
Pinpointing and Exploiting Opportunities for
Enhancing Data Reuse

Gabriel Marin and John Mellor-Crummey
Department of Computer Science

Rice University
6100 Main St., MS 132
Houston, TX 77005

{mgabi,johnmc}@cs.rice.edu

Abstract—The potential for improving the performance of
data-intensive scientific programs by enhancing data reuse in
cache is substantial because CPUs are significantly faster than
memory. Traditional performance tools typically collect or simu-
late cache miss counts or rates and attribute them at the function
level. While such information identifies program scopes that
exhibit a large cache miss rate, it is often insufficient to diagnose
the causes for poor data locality and to identify what program
transformations would improve memory hierarchy utilization.
This paper describes an approach that uses memory reuse
distance to identify an application’s most significant memory
access patterns causing cache misses and provide insight into
ways of improving data reuse. Unlike previous approaches, our
tool combines (1) analysis and instrumentation of fully optimized
binaries, (2) online analysis of reuse patterns, (3) fine-grain
attribution of measurements and models to statements, loops and
variables, and (4) static analysis of access patterns to quantify
spatial reuse. We demonstrate the effectiveness of our approach
for understanding reuse patterns in two scientific codes: one
for simulating neutron transport and a second for simulating
turbulent transport in burning plasmas. Our tools pinpointed
opportunities for enhancing data reuse. Using this feedback as a
guide, we transformed the codes, reducing their misses at various
levels of the memory hierarchy by integer factors and reducing
their execution time by as much as 60% and 33%, respectively.

I. INTRODUCTION

To improve the performance of an application we need to
understand not only where a code executes inefficiently, but
more importantly to understand why, i.e. we must identify
the factors that limit performance at each point in a program.
In prior work [15] we describe techniques for understanding
performance bottlenecks due to insufficient instruction level
parallelism or due to a mismatch between an application’s
instruction mix and the type of execution units available on
a target architecture. In this paper we present techniques for
identifying performance bottlenecks due to poor data locality
and we compute metrics that provide insight into ways of
improving data reuse.
The potential for improving the performance of data-

intensive scientific programs by enhancing data reuse in cache
is substantial because CPUs are significantly faster than mem-
ory. For data intensive applications, it is widely accepted that
memory latency and bandwidth are the factors that most limit
node performance on microprocessor-based systems.

Typically, performance tools collect or simulate cache miss
counts and rates and attribute them at the function level. While
such information identifies the functions that suffer from poor
data locality, in our experience, this is often insufficient to
diagnose the causes for poor locality and to identify what code
transformations would improve memory hierarchy utilization.
To understand why a particular loop experiences many

cache misses, it helps to think of a non-compulsory cache
miss as a reuse of data that has been accessed too far in
the past to still be in cache. Memory reuse distance is an
architecture independent metric that measures the number of
distinct memory blocks accessed by a program between pairs
of accesses to the same block.
Over the years, memory reuse distance has been used by

researchers for many purposes. These include investigating
memory hierarchy management techniques [3], [16], char-
acterizing data locality in program executions for individual
program inputs [4], [7], and using memory reuse distance data
from training runs to predict cache miss rate for other program
inputs [9], [13], [23].
To understand how memory reuse distance data translates

into cache miss predictions, it is best to consider a short
example. Suppose a memory block B is reused after other
n distinct memory blocks have been accessed since B was
last accessed. For a fully-associative cache, at the time of
the reuse, block B would still be in cache if n is smaller
than the cache size; if n is greater than or equal to the cache
size, block B would have been evicted from the cache by
one of intervening accesses. Thus, to understand if a memory
access is a hit or miss in a fully-associative cache using LRU
replacement policy, one can simply compare the distance of the
reuse with the size of the cache. We have shown elsewhere [14]
that a reuse distance based probabilistic model yields accurate
predictions for set-associative caches as well.
Both temporal and spatial reuse determine how effectively

an application exploits the cache, and thus both are impor-
tant for an application’s performance. The next two sections
describe techniques for highlighting the main data reuse pat-
terns in an application, which provide insight into ways of
improving temporal locality, and a static analysis approach that
identifies opportunities for improving spatial locality through
data layout transformations.

The rest of the paper is organized as follows. Section II
presents our strategy for collecting and processing reuse dis-
tance information at the level of reuse patterns. Section III
describes techniques for pinpointing and understanding op-
portunities for improving spatial locality through data layout
transformations. Section IV describes how to interpret the
information computed in Sections III and IV to improve data
reuse in applications. Section V describes the process of tuning
two scientific applications using our techniques. Section VI
describes the closest related work. Section VII presents our
conclusions and plans for future work.

II. UNDERSTANDING DATA REUSE PATTERNS

Knowing which loops of an application experience a large
number of cache misses, usually does not provide sufficient in-
sight by itself for understanding how to improve data locality.
The reason for this is that data reuse, the main determinant of
cache performance, is not a local phenomenon. The same data
may be accessed in multiple loops located in different routines.
Moreover, to understand why an application accesses the same
data repeatedly we need to identify not only the places where
data is referenced, but also the algorithmic loops that are
driving this reuse. In some cases, the loop driving the reuse
can be found locally where the data is accessed, e.g. when
a loop iterates over the inner dimension of an array. Other
times, some outer loop, which might be in a different routine,
causes the application to access the same data repeatedly, e.g.,
in consecutive time steps. To understand how to improve data
reuse, we must understand both where same data is accessed
and what loops are driving the reuse.
Previous work on computing cache miss predictions from

memory reuse distance information has explored approaches
that associate reuse distance data with either individual refer-
ences [9], [13], groups of related references from the same
loop [14], or an entire application [23]. Associating reuse
distance data with a section of code, be it a reference, a loop
or an entire application, is sufficient for computing the number
of cache misses incurred by that piece of code. However, these
approaches use only part of the information that one can gather
through memory reuse distance analysis. In particular, each
data reuse can be thought of as an arc from one access to a
block of data to the next access to that block. Collecting reuse
distance separately for each reuse arc of a memory reference
not only provides insight into where cache misses occur, but
also captures the correlation between references that access the
same data, which provides insight into the application’s data
access patterns. As we describe later, knowing the program
scope that carries this reuse is important for understanding
how to improve reuse.
We use instrumentation of application binaries to measure

reuse distance at run-time. Because we analyze and instru-
ment object code, our tools are language independent and
naturally handle applications with modules written in different
languages. Before each memory reference in the program we
invoke an event handler routine that updates a histogram of
reuse distance values for the reference. The event handler

