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Abstract 

In  this work, we describe new strategies for scheduling 
and executing Woruow applications on Grid resources us- 
ing the G A D S  [I31 infrastructure. Worl$low scheduling is 
based on heuristic scheduling srmtegies that use combined 
computational and memory hierarchy application compo- 
nent performance models. The Workflow is executed using 
a novel strategy to bind and launch the application onto 
heterogeneous resources. We apply these strategies in the 
context of launching EMAN, a Bio-imaging workJlow uppli- 
cation, onto the Grid. 

1. Introduction 

For the past several years, the Grid Application Devel- 
opment Software ( G A D S )  Project, with support from the 
NSF Next Generation Software Program, has been devel- 
oping tools to make the construction of applications for the 
Grid easier, while maintaining a high standard of overall 
performance. This work has led to the development of a 
prototype software infrastructure called GrADSoft that runs 
on top of Globus and facilitates the scheduling, launch- 
ing, and performance monitoring of tightly coupled Grid 
applications, particularly those that require MPI commu- 
nications. At the heart of the GrADS infrastructure is the 
notion that each Grid program he represented as a config- 
urable object program consisting of the application code 
plus a mapper, which would determine how to assign tasks 
in the application to different components of a collection of 
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grid rcsources, and a resource selection performance model, 
which could be used to estimate the overall performance of 
the application when run on a collection of grid resources 
using a task assignment produced by the mapper. The key 
to this strategy has been to provide tools for automatic and 
semi-automatic construction of mappers and performance 
models. The GrADS team has explored this approach by 
implementing and executing a number of prototype appli- 
cations on GrADS software layer running on a special col- 
lection of geographically distributed clusters that form the 
CrADS Testbed. 

Although this work ha? focused on tightly-coupled appli- 
cations, it became clear to us that the strategy could also be 
used to improve the development and execution of so-called 
workRow applications in which the overall workflow is rep- 
resented by a directed acyclic graph in which each vertex is 
an application that forms a component of the overall work 
to be done and each edge represents a data dependency be- 
tween specific application components. Usually substantive 
data transfers will take place along edges in the worktlow 
graph. 

Currently, there are a number of tools supporting the ex- 
ecution of workflow applications, the most prominent be- 
ing the Condor DAGMan [4] tool. However, most of these 
tools schedule the workflow dynamically at each step, so 
that the overall mapping and schedule is determined by the 
state of the Grid at the series of points when the application 
components are ready to execute. A much better outcome 
can be achieved in some cases by applying in-advance static 
scheduling to the process to ensure that the key computa- 
tional steps are executed on the right resources and large- 
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scale data movement is minimized. 
In this paper, we present a strategy that extends the 

GrADS approach of using mappers and performance esti- 
mators to workflow applications. In addition, we present 
results of our experiments with the extended GrADSoft in- 
frastructure on a workflow application taken from the do- 
main of medical image reconstruction. 

2. Workflow Applications 

Many important Grid applications fall into the category 
of Workflow Applications, examples being LIGO [ l ]  pulser 
search on the Grid, image processing on the Grid [ll] etc. 
Instead of the application being a single large component 
doing all the tasks. the Workflow Application consists of a 
collection of several interacting components that need to be 
executed in a certain partial order €or successful execution 
of the application as a whole. These components have spe- 
cific control and data dependencies between them. In most 
cases, the Application Worknow can be represented 
rected Acyclic Graph(DAG) where each node in the DAG 
represents an application component and the edges denote 
controlldata dependencies. In the most general case, some 
of the application components can be parallel components 
like MPI jobs. The main issues for executing WorkRow Ap- 
plications on the Grid are 

the ability for the components to seamlessly access 
the required Grid resources 

efficient selection of resources for the components in 
order to achieve good performance 

satisfying all dependencies and automating the Grid 
execution of the entire workflow 

We intend to address these issues in the following sections. 
F i s t ,  we will describe our approach to scheduling Work- 
flow application components. Then we will discuss the 
framework that incorporates these strategies and executes 
the application workflow. 

3. Scheduling Workflow Applications 

The design space for Grid Schedulers in general is very 
rich. First, it depends on what objective function the user 
wants to minimize or maximize - examples being minimiz- 
ing overall job completion time, minimizing communica- 
tion time and volume, and maximizing resource utilization 
or throughput. Second, it depends on how the job require- 
ments, job performance models, and Grid resource models 
are specified and used. The scheduler must also carefully 
choose between different implementations of user autben- 
tication, allocation, and reservation. Other choices include 

scheduling application components €or single or multiple 
users and whether rescheduling or replanning is required. 
In our WorkRow scheduling work, we have chosen the fol- 
lowing design parameters. Our objective function was to 
minimize overall job completion time or the makespan of 
the application. We develop a Grid resource model through 
calls to different Grid services - Monitoring and Discovery 
Service (MDS) [7] and Network Weather Service ( N W S )  
[19]. We derive application component performance mod- 
els using methods described in a later section. The schedul- 
ing problem we are trying to solve can be stated as follows. 

