out-of-order superscalar ma-

4 Although our predictions of basic block frequency are based
on data for the same set of problem sizes we monitored for
memory reuse distance, other sizes could have been used.
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Figure 7: Predictions of the execution time for 5 NAS benchmarks and Sweep3D. Each graph presents: (1)
the measured time, (2) the instruction execution time predicted by the scheduler when all memory accesses
are cache hits, (3) the predicted L1 miss penalty, (4) the predicted L2 miss penalty, (5) the predicted TLB
penalty, and (6) the predicted execution time which includes both the instruction execution cost and the

predicted memory hierarchy penalty.

chine, the processor can execute instructions in an order
different than that specified by the compiler. On such ma-
chines, the hardware logic can hide some of the cache miss
penalty; its ability to do so is limited by the size of the
instruction window and by the number of instructions with-
out unresolved dependencies available in the window at any
given time. On an in-order or VLIW machine®, the proces-
sor always executes the instructions in the order determined
by the compiler. In the case of a cache miss, the hardware
continues to issue instructions until it reaches an instruc-
tion with unresolved dependencies, such as an instruction
that needs the data returned by a reference that missed in
cache. At this point, the execution pipeline stalls until the
dependencies are resolved.

It is the compiler’s job to order instructions in a way that
minimizes execution time. Compilers can rearrange the in-

®Most modern machines have non-blocking caches, therefore
we consider only such cases. Predictions for machines with
blocking caches are much easier.

structions in a loop to group together loads to data that
cannot be in the same cache line so that if more than one
load misses in the cache, the latency of fetching the data
from memory for every cache miss after the first, is par-
tially hidden by the latency associated with the first miss.
Such an optimization is limited by the number of parallel,
large-stride loads available in a loop and by the maximum
number of outstanding memory references allowed in the
system. On R12000, four memory accesses can be outstand-
ing at any given time. In practice, the instruction schedules
in loops are often the most limiting factor that determine
how much memory system parallelism is realized.

We define the memory hierarchy penalty for an applica-
tion as the sum of the penalties incurred by each cache and
TLB miss. The R12000-based Origin used to validate our
predictions has the following memory access latencies for a
floating point reference: minimum access time to L1 cache
is 3 cycles, minimum access time to L2 is 11 cycles, the
access time to main memory ranges from 92 cycles (restart



latency) to 116 cycles (back-to-back latency) [8, 15], and the
TLB miss penalty is 78 cycles.

To predict exposed latency on an out-of-order architec-
ture is challenging. We plan to augment our static analyzer
to estimate the number of accesses that can be executed in
parallel in each loop (by examining instruction dependen-
cies), combine this with dynamic information about which
accesses cause misses, and estimate observed latency by sub-
tracting off how much of the memory hierarchy latency can
be overlapped with instructions. Lacking this infrastructure,
we compute some estimates for exposed latency. Figure 7
shows curves for L1 miss penalty, L2 miss penalty and TLB
miss penalty. L1 miss penalty reflects the product between
the number of L1 misses and 50% of the 8 cycle miss penalty
from L1 to L2. L2 miss penalty reflects the product between
the number of L2 misses and 100% of the 81 cycle restart
miss penalty from L2 to memory. TLB miss penalty reflects
the product between the number of TLB misses and the 78
cycle cost of a TLB miss.

In Figure 7 the Predicted time combines the scheduler la-
tency, and the L1, L2 and TLB miss penalties as described
above. The figures show that with these assumptions, the
execution time predictions match well the measured values
for four of the applications. The exceptions are BT 2.3 and
Sweep3D for which we underpredict by about 20%. The
spikes in measured execution time that can be observed for
some problem sizes, are due to system interferences at mem-
ory with other users’ running jobs.

For Sweep3D, part of the execution time prediction error
is due to the underprediction of L2 misses as a result of con-
flicts in the L2 cache. Figure 8 presents the L2 miss penalty
and the predicted execution time (the A curves in Figure 8)
when we consider the measured number of L2 misses in-
stead of the predicted counts in our execution time formula.
With the measured number of L2 misses, the predicted and
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Figure 8: L2 miss penalty and predicted execution
time using (A) the measured L2 miss counts, plus
(B) assuming a 135 cycle memory latency.

measured execution time curves have a similar shape, but
we still underpredict. The fact that the gap between the
predicted and the measured execution time increases with
problem size, combined with the observation that the sched-
uler latency, L1 and TLB penalties are constant or slightly
decreasing when problem size grows (see Figure 7), suggests
that the difference is due to a larger memory penalty in-
curred by L2 misses, the only component of the predicted
execution time that increases with problem size.