routine increments a logical clock by one each time a memory
instruction is executed. A three level hierarchical block table
is used to associate the logical time of last access with every
memory block referenced by the program. The time-stamp
enables us to determine how many memory operations are
executed between a pair of accesses to the same datum. To
understand the number of distinct memory locations accessed
between consecutive accesses to a particular datum, we use
a balanced binary tree with a node for each memory block
referenced by the program. The sorting key for each node in
the tree is the logical time of the last access to the memory
location represented by the node. On each memory access we
can compute how many distinct memory blocks have an access
time greater than the time-stamp of current block in log(M)
time, whereM is the size of the tree and represents the number
of distinct memory blocks touched by the application. A full
description of the algorithm is presented elsewhere [13].
We extended the data collection infrastructure presented

in [13] to record information about the identity of the most
recent access to a memory block. This approach enables us to
associate a reuse distance with a (source, destination) pair of
scopes where the two endpoints of the reuse arc reside. This
additional information enables us to report to the user not
only where we experience a large fraction of cache misses,
but also where that data has been previously accessed before
it was evicted from cache. If we can transform the program
to bring the two accesses closer, for example by fusing their
source and destination loops, we may be able to shorten the
reuse distance so that the data can be reused before it is evicted
from cache.
To determine the program scope that is driving a reuse, we

add instrumentation to monitor entry and exit of routines and
loops. At run-time, we maintain a dynamic stack of scopes
based on the entry and exit events that are executed. When
a scope is entered, we push a record containing the scope id
and the value of the access clock onto the stack. On exit,
we pop the entry off the scope stack. The program scope
that is driving a reuse is the innermost dynamic scope in
which the data is reused. Therefore, on a memory access we
traverse the dynamic stack of scopes starting from the top,
looking for S – the shallowest entry whose access clock is
less than the access clock value associated with the previous
access to current memory block. Because the access clock is
incremented on each memory access, S is the most recent
active scope that was entered before our previous access to
current memory block. S is the driving scope, which we also
call the carrying scope of the reuse. For a reference, we collect
separate histograms of reuse distances for each combination
of (source scope, carrying scope) of the reuse arcs for which
the reference is the sink.
If we know which loop is causing the reuse and if the

distance of that reuse is too large for our cache size, then
it may be possible to shorten the reuse distance by either
interchanging the loop carrying the reuse inwards, or by
blocking the loop inside it and moving the resulting loop that
iterates over blocks outside the loop carrying the reuse. Loop

(a)

DO I = 1, N
DO J = 1, M

A(I,J) = A(I,J) + B(I,J)
ENDDO

ENDDO

(b)

DO J = 1, M
DO I = 1, N

A(I,J) = A(I,J) + B(I,J)
ENDDO

ENDDO

Fig. 1. (a) Example of spatial data reuse carried by an outer loop;
(b) transformed example using loop interchange.

interchange and blocking are well studied compiler transfor-
mations. A more thorough discussion of these transformations
can be found in [1]. Figure 1(a) presents a simple loop nest
written in Fortran. Although Fortran stores arrays in column
major order, the inner loop here iterates over rows. There is
no reuse carried by the J loop, since each element of a row
is in a different cache line. However, for non-unit size cache
lines, there is spatial reuse carried by the outer I loop. By
interchanging the loops as shown in Figure 1(b), we move the
loop carrying spatial reuse inwards, which reduces the reuse
distance for the accesses.
Compared to our previous work [13], the more refined

approach that we describe in this paper increases the resolution
at which memory reuse distance data is collected. For one
reference, we store multiple reuse distance histograms—one
for each distinct combination of source scope and carrying
scope of the reuse arcs. In practice, the additional space needed
to maintain this information is reasonable and well worth it
for the additional insight it provides. First, during execution
applications access data in some well defined patterns. A load
or store instruction is associated with a program variable that
is accessed in a finite number of scopes that are executed
in a pre-determined order. Thus, there is not an explosion
in the number of histograms collected for each reference.
Second, reuse distances seen by an instruction at run-time
vary depending on the source and carrying scopes of the reuse
arcs. For this reason, our previous implementation maintained
fewer histograms; however, they had a large number of bins to
capture the different distance values encountered. In contrast,
our new approach maintains more but smaller histograms.
All reuse distance data we collect can still be modeled using

the algorithm presented in [14] to predict the distribution of
reuse distances for other program inputs. Essentially, we model
the distribution and scaling of reuse distance histograms as a
function of problem size by computing an appropriate parti-
tioning of reuse distance histograms into bins of accesses that
have similar scaling of their measured reuse distance across
several problem sizes. We model the execution frequency and
reuse distance scaling of each bin as a linear combination
of a set of basis functions. In addition, since with our new
approach reuse distance data is collected and modeled at a
finer granularity, the resulting models are more accurate for
regular applications.
Our new data enable us to compute cache miss predictions

for an architecture separately for each reuse pattern. Thus,
when we investigate performance bottlenecks due to poor
data locality, we can highlight the principal reuse patterns
that contribute to cache misses and suggest a set of possible
transformations that would improve reuse. Not only does this
information provide insight into transformations that might
improve a particular reuse pattern, but it also can pinpoint
cache misses that are caused by reuse patterns intrinsic to an
application, such as reuse of data across different time steps
of an algorithm or reuse across function calls, which would
require global code transformations to improve. In general, the
further removed the carrying scope of a reuse pattern is from
the scopes where the data is accessed, the more difficult it is
to improve it.
We compute several metrics based on our memory reuse

analysis. For each scope, we compute traditional cache miss
counts; we use this data to identify loops responsible for a
high fraction of cache misses. In addition, we break down
cache miss counts by the scope that accessed data last before it
was evicted, the scope that is carrying these long data reuses,
or a combination of these two factors. To guide tuning, we
also compute the number of cache misses carried by each
scope. A scope S is carrying those cache misses produced by
reuse patterns for which S is the carrying scope. We break
down carried miss counts by the source or/and destination
scopes of the reuse. These metrics pinpoint opportunities for
loop fusion and provide insight into reuse patterns that are
difficult or impossible to eliminate, such as reuse across time
steps or function calls. To focus tuning efforts effectively, it
is important to know which cache misses can be potentially
eliminated and which cannot; this helps focus tuning on cases
that can provide a big payoff relative to the tuning effort. In
Section V, we describe how we use this information to guide
the tuning of two scientific applications.