3.1 Problem Statement 

Given a DAG of the Workflow representation of the ap- 
plication, let the set of available application components 
tiom the DAG be denoted by C = {cl; c2, ... cn,} and the 
set of available Grid resourccs be G = (TI, r2, ... rn}. The 
scheduling problem is to output a mapping from elements 
of C onto elements of G, or in other words, to output a 
mapping of which component runs on which Grid resource 
in what order. 

3.2 Approach 

We take a two-stage approach to solve the problem. In 
the first stage, for cach component, we rank the resources 
and assign specific rank values to each resource on which 
the component can he mapped. Rank values reflect the ex- 
pected performance of a particular component on a particu- 
lar resource. We will explain how to assign these rank val- 
ues in detail in the next section. This step is sufficient if we 
have a single component to map. It will output, €or a par- 
ticular component, a set of resources with associated rank 
values. In the second stage. we take the rank values for each 
component and build up a Performance Matrix. We then use 
certain known heuristics to obtain a mapping of components 
to resources. These steps are explained in detail below. 

3.2.1 Calculation of rank values 

Calculating rank values involves matching a specific com- 
ponent to a set of resources and then ranking the resources. 
For this purpose, we assign rank values for each possible 
mapping of the component to an available resource. Ac- 
cording to our ranking convention, resources with a lower 
rank are a better match for the component. The rank value 
for each resource is assigned in the following manner. 

At first it is checked whether the Grid resource meets 
certain hard requirements [like required OS, required 
memory, storage, required minimum CPU speed etc.] 
for the component. If the resource doesnt meet the 
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hard requirements, it is given a rank value of infin- 
ity. The resource properties are derived from calls to 
MDS services. 

Next, the rank values for the eligible resources are 
evaluated. Rank value is a weighted linear combi- 
nation of expected execution time on the resource, 
T~ for the component, ci denoted by eCost(c,, ~ j )  

and expected cost of data movement denoted by 
dCost(ci, ~j). 

~ a n k ( q ,  ~ j )  = wlxeCost(c,,rj)+wzxdCost(ci; ~ j )  

The weights can be customized to give more im- 
portance to one over the other. eCost(%,Tj )  is 
derived tiom Application component performance 
model and is described in detail in the next section. 
rlCost(c;, T ~ )  is calculated as follows. .Let m a p ( y )  
denote the resource on which ci has been mapped 
to, vo l (q )  denote the volume of data produced by e,, 
Parent(%) denote the set of parent component? for 
ci and T x ( T ~ , T , )  denote the unit data transfer time 
from resource T~ to resource rq. Then dCost(ci, r j )  
is defined as 

(1) 

size and memory access latency, network latency and band- 
width). 

To characterize an application’s single node perfor- 
mance, we consider both the number of floating point op- 
erations executed as well as its memory access pattem. We 
do not aim to predict an exact execution time, but rather give 
an estimated execution time to the scheduler so that it can 
determine the hardware configuration that is most effective 
for the application components from the set of nodes avail- 
able on the grid. To understand the volume of computation 
performed by an application for a particular program input, 
we use hardware performance counters to collect floating- 
point operation counts from several executions of the pro- 
gram with different, small-size input problems, and we ap- 
ply least square curve-fitting on the collected data. 

To understand an application’s memory access pattem. 
we collect histograms of memory reuse distance (MRD) - 
the number of unique memory block? accessed between a 
pair of references to the same block - observed by each load 
and store instruction [15]. Characterizing memory access 
behavior for programs in this way has two major advan- 
tages. First, data reusc distance is independent of cache 
configurdtion or architecture details. Second, reuse distance 
is a meilwre of data reuse, which is the main determinant in 
cache performance. 

We collect reusedistance information separately for each 
reference in the program, for several, small-size input prob- 

dCost(%, ‘‘7) = vOL(P) xTz (maP(P) ,  T 3 )  
p t P o r m t ( e , )  

,-~ 
(2)  

Tz(rp; T ~ )  is estimated from latencybandwidth in- 
formation from the NWS. Note that when the rank 
for the current set of available components is being 
calculated, the mapping for the parents of the current 
components will be already known. For a single com- 
ponent, the resource having the lowest rank may be 
retumed ilq the hest match. 

In the next section, we will describe how the eCost(c,, T ~ )  

values are calculated using application component perfor- 
mance modeling. 