Curves B in Figure 8 represent the L2 miss penalty and
the predicted execution time when we use a 135 cycle mem-
ory latency in our formula for predicted execution time, with

all other parameters unchanged. The restart memory la-
tency of 92 cycles presented at the beginning of this section
is micro-benchmarked for read operations, when all cache
lines are clean. In a real application, some of the cache lines
will be dirty. If a cache miss causes a dirty line to be re-
placed, the dirty line must be written back to memory before
the new line can be fetched; this might result in a latency
nearly twice as large as when replacing a clean line.

We acknowledge that the formula for predicted execution
time is empirical, and that we have to understand better
how to automatically translate our accurate predictions of
cache miss counts into an expected memory hierarchy de-
lay. However, the accurate predictions accross a large set
of problem sizes on an Origin 2000 system, combined with
similarly accurate results on an Itanium2 machine, make us
believe that we are on the right path.

4. RELATED WORK

We are not the first to propose separating the contribu-
tion of application-specific factors from the contribution of
the architecture’s characteristics when analyzing program
performance. Based on their study of memory-bound codes
such as the NAS Parallel Benchmarks (NPB) 2.3 kernels [2],
Snavely et al. [16] model node performance of an applica-
tion primarily as a function of how it exercises the memory
subsystem. They predict performance by convolving Ap-
plication Profiles with Machine Signatures. Our work dif-
fers from that of Snavely et al. in two very significant ways.
First, we model the cost of computation as well as mem-
ory latency and bandwidth; this is necessary for accurately
modeling performance of compute-bound codes such as BT
3.0. Second, and most important, we build parameterized
models of application behavior; this enables us to predict
performance for problem sizes that are too large to be prac-
tical for monitoring at scale on today’s systems.

Recently, memory reuse distance (MRD) have been the
focus of many researchers trying to characterize an appli-
cation’s memory access behavior. However, using parame-
terized models of reuse distance to predict an application’s
cache miss counts for different problem sizes has not received
the same level of attention. Zhong et al. [19] describe using
two memory reuse distance histograms that are an aggrega-
tion of all accesses executed by the program as the basis for
modeling. Our work differs significantly from that of Zhong
et al. in that (1) we model memory performance at the level
of individual references rather than aggregating across the
whole program, which enables better accuracy and finer-
grain predictions (e.g. at the routine or loop level), (2) our
modeling tool dynamically determines an appropriate parti-
tioning of reuse distance histograms into fractions of accesses
that are modeled together instead of using a fixed strategy,
(3) our modeling tool discovers the appropriate modeling
polynomials, although a user will have to supply unusual
basis functions for us to consider, and (4) we model fac-
tors other than memory access behavior—performance is a
function of more than just memory accesses.

S. CONCLUSIONS

This paper describes a toolkit for characterizing the be-
havior of single node applications and synthesizing param-
eterized models that predict program performance. Our
toolkit aims to model the characteristics of an application



in isolation of any architectural details. In practice, we have
been largely successful modeling the most important factors
affecting application behavior and creating semi-automatic
cross architecture predictions for new input parameters. Two
details keep us from being totally architecture independent:
we currently calculate reuse distance using non-unit size
memory blocks to account for spatial locality and we don’t
yet automatically calculate how multiple outstanding misses
will affect the observed latency from cache misses. We are
exploring strategies for addressing these shortcomings. Mem-
ory reuse distance is one of the key application character-
istics we analyze to predict performance. We describe a
strategy for accurately modeling the memory reuse distance
seen by individual memory references, and we are success-
ful using these models to compute predictions of cache miss
counts for various applications across a large range of prob-
lem sizes. This approach yields better accuracy than other
methods in the literature. The accuracy of our predictions
validate the utility of our fine-grain modeling approach. Un-
like prior work, we consider both the instruction execution
cost and the memory hierarchy penalty, which enables us
to predict the execution time of applications regardless of
whether they are CPU bound, memory bound, or have both
characteristics in different program regions.

Our plans for this work call for exploring both how to
increase the accuracy of our cross architecture predictions
and how to extend our strategy for predicting performance
of parallel applications. For parallel applications, the key
challenge is understanding the impact of communication
and serialization on performance. We have infrastructure
in our toolkit for monitoring synchronization, data move-
ment, and segmenting computation between communication
events. We have not yet begun to explore the construction
of scalable models for parallel performance.
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