III. FRAGMENTATION IN CACHE LINES

Both temporal and spatial reuse determine how efficiently
an application exercises the cache. Temporal reuse can be
understood from reuse distance measurements. Spatial reuse,
however, depends also on the layout of data in memory. Caches
are organized in blocks (lines) that typically contain multiple
words. The benefit of using non-unit size cache lines is that
when any word of a block is accessed, the whole block is
loaded into the cache and further accesses to any word in
the block will hit in cache until the block is evicted. Once a
block has been fetched into cache, having accesses to other
words in the block hit in cache is called spatial reuse. To
exploit spatial reuse, we need to pack data that is accessed
together into the same block. We call the fraction of data in a
memory block that is not accessed the fragmentation factor.
We compute fragmentation factors for each array reference and
each loop nest in the program. To identify where fragmentation
occurs, we use static analysis.
For each loop nest, we identify references that access the

same data arrays with the same stride. We say such references
are related. Understanding which references are related from

DO J = 1, M
DO I = 1, N, 4

A(I+2,J) = A(I,J-1) + B(I+1,J) - B(I+3,J)
A(I+3,J) = A(I+1,J-1) + B(I,J) - B(I+2,J)

ENDDO
ENDDO

Fig. 2. Cache line fragmentation example.

looking at machine code requires detailed binary analysis.
First, we compute symbolic formulas that describe the memory
locations accessed by each reference. We compute a symbolic
formula for the first location accessed by a reference by tracing
back along use-def chains in its enclosing routine. Tracing
starts from the registers used in the reference’s address compu-
tation. For references inside loops, we also compute symbolic
stride formulas, which describe how the accessed location
changes from one iteration to the next. Stride formulas have
two additional flags. One flag indicates whether a reference’s
stride is irregular (i.e., the stride changes between iterations).
The second flag indicates whether the reference is indirect with
respect to that loop (i.e., the location accessed depends on a
value loaded by another reference that has a non-zero stride
with respect to that loop). A more detailed description of how
we compute symbolic formulas is presented in [12], [14].
We use the computed symbolic formulas to understand

which references access memory with the same stride. Second,
we recover the names of data objects accessed by each
reference using our symbolic formulas in conjunction with
information recorded by the compiler in the executable’s
symbol table [12]. We say that references in a loop that access
data with the same name and the same symbolic stride are
related references.
To analyze the fragmentation of data in cache lines, we

work on groups of related references and we use the following
three step algorithm to compute the fragmentation factor of
each group1. At a high level, the algorithm attempts to find
the loop level that iterates over the inner-most dimension of
an array and then it determines if the combined footprint of
all references that are part of a group overlaps the array’s
footprint without gaps.

Step 1. Find the enclosing loop, L, for which this group of
references experiences the smallest non-zero constant stride.
When a reference group is enclosed in a loop nest, we traverse
the loops from the inside out. Inner loops are executed much
more frequently than outer loops, and we want to find the
innermost loop that iterates over an array’s inner dimension.
We terminate the search if a loop is encountered for which
references have an irregular stride. The reason for this is
that we cannot determine through static analysis the locations
accessed by irregular access patterns or their contribution to
spatial reuse. Moreover, we report separately cache misses
produced by irregular memory access patterns, together with

1Note that all references in a group have equal strides with respect to all
enclosing loops. It suffices to consider the strides of only one reference in the
group during analysis.

information about the scopes where the data is accessed and
the loop that is driving the irregular data reuse. If we cannot
find a loop with a constant non-zero stride, we do not compute
any fragmentation factor for that group of references because
we do not have enough information to compute the combined
footprint of the references. Otherwise, let s be the smallest
constant stride that we find and go to step 2.
For the Fortran loop shown in Figure 2, the arrays are in

column-major order, all four accesses to A are part of a single
group of related references, and all four accesses to B are part
of a second group of related references. For both groups, the
loop with the smallest non-zero constant stride is the inner loop
I, and the stride is 32 bytes if we assume that the elements
of the two arrays are double precision floating point values.

Step 2. Split a group of related references into reuse groups
based on their first location symbolic formulas. Let F1 and
F2 be the formulas describing the first location accessed by
two references of a group. As computed in step 1, their
smallest non-zero constant stride is s. If the two first location
formulas differ only by a constant value, we compute how
many iterations of loop L it would take for one formula to
access a location within s bytes of the first location accessed
by the other formula. If the necessary number of iterations is
less than the average number of iterations executed by that
loop (identified using data from the dynamic analysis), then
the two references are part of the same reuse group. Otherwise,
the two references are part of distinct reuse groups.
For our example in Figure 2, the group of references to array

A is split into two reuse groups. One reuse group contains
references A(I,J-1) and A(I+1,J-1), and the second
reuse group contains references A(I+2,J) and A(I+3,J).
The four references have been separated into two reuse groups
because they access memory locations far apart, due to dif-
ferent indices in their second dimension. In contrast, all four
references to array B are part of a single reuse group.

Step 3. Compute the hot footprint information for each reuse
group derived from a group of related references. The hot
footprint is defined as the union of the locations into a memory
block of size s, accessed by all references of a reuse group.
We use modular arithmetic to map the locations accessed by
different references into the same block of size s, possibly on
different iterations of loop L. This is equivalent to computing
the coverage of the block, i.e., the number of distinct bytes
accessed in the block. For a group of related references we
select the maximum coverage, c, over all its reuse groups, and
the fragmentation factor is f = 1 − c/s.
Returning to our example, both reuse groups corresponding

to the set of references to array A have a coverage of 16 bytes,
and thus the fragmentation factor for array A is 0.5. The single
reuse group for the four references to array B has coverage
32, and thus a fragmentation factor of 0.

While it is possible to have non-unit stride accesses to arrays
of simple data types, as seen with our example in Figure 2, the
main causes of data fragmentation are arrays of records, where

only some record fields are accessed in a particular loop. The
problem can be solved by replacing an array of records with
a collection of arrays, one array for each individual record
field. A loop working with only a few fields of the original
record needs to load into cache only the arrays corresponding
to those fields. If the original loop was incurring cache misses,
this transformation will reduce the number of misses, which
will reduce both the data bandwidth and memory delays for
the loop. This transformation has the secondary effect of
increasing the number of parallel data streams in loops that
work with multiple record fields. While additional streams can
improve performance by increasing memory parallelism [19],
they can hurt performance on architectures with small TLBs
and architectures that use hardware prefetching but can handle
only a limited number of data streams [12, pages 189–196].
For our example in Figure 2, array A is better written as

two separate arrays, each containing every other group of two
elements of its inner dimension.
Using the fragmentation factors derived for each group of

related references, we compute cache miss counts due to
fragmentation effects at each memory level. The number of
cache misses due to cache line fragmentation is computed
separately for each memory reuse pattern; we report this
information at the level of individual loops and data arrays.
Similarly, we compute the number of cache misses due to
irregular reuse patterns. A reuse pattern is considered irregular
if its carrying scope produces an irregular or indirect symbolic
stride formula for the references at its destination end.