3.2.2 Component Performance Modeling 

The Workflow scheduler uses performance analysis to de- 
termine the run-time resources needed by an application, 
and to compute a mapping for different components that 
minimizes the program’s execution time. The performance 
of a grid application is a function of both its single node 
performance and how it utilizes the network infrastructure. 
To estimate the execution cost of an application on arbitrary 
grid configurations, we analyze an application’s behavior 
by modeling its characteristics in isolation of any architec- 
tural details. We then estimate the application’s execution 
cost on a target platform described by its available hardware 
resources (e.g. number and type of execution units, cache 

lems. We use the memory reuse distance data to model the 
behavior of each memory instruction, and to predict the 
fraction of hits and misses for a given problem size and 
cache configuration. Our modeling strategy dynamically 
finds groups of accesses that have a similar growth func- 
tion for the reuse distance. and models each such group by 
two polynomials: one models how the number of accesses 
in that group changes with problem size, and one models 
how the average reuse distance of those accesses changes 
with problem size. To determine the cache miss count for a 
different problem size and cache configuration, we evaluate 
the MRD models for each reference at the specified problem 
size, and count the number of references with reuse distance 
greater than the target cache size. 

As mentioned above, our goal is to indicate better ma- 
chines for execution rither than predict the exact execution 
time for the application. We use the following simplified 
model. 

(3) 
A + B + C + D  

EstExecTime(psize) = CpuGlock (arch) 

totalFp(psize) 
FpPipelineNuin(arch) 

A = k o x  x FpRptRt(urch,) (4) 
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In the equations, { k o ;  kl, k2 ,  k,} are constants, psize 
is the problem size and arch is the target architecture. 
FpRptRt(arch) is the repeat rate of the floating point 
pipeline. It is the number of cycles that occur between the 
issue of one instruction and the issue of the next instruction 
to the same execution unit. MissPnlty, the penalty for a miss 
in an arbitrary level of the memory hierarchy, is the differ- 
ence between the access time to the next memory level and 
the access time to the current memory level. 

L(j)MissPnlty(arch) = P - Q (8) 
P = L ( j  + l )k~tency(arch)  (9) 
Q = L(j)Latenq/(arch) (10) 

3.3 Solving for final mapping 

The rank values being known, we now describe how we 
use these rank values to find an efficient mapping of com- 
p a n c m  onto resources. We build a matrix using these rank 
values called the performance matrix, M where the entry 
p i j  denotes the rank value of executing the i - th  com- 
ponent on the j - th  resource. This mapping problem is 
an NP-complete problem since Minimum Multiprocessor 
Scheduling problem is NP-complete [9 ] .  An optimal ap- 
proach for solving the mapping problem is to model the 
problem a. an Integer Linear Programming (ILP) problem 
and solve the corresponding ILP. But it turns out that, in 
our case. with the ILP modeling we came up with, the num- 
ber of variables in the corresponding ILP is too large for 
the available solvers. So we resorted to known heuristics to 
solve the mapping problem. 

3.3.1 Heuristic Approach 

We have chosen to apply three heuristics from the domain 
of scheduling parameter sweep applications [3, 181. By ap- 
plying these heuristics, we have obtained good schedules 
for mapping independent tasks or parameter sweeps. These 
heuristic approaches to finding a mapping run in polynomial 
time hut don’t guarantee an optimal mapping. The three 
heuristics we chose are 

with the hope that the final makespan will he as small 
as possible. 

Max-min heurhtic: The first step is exactly same as 
in the min-min heuristic. In the second step the max- 
imum rank value over all the tuples found is chosen 
and the corresponding component is mapped instead 
of choosing the minimum. The intuition behind this 
heuristic is that by giving preference to longer jobs, 
there is a hope that the shorter jobs can be overlapped 
with it on other resources. 

Sufferagc heuristic: In this heuristic, both the mini- 
mum and second hest minimum rank value are found 
for each component in the first stcp. The difference 
between these two values is defined as the sufferage 
value. In the second stcp, the component having the 
maximum sufferage value is chosen ncxt. The intu- 
ition behind this heuristic is that jobs are prioritized 
on relative affinities. The job having a high sufferage 
value suggests that if it is not assigned to the resource 
for which it has minimum rank, it may have an ad- 
verse effect on the makespan because the next best 
rank value is far from the minimum rank value. 

We run all three heuristics and choose the mapping that de- 
livers the minimum makespan. In the pseudocode for the 
overall Workflow scheduling presented below, ECT(i.R) is 
the estimated completion time of a particular component on 
a particular resource. EAT(R) is the expected time at which 
the resource, R will he next available [probably after the 
previous component finishes on the same resource]. Algo- 
rithm 1 finds out the set of avdilable components, calculates 
their ranks for each resource and calls Algorithm 2 that im- 
plements the scheduling heuristics to find out the final map- 
ping. 

while all components not mapped do 
Find availComponents; // satisfy dependencies 
Calculate the rank matrix: 
findBestSchedule(avai1Components); 

endwhile 

e Min-min heuristic: For each component, the re- 
source having the minimum rank value is found. De- 
note this as a tuple (C, R. T). where C is the com- 