IV. INTERPRETING THE PERFORMANCE DATA

To identify performance problems and opportunities for tun-
ing, we output all metrics described in the previous sections in
XML format, and we use the hpcviewer user interface [17]
that is part of HPCToolkit [18] to explore the data. The viewer
enables us to explore the data in a top-down fashion, to sort the
data by any metric and to associate metrics with the program
source code and with data array names.
For all metrics we compute aggregated values at each level

of the program scope tree. The root node of the program scope
tree contains the values of the metrics aggregated at the entire
program level. On the second level of the tree we have source
code files. On the third level we have the routines located
within each file. Under each routine we can have zero, one or
more levels of loops, corresponding to the source code loop
nesting structure in that routine.
We can visualize both the exclusive and the inclusive2

values of the metrics at each level of a program scope tree. We
can browse the data in a top-down fashion to find regions of
code that account for a significant fraction of a performance
metric (e.g., misses, fragmentation), or we can compare the
exclusive values across all scopes of a program.
Not all metrics can be sensibly aggregated based on the

static program scope tree structure. For example, aggregating

2An inclusive value quantifies the contribution of a scope and all its children
scopes to a given metric. An exclusive value quantifies the contribution of a
scope without its children.

the number of misses carried by scopes based on their static
program hierarchy is meaningless. The carried number of
misses is rather a measure representative of the dynamic tree
of scopes observed at run-time. This information could be
presented hierarchically along the edges of a calling context
tree [2] that includes also loop scopes. A reuse pattern already
specifies the source, the destination and the carrying scopes
of a reuse arc; aggregating the number of misses carried by
scopes does not seem to provide any additional insight into
reuse patterns. While for some applications the distribution
of reuse distances corresponding to a reuse pattern may be
different depending on the calling context, for most scientific
programs separating the data based on the calling context
may dilute the significance of some important reuse patterns.
At this point we do not collect data about the memory
reuse patterns separately for each context tree node to avoid
the additional complexity and run-time overhead. If needed,
the data collection infrastructure can be extended to include
calling context as well.
Since we collect information about the reuse patterns in

an application, we generate also a database in which we can
compare reuse patterns directly. This is a flat database in which
entries represent not individual program scopes, but pairs of
scopes that correspond to the source and destination scopes
of reuse patterns. Its purpose is to quickly identify the reuse
patterns contributing the greatest number of cache misses at
each memory level.
Identifying reuse patterns with poor data locality is only

part of the work, albeit a very important part. We need
to understand what code transformations work best in each
situation. Table I summarizes recommended transformations
for improving memory reuse, based on the type of reuse
pattern that is producing cache misses. We use S, D and C
to denote the source, destination, and carrying scopes of a
reuse pattern, respectively. These recommendations are just
that: general guidelines to use in each situation. Determining
whether a transformation is legal is left for the application
developer. In some instances, enabling transformations such
as loop skewing or loop alignment may be necessary before
we can apply the transformations listed in Table I.

V. CASE STUDIES

In this section, we briefly illustrate how to analyze and
tune an application using these new performance metrics. We
describe the tuning of two scientific applications. Sweep3D [8]
is a 3D Cartesian geometry neutron transport code benchmark
from the DOE’s Accelerated Strategic Computing Initiative.
As a procurement benchmark, this code has been extensively
studied and tuned already [7], [10], [18], [20], [22]. The
Gyrokinetic Toroidal Code (GTC) [11] is a particle-in-cell
code that simulates turbulent transport of particles and energy.
We compiled the codes on a Sun UltraSPARC-II system
using the Sun WorkShop 6 update 2 FORTRAN 77 5.3
compiler, using the flags -xarch=v8plus -xO4 -depend -dalign
-xtypemap=real:64. We collected extended reuse distance in-
formation for each application.

Scenario Transformations & comments
large fragmentation miss count due to one array data transformation: split the original array into multiple arrays
large number of irregular misses and S ≡ D apply data or computation reordering
large number of misses and S ≡ D, C is an outer carrying scope iterates over the array’s inner dimension; apply loop inter-
loop of same loop nest change or dimension interchange on the affected array; if multiple arrays

with different dimension orderings, loop blocking may work best
S �≡ D, C is inside same routine as S and D fuse S and D
as the previous case, but S or D are in a different strip mine S and D with the same stripe and promote the loops over
routine invoked from C stripes outside of C, fusing them in the process
C is a time step loop or a main loop of the apply time skewing if possible; alternatively, do not focus on these hard
program or impossible to remove misses

TABLE I
RECOMMENDED TRANSFORMATIONS FOR IMPROVING MEMORY REUSE.

131 DO iq=1,8 ! octants
168 DO mo=1,mmo ! angle pipelining loop
217 DO kk=1,kb ! k-plane pipelining loop
237 RECV E/W ! recv block I-inflows
280 RECV N/S ! recv block J-inflows
326 DO idiag=1,jt+nk-1+mmi-1
353 DO jkm=1,ndiag
502 ENDDO ! jkm
504 ENDDO ! idiag
513 SEND E/W ! send block I-outflows
550 SEND N/S ! send block J-outflows
586 ENDDO ! kk
619 ENDDO ! mo
623 ENDDO ! iq

Fig. 3. Loop structure of Sweep3D’s computational kernel.

A. Analysis and tuning of Sweep3D

Sweep3D performs a series of diagonal sweeps over a 3D
Cartesian mesh, which is distributed across the processors of
a parallel job. Figure 3 shows the structure of Sweep3D’s
computational kernel. There are five levels of principal loops,
some of them irregular. Furthermore, many of the principal
loops contain additional two or three level loop nests that
are omitted in Figure 3 for brevity. Figure 4(a) presents a
schematic diagram of the computational kernel of Sweep3D.
The idiag loop is the main computational loop on each node.
It performs a sweep from one corner of the local mesh to the
opposing corner. In each iteration of the idiag loop, one
diagonal plane of cells is processed by the jkm loop. Before
and after the idiag loop there is MPI communication to
exchange data with neighboring processors. Finally, the outer
iq loop iterates over all octants, starting a sweep from each
corner of the global mesh.
For Sweep3D, we collected memory reuse distance for a

single node run using a cubic mesh size of 50 × 50× 50 and
6 time steps without flux fix-ups. We used the reuse distance
data to compute the number of L2, L3, and TLB misses for
an Itanium2 processor with a 256KB 8-way set-associative L2
cache, 1.5MB 6-way set-associative L3 cache, and a 128-entry
fully-associative TLB.
Figure 5 shows a snapshot from our user interface of the

predicted number of carried misses for the L2 and L3 caches
and for the TLB. We notice that approximately 75% of all L2

���idiag

�
jkm

iq loop

MPI communication

idiag loop

jkm loop

MPI communication
�

���

���j

k

m
i

(a) (b)

Fig. 4. Diagram of Sweep3D: (a) computation loops; (b) jkm iteration space

idiag loop
iq loop
jkm loop

Fig. 5. Number of carried misses in Sweep3D

cache misses and about 68% of all L3 cache misses are carried
by the idiag loop, while the iq loop carries 10.5% and 22%
of the L2 and L3 cache misses respectively. The situation is
different with the TLB misses. The jkm loop carries 79% and
the idiag loop carries 20% of all the TLB misses.
We focus on the L2 and L3 cache misses. The fact that such

a high fraction of all cache misses are carried by the idiag
loop is a good thing from a tuning point of view, because we
can focus our attention on this loop. While the iq loop carries
the second most significant number of misses, it contains also
calls to communication functions. Thus, it may require more
complex transformations to improve, in case it is possible at
all. Table II summarizes data collected by our tool that was
obtained from our user interface. It includes the main reuse
patterns contributing the highest number of L2 cache misses
in Sweep3D. We notice that four loop nests inside the jkm
loop account for the majority of the L2 cache misses. For three
of these loop nests, only accesses to one data array in each
of them result in cache misses. Since the idiag loop carries
the majority of these cache misses, we can focus our attention
on understanding how the array indices are computed with
respect to this loop.
Figure 6 shows the Fortran source code for the first two loop

nests that access arrays src and flux respectively. We notice
that both the src and the flux arrays are four dimensional
arrays and that both of them are accessed in a similar fashion.
In Fortran, arrays are stored in column-major order. Thus, the
first index represents the innermost array dimension and the

Array In Reuse Carrying %
name scope source scope misses

ALL 26.7
src loop self idiag 20.4

384–391 iq 3.3
jkm 2.9
ALL 26.9

flux loop self idiag 20.4
474–482 iq 3.4

jkm 3.0
ALL 19.7

face loop self idiag 15.5
486–493 iq 2.4

jkm 1.9
sigt loop self
phikb 397–410 + ALL 18.4
phijb others

TABLE II
BREAKDOWN OF L2 MISSES IN SWEEP3D.

384 do i = 1, it
385 phi(i) = src(i,j,k,1)
386 end do
387 do n = 2, nm
388 do i = 1, it
389 phi(i) = phi(i) +

& pn(m,n,iq)*src(i,j,k,n)
390 end do
391 end do
...
474 do i = 1, it
475 flux(i,j,k,1) = flux(i,j,k,1) +

& w(m)*phi(i)
476 end do
477 do n = 2, nm
478 do i = 1, it
479 flux(i,j,k,n) = flux(i,j,k,n)
480 & + pn(m,n,iq)*w(m)*phi(i)
481 end do
482 end do

Fig. 6. Accesses to arrays src and flux.

last index is the outermost one. In these code fragments, we
notice that the innermost loops accessing the src and flux
arrays respectively match the innermost dimension of these
arrays. However, the next outer loop, n, accesses these arrays
on their outermost dimension. We return to this observation
later. First, we want to understand how the j and k indices
are computed.
We mentioned that in each iteration of the idiag loop,

the jkm loop traverses one diagonal plane of cells as seen in
Figure 4. Each cell of the 3D mesh is defined by unique coor-
dinates j, k and mi, as seen in Figure 4(b). References to src
and flux are not indexed by the mi coordinate. However, all
cells of a 3D diagonal plane have unique coordinates even in
the two dimensional (j,k) address space. Thus, there is no
temporal reuse of src and flux carried by the jkm loop.
The small amount of reuse observed in Table II is spatial reuse
due to the sharing of some cache lines between neighboring
cells. However, even this reuse is long enough that it results in
cache misses, because the cells in a plane are not necessarily

accessed in the order in which they are stored.
Consecutive idiag iterations access adjacent diagonal

planes of cells. When we project these 3D diagonal planes
onto the (j,k) plane, we notice there is a great deal of
overlap between two consecutive iterations of the idiag loop.
This explains the observed reuse carried by the idiag loop.
However, the reuse distance is too large for data to be reused
from cache on the next iteration of the idiag loop. Finally,
the reuse carried by the iq loop is explained by the fact that
we again traverse all cells of the mesh during a new sweep
that starts from a different corner.
We made the observation that arrays src and flux (and

face as well) are not indexed by the mi coordinate of a cell.
Thus, references to the three arrays corresponding to cells on
different diagonal planes that differ only in the mi coordinate,
but with equal j and k coordinates, access identical memory
locations. To improve data reuse for these arrays, we need to
process closer together mesh cells that differ only in the mi
coordinate.

���idiag

�
jkm

�mi

iq loop
MPI communication
idiag loop
jkm loop
mi loop

MPI communication

Fig. 7. Diagram of Sweep3D after blocking on mi.

For this, we manually tiled the jkm loop on the mi coor-
dinate.3 The transformed sweep iteration space is represented
graphically in Figure 7, for a blocking factor of two. Note
that mi is not a physical dimension of the 3D mesh; rather,
it represents different angles at which the neutron movements
are simulated. The third physical coordinate is i which is
contained within each cell. Our transformation groups the
processing of different angles closer together, achieving better
data reuse at the expense of slightly lower fine-grain paral-
lelism. The number of angles specified in our input file was six.
Therefore, we measured the performance of the transformed
code on an Itanium2-based system using blocking factors of
one, two, three and six.
Figures 8(a), (b) and (c) present the number of L2, L3 and

TLB misses for the original code and for the transformed code
with the four different blocking factors. All figures present
the performance metrics normalized to the number of cells
and time steps so that the results for different problem sizes
can be easily displayed on a single graph. The figures show
that the original code and the code with a blocking factor of
one have identical memory behavior. As the blocking factor
increases, fewer accesses miss in the cache. The last curve in
each figure represents the performance of the transformed code
with a blocking factor of six plus a dimensional interchange
for several arrays to better reflect the way in which they

3Since the jkm loop represents a multi-dimensional diagonal wavefront,
tiling this loop is difficult to automate.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Mesh Size

L2
 m

is
se

s
/ c

el
l /

 ti
m

e
st

ep

Original

Block size 1

Block size 2

Block size 3

Block size 6

Blk6 + dimIC

(a)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Mesh Size

L3
 m

is
se

s
/ c

el
l /

 ti
m

e
st

ep

Original

Block size 1

Block size 2

Block size 3

Block size 6

Blk6 + dimIC

(b)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

Mesh Size

TL
B

 m
is

se
s

/ c
el

l /
 ti

m
e

st
ep

Original
Block size 1
Block size 2
Block size 3
Block size 6
Blk6 + dimIC

(c)

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

Mesh Size

C
yc

le
s

/ c
el

l /
 ti

m
e

st
ep

Original

Blk6 + dimIC

Non−stall time

(d)

Fig. 8. Performance of the original and improved Sweep3D codes on an Itanium2 machine: (a) L2 misses; (b) L3 misses; (c) TLB misses; (d) running time.

are traversed. For the src and flux arrays we moved the
n dimension into the second position. These transformations
reduce cache and TLB misses by integer factors. Figure 8(d)
presents the normalized execution time of the original and
transformed codes. The improved code has a speedup of 2.5x
and we achieve ideal scaling of the execution time between
mesh sizes 20 and 200 which represents a thousand-fold
increase of the working set size. The dashed line in Figure 8(d)
represents the non-stall execution time as measured with hard-
ware performance counters. Notice that we eliminated a large
fraction of the observed stall time with our transformations.
Note that the non-stall time depicted in the figure is not
the absolute minimum time that can be achieved on the
Itanium. It is just the minimum time that can be achieved with
the instruction schedule generated by the Intel compiler. We
reduced Sweep3D’s non-stall time and execution time further
by improving the compactness of the instruction schedule for
an overall speed-up factor of 3x.4

4In previous work, we described how our tool employs static analysis of
instruction schedules and how it uncovered an opportunity for enhancing
instruction-level parallelism in Sweep3D [15].

B. Analysis and tuning of GTC

The Gyrokinetic Toroidal Code is a 3D particle-in-cell
(PIC) code used for studying the impact of fine-scale plasma
turbulence on energy and particle confinement in the core
of tokamak fusion reactors [21]. The PIC algorithm consists
of three main sub-steps: 1) deposit the charge from particles
onto the grid (routine chargei), 2) compute and smooth
the potential field (routines poisson and smooth), and 3)
compute the electric field and push particles using Newton’s
laws of physics (routines pushi and gcmotion). Compared
to the Sweep3D benchmark, the GTC code is significantly
more complex with the computation kernel spread over several
files and routines.
For GTC, we collected reuse distance data for a problem

size consisting of a single poloidal plane with 64 radial grid
points and 15 particles per cell. From the reuse distance
histograms collected for each reuse pattern, we computed
the number of cache misses, the number of misses due to
fragmentation in cache lines, the number of irregular misses,
and the number of carried misses as explained in Sections II
and III, for an Itanium2 cache architecture. All metrics are
computed at loop level as well as for individual data arrays.
Figure 9 presents a snapshot of our viewer showing the data

Fig. 9. Data arrays contributing the largest number of fragmentation L3
cache misses.

arrays that account for the highest number of L3 cache misses
due to fragmentation of data in cache lines. The first metric
in the figure represents the total number of L3 cache misses
incurred by all accesses to these arrays in the entire program.
Data arrays zion and its shadow zion0 are global arrays
storing information about each particle in the local tokamak
domain. They are defined as 2D Fortran arrays organized as
arrays of records with seven data fields for each particle. Array
particle_array is an alias for the zion array, used inside
a “C” routine gcmotion.
Notice that accesses to the two zion arrays, including the

alias particle_array, account for 95% of all fragmen-
tation misses to the L3 cache. This amounts to about 48%
of all L3 cache misses incurred on the zion arrays, and
about 13.7% of all L3 cache misses in the program. Most
loops that work with the zion arrays reference only a few
of the seven fields associated with each particle. Using our
viewer, we identified the loops with the highest contribution
to the miss and fragmentation metrics. We noticed two loops
where only one out of the seven fields of the zion array was
referenced for each particle. To eliminate unnecessary cache
misses due to fragmentation, we transposed the two zion
arrays, so that each of the seven fields is stored separately
in its own vector. This amounts to transforming the array of
structures into a structure of arrays.
Figure 10(a) presents the program scopes that carry

more than 2% of all L3 cache misses. The loop at
main.F90:139-343 is the main loop of the algorithm iter-
ating over time steps and it carries about 11% of all L3 cache
misses. Each time step of the PIC algorithm executes a 2nd
order Runge-Kutta predictor-corrector method, represented by
the second loop of the main routine, at lines 146-266. The
two main loops carry together about 40% of all L3 cache
misses. These are cache misses due to data reuse between the
three sub-steps of the PIC algorithm, and across consecutive
time steps or across the two phases of the predictor-corrector
method in each time step. Because each of the three sub-steps
of the PIC algorithm requires the previous step to be completed
before it can start executing, these cache misses cannot be
eliminated by time skewing or pipelining of the three sub-
steps. Thus, we focus our attention on the other opportunities
for improvement.
The poisson routine computes the potential field on each

poloidal plane using an iterative Poisson solver. Cache misses
are carried by the iterative loop of the Poisson solver (at lines
74-119), and unfortunately cannot be eliminated by loop

interchange or loop tiling due to a recurrence in the solver. We
did however notice that the highest number of cache misses
in the poisson routine was incurred by accesses to two
three-dimensional arrays, ring and indexp, even though
they were accessed with unit stride. With closer inspection,
we found that the upper bound of the innermost loop used to
iterate over the inner dimension of these two arrays was not
constant. Thus, only some of the elements on a column were
being accessed, resulting in partially utilized cache blocks
at the end of each column. Our static analysis for cache
fragmentation cannot detect such cases at this time because the
elements are accessed with stride one, and the elements that
are not accessed are contiguous at the end of each column. We
reorganized these arrays into contiguous linear arrays which
improves spatial locality. This transformation removes only a
small fraction of the total number of cache misses incurred on
these arrays. There is unfulfilled temporal reuse carried by the
iterative loop of the Poisson solver, which cannot be improved.
However, the amount of work in the Poisson solver is

proportional to the number of cells in the poloidal plane, but
independent of the number of particles in each cell. As we
increase the number of particles that are simulated, the costs
of the charge deposition and particle pushing steps increase,
while the cost of the Poisson solver stays constant. Thus, the
execution cost of the poisson routine becomes relatively
small in comparison to the cost of the entire algorithm as the
number of particles per cell increases.
We focus now on the chargei and the pushi routines.

Our tool identified that about 11% of all L3 cache misses
are due to reuse of data between two loops of the chargei
routine that iterate over all particles. The first loop was
computing and storing a series of intermediate values for each
particle; the second loop was using those values to compute
the charge deposition onto the grid. However, by the time the
second loop accessed the values computed in the first loop,
they had been evicted from cache. By fusing the two loops, we
were able to improve data reuse in chargei, and to eliminate
these cache misses.
The pushi routine calculates the electrical field and up-

dates the velocities of the ion particles. It contains several loop
nests that iterate over all the particles, and a function call to a
“C” routine, gcmotion. The gcmotion routine consists of
a single large loop that iterates over all the particles as well.
Our analysis identified that for the problem size that we used,
pushi carries about 20% of all L3 cache misses between
the different loop nests and the gcmotion routine. This
reuse pattern corresponds to the fifth entry in Table I, because
the gcmotion routine is both a source and a destination
scope for some of the reuse arcs carried by pushi. While
gcmotion consists of just one large loop, we cannot inline
it in pushi because these two routines are written in different
programing languages. Instead, we identified a set of loops that
we could fuse, strip mined all of them (including the loop in
gcmotion) with the same stripe s, and promoted the loops
over stripes into the pushi routine, fusing them. The result is
a large loop over stripes, inside of which are the original loop

(a) (b)

Fig. 10. Program scopes carrying the most (a) L3 cache misses, and (b) TLB misses.

nests and the function call to gcmotion. These transformed
loop nests work over a single stripe of particles, which is short
enough to ensure that the data is reused in cache.
For the problem size that we studied, our tool reported that

about 64% of all TLB misses were due to a loop nest in routine
smooth. The outer loop of the loop nest, which was carrying
these TLB misses (see Figure 10(b)), was iterating over the
inner dimension of a three dimensional array. We were able to
apply loop interchange and promote this loop in the innermost
position and eliminate all of these TLB misses.
In prior work we described techniques for understanding

performance bottlenecks due to insufficient instruction-level
parallelism [15]. When applying these techniques to GTC we
identified a recurrence in a prime factor transform routine
spcpft. We increased the amount of instruction-level paral-
lelism by applying unroll & jam. We also identified a similar
short recurrence in one loop nest of the Poisson solver where
we applied unroll & jam to increase fine-grain parallelism.
Figure 11 presents the single node performance of GTC on

a 900MHz Itanium2. The four graphs compare the number of
L2, L3 and TLB misses, and the execution time respectively,
of the original and the improved GTC codes, as we vary the
number of particles per cell on the x axis. Notice how the
code performance improved after each transformation. The
large reduction in cache and TLB misses observed after the
transposition of the zion arrays is due in part to a reduction
in the number of unnecessary prefetches inserted by the Intel
compiler, which was an unexpected side-effect, as well as
because of an increase in data locality for other arrays after
the loops working on the zion arrays had to stream through
much less data because of the reduced fragmentation.
Performance improvements due to code transformations in

smooth, spcpft and poisson are significant only when
the number of particles is relatively small, since the amount of
work in these routines is proportional to the number of cells in
a poloidal plane and independent of the number of particles.
Notice also how the tiling/fusion in the pushi routine

significantly reduced the number of L2 and L3 cache misses,
but these improvements did not translate into a smaller exe-
cution time. When we tiled & fused the loop nests in pushi,
we created a large loop over stripes that overflowed the
small 16KB dedicated instruction cache on Itanium. Thus, the
improvement in data locality was mitigated by an increase
in the number of instruction cache misses. We expect this
transformation to have a bigger impact on other architectures

that have a larger instruction cache, including Montecito, the
new member of the Itanium family of processors.
Overall, our tool pinpointed significant opportunities for

tuning. We were able to capitalize on these opportunities and
reduce the number of cache misses by at a factor of two
or more (we studied executions for several different problem
specifications), the number of TLB misses was reduced by
a huge margin, and we observed a 33% reduction of the
execution time, which amounts to a 1.5x speedup.

VI. RELATED WORK

Beyls and D’Hollander [5] describe RDVIS, a tool for
visualizing reuse distance information clustered based on the
intermediary executed code (IEC) between two accesses to the
same data, and SLO, a tool that suggests locality optimizations
based on the analysis of the IEC. The capabilities of their tools
are similar to those we describe in this paper. However, our
implementations differ significantly in the ways we collect,
analyze and visualize the data. In addition to the histograms
of reuse distances, Beyls and D’Hollander collect the sets of
basic blocks executed between each pair of accesses to the
same data. Afterwards, an offline tool clusters the different
reuse patterns based on the similarity of the IEC. A second
tool analyzes the IEC to determine the carrying scope of
each reuse. In contrast, we directly determine the scopes
where the two ends of a reuse arc reside, as well as the
carrying scope based on a dynamic stack of program scopes.
We cluster reuse patterns based on their source, destination
and carrying scope directly at run-time, which reduces the
amount of collected data. Moreover, this approach enables us
to leverage the modeling work described in [14] to predict the
scaling of reuse patterns for larger program inputs. Finally, our
implementations differ also in the way the data is visualized.
RDVIS displays the reuse patterns as arrows drawn over the
IEC between data reuses. In contrast, we focused on comput-
ing metrics that enable us to find the significant reuse patterns
using a top-down analysis of the code, which we think it is
more scalable to analyzing large codes where reuse patterns
span multiple files. In addition, we identify reuse patterns due
to indirect or irregular memory accesses, and inefficiencies
due to fragmentation of data in cache lines, which enables us
to pinpoint additional opportunities for improvement.
Chilimbi et al. [6] profile applications to monitor access

frequency to structure fields. They classify fields as hot and
cold based on their access frequencies. Small structures are
split into hot and cold portions. For large structures they

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
x 10

5

Particles/cell (micell)

L2
 m

is
se

s
/ m

ic
el

l /
 ti

m
e

st
ep

gtc_original

+zion transpose

+chargei fusion

+spcpft u&j

+poisson transforms

+smooth LI

+pushi tiling/fusion

(a)

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
x 10

5

Particles/cell (micell)

L3
 m

is
se

s
/ m

ic
el

l /
 ti

m
e

st
ep

gtc_original

+zion transpose

+chargei fusion

+spcpft u&j

+poisson transforms

+smooth LI

+pushi tiling/fusion

(b)

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

4

Particles/cell (micell)

TL
B

 m
is

se
s

/ m
ic

el
l /

 ti
m

e
st

ep

gtc_original

+zion transpose

+chargei fusion

+spcpft u&j

+poisson transforms

+smooth LI

+pushi tiling/fusion

(c)

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Particles/cell (micell)

Se
co

nd
s

/ m
ic

el
l

gtc_original

+zion transpose

+chargei fusion

+spcpft u&j

+poisson transforms

+smooth LI

+pushi tiling/fusion

(d)

Fig. 11. GTC performance after each code transformation on an Itanium2 machine: (a) L2 misses; (b) L3 misses; (c) TLB misses; (d) execution time.

apply field reordering such that fields with temporal affinity
are located in same cache block. Zhong et al. [24] describe
k-distance analysis to understand data affinity and identify
opportunities for array grouping and structure splitting. We
use static analysis to understand fragmentation of data in cache
lines, and find opportunities for structure or array splitting.
Ding and Zhong [7] attribute memory reuse distance in-

formation at data-structure level to understand data locality
problems in Sweep3D. They transformed Sweep3D based on
this data and report a speed-up factor of 1.9 on an Origin
2000 system. We compiled and ran their improved code onto
the same Itanium2 system that we used for our measurements.
We observed a peak speed-up factor of 2.36 at mesh size
70, with the speed-up tailing-off towards a factor of 1.45
for larger problem sizes. The authors obtain a high speed-
up for small problem sizes by transforming the code to
reduce the reuse distances that we determined to be carried
by the iq loop. However, this achievement comes at the
expense of breaking the wavefront characteristics of the code,
resulting in lower coarse-grain and fine-grain parallelism. By
understanding the significant reuse patterns in Sweep3D, we
focused on improving the reuse carried by the idiag loop
which results in a consistently high speed-up across all mesh
sizes without disrupting the application’s parallelism.

VII. CONCLUSIONS

This paper describes a data locality analysis technique
based on collecting memory reuse distance separately for
each reuse pattern of a reference. This approach uncovers the
most significant reuse patterns contributing to an application’s
cache miss counts and identifies program transformations that
have the potential to improve memory hierarchy utilization.
We describe also a static analysis algorithm that identifies
opportunities for improving spatial locality in loop nests that
traverse arrays using a non-unit stride. We used this approach
to analyze and tune two scientific applications. For Sweep3D,
we identified a loop that carried 75% of all L2 cache misses
in the program. The insight gained from understanding the
most significant reuse patterns in the program enabled us to
transform the code to increase data locality. The transformed
code incurs less than 25% of the cache misses observed with
the original code, and the overall execution is 2.5x faster. For
GTC, our analysis identified two arrays of structures that were
being accessed with a non-unit stride, which almost doubled
number of cache misses to these arrays above ideal. We also
identified the main loops carrying cache and TLB misses.
Reorganizing the arrays of structures into structures of arrays,
and transforming the code to shorten the reuse distance of

some of the reuse patterns, reduced cache misses by a factor
of two and execution time by 33%.

ACKNOWLEDGMENTS

This work was supported in part by the Department of
Energy’s Office of Science (Cooperative Agreement Nos. DE-
FC02-06ER25762, DE-FC02-07ER25800), the National Sci-
ence Foundation (Grant No. ACI 0103759), and Los Alamos
National Laboratory (Contract Nos. 03891-001-99-4G, 74837-
001-03-49, and 86192-001-04-49).

REFERENCES

[1] R. Allen and K. Kennedy. Optimizing compilers for modern architec-
tures: a dependence-based approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2002.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance
counters with flow and context sensitive profiling. SIGPLAN Not.,
32(5):85–96, 1997.

[3] B. Bennett and V. Kruskal. LRU stack processing. IBM Journal of
Research and Development, 19(4):353–357, July 1975.

[4] K. Beyls and E. D’Hollander. Reuse distance as a metric for cache
behavior. In IASTED conference on Parallel and Distributed Computing
and Systems 2001 (PDCS01), pages 617–662, 2001.

[5] K. Beyls and E. H. D’Hollander. Intermediately executed code is the
key to find refactorings that improve temporal data locality. In CF ’06:
Proceedings of the 3rd Conference on Computing Frontiers, pages 373–
382, New York, NY, USA, 2006. ACM Press.

[6] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious structure
definition. In PLDI ’99: Proceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementation,
pages 13–24, New York, NY, USA, 1999. ACM Press.

[7] C. Ding and Y. Zhong. Reuse distance analysis. Technical Report
TR741, Dept. of Computer Science, University of Rochester, 2001.

[8] DOE Accelerated Strategic Computing Initiative. The ASCI Sweep3D
Benchmark Code. http://www.llnl.gov/asci benchmarks/asci/limited/
sweep3d/asci sweep3d.html.

[9] C. Fang, S. Carr, S. Onder, and Z. Wang. Reuse-distance-based Miss-rate
Prediction on a Per Instruction Basis. In The Second ACM SIGPLAN
Workshop on Memory System Performance, Washington, DC, June 2004.

[10] A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H. Alme. A General
Predictive Performance Model for Wavefront Algorithms on Clusters of
SMPs. In Proceedings of the 2000 International Conference on Parallel
Processing, 2000.

[11] W. W. Lee. Gyrokinetic approach in particle simulation. Physics of
Fluids, 26:556–562, Feb. 1983.

[12] G. Marin. Application Insight Through Performance Modeling. PhD
thesis, Dept. of Computer Science, Rice University, Dec. 2007.

[13] G. Marin and J. Mellor-Crummey. Cross-architecture performance
predictions for scientific applications using parameterized models. In
Proceedings of the Joint International Conference on Measurement and
Modeling of Computer Systems, pages 2–13. ACM Press, 2004.

[14] G. Marin and J. Mellor-Crummey. Scalable cross-architecture predic-
tions of memory hierarchy response for scientific applications. Proceed-
ings of the Los Alamos Computer Science Institute Sixth Annual Sym-
posium, 2005. http://www.cs.rice.edu/∼mgabi/papers/MM-lacsi05.pdf.

[15] G. Marin and J. Mellor-Crummey. Application insight through perfor-
mance modeling. In Proceedings of the Performance, Computing, and
Communications Conference (IPCCC’07), pages 65–74, Apr 2007.

[16] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation techniques
for storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[17] J. Mellor-Crummey. Using hpcviewer to browse performance
databases, Feb. 2004. http://www.hipersoft.rice.edu/hpctoolkit/tutorials/
Using-hpcviewer.pdf.

[18] J. Mellor-Crummey, R. J. Fowler, G. Marin, and N. Tallent. HPCVIEW:
A Tool for Top-down Analysis of Node Performance. The Journal of
Supercomputing, 23(1):81–104, 2002.

[19] V. S. Pai and S. V. Adve. Code transformations to improve memory
parallelism. In International Symposium on Microarchitecture MICRO-
32, pages 147–155, Nov 1999.

[20] D. Sundaram-Stukel and M. K. Vernon. Predictive analysis of a
wavefront application using LogGP. In Proceedings of the Seventh
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 141–150, New York, NY, USA, 1999. ACM.

[21] N. Wichmann, M. Adams, and S. Ethier. New Advances in the
Gyrokinetic Toroidal Code and Their Impact on Performance on the
Cray XT Series, May 2007. The Cray User Group, CUG 2007.

[22] Y. Yoon, J. C. Browne, M. Crocker, S. Jain, and N. Mahmood.
Productivity and performance through components: the ASCI Sweep3D
application: Research Articles. Concurr. Comput. : Pract. Exper.,
19(5):721–742, 2007.

[23] Y. Zhong, S. G. Dropsho, and C. Ding. Miss rate prediction across
all program inputs. In Proceedings of International Conference on
Parallel Architectures and Compilation Techniques, New Orleans, LA,
Sept. 2003.

[24] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Array regrouping and
structure splitting using whole-program reference affinity. In PLDI ’04:
Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, pages 255–266, New York, NY,
USA, 2004. ACM Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