Algorithm 1 .  Workflow Scheduling 

ponent, R is the resource for which the minimum is 
achieved and T is the corresponding rank value. In 4. Workflow Execution in GrADS 

- 
the next step, the minimum rank value over all such 
tuples is found. The componcnt having the minimum 
rank value is chosen to be scheduled next. This is 
done iteratively until all the components have been 
mapped. The intuition behind this heuristic is that 
the makespan increases the least at each iterative step 

In this section we address the issue of automating the 
Grid execution of the entire Workilow. We have used and 
extended the GrADSoft infrastructure to handle launch- 
ing of WorkRow style applications. Figure-I descrihes the 
G A D S  execution cycle. The application along with the 
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while all availComponents nor mopped do 
foreach Component, j do 

foreach Resource, R do 
ECTU ,R)=rank(j ,R)+EAT(R); 

endforeach 
Find minECT(j,R) over all R 
Find Znd-minECTG,R) over all R; 

eodforeach 
Calculate min(minECT(j,R)) over all j; Ilmin-min 
Calculate max(minECT(j,R)) over all j; //max-min 
Calculate min(Znd-minECT(i.R)-minECTO',R)) 
over all j;  //sufferage 
Store mapping for each heuristic; 
Update EAT(R) and makespan for each heuristic; 

endwhile 
Select mapping with minimum makespan among three; 
Output selected mapping; 

Algorithm 2. findBestSchedule 

performance model is handed over to thc WorkRow En- 
gine, which in unison with the Workflow Scheduler sched- 
ules the application components onto available resources. 
The Workflow Scheduler consults the GrADS information 
system for MDSINWS information and uses the available 
performance models. Once the set of resources are cho- 
sen, the GrADS Application Manager is invoked. The 
GrADS Application Manager is the central controller for 
the GrADS execution system. It interacts closely with the 
GrADS Binder to launch the Worldlow Application com- 
ponem onto actual Grid resources. The following section 
describes the details of the GrADS Binder and how it inter- 
acts with other GrADS components to launch the Workflow 
components. 

4.1 The GrADS Binder 

The Binder component in the GrADS infrastructure pro- 
vides the final modifications to the application before it is 
launched on the grid. The Binder is a distributed compo- 
nent and executes on all nodes on which the application is 
launched. It is responsible for compiling the GrADS ap- 
plication, optimizing it for the target machine, and poten- 
tially launching the program on the grid. Figure 2 depicts 
an overview of the GrADS Binder and the three inputs that 
it receives: the Binder is provided with resource-specific 
information such as the locations of libraries via the Grid 
Information Service. The Binder also obtains the character- 
istics ofthe target architecture which provides opportunities 
for resource specific optimizations. The third input consists 
of a compilation package. The package consists of the ap- 
plications's source code in an intermediate representation 

RnunddK i 
,. , ... 

Figure 1 .  GrADS Execution Cycle 

Figure 2. GrADS Binder 

(IR), a list of external libraries and components required by 
the application, and a script to configure the application for 
compilation. 

4.1.1 Starting the remote Binder 

The Binder executes on each machine that is chosen by the 
wormow scheduler. At each machine, the Binder must be 
aware of the locations of software resources. These soft- 
ware resources consist not only of application specific li- 
braries and header files, but also of Binder code and li- 
braries on the machine. One approach to solve this would be 
to specie software installation locations for every GrADS 
node. However, we found this approach to be overly re- 
strictive. Hence, the Binder uses the GrADS Information 
Service (CIS) to locate necessary software on the sched- 
uled node. On execution, the Binder first queries GIS for 
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the location of the local Binder code. It then launches the 
local copy of the Binder which further queries GIS for the 
locations of application-specific libraries. Having obtained 
resource-specific information, the Binder begins to instru- 
ment the code. 

4.1.2 Instrumenting the code 

The Binder analyzes the source code that it receives to com- 
pute the points in the program to safely insert instrumen- 
tation code. Autopilot code sensors [17] are inserted in 
three general regions of the program: at the begining of the 
source code to include header files, at the start of the main 
function, and at exit points in the main function. While 
creating an Autopilot sensor, a unique numeric identifier 
must be assigned to the instrumented program. In the citse 
of a MPI application. this can be donw with the hclp of 
the MPI lihrarv that assigns a rank to each urocess. How- 

Figure 3. EMAN Overview 

L 

ever, in non- MPI applications such as EMAN, the assign- 
ment of an unique identifier posed an additional challenge. 
We resolved this issue by observing that the target machine 
name can uniquely identify the EMAN component. Conse- 
quently, the Binder pre-processes the list of target machines 
and assigns them an unique integer that is then passed on to 
the Autopilot routine responsible for sensor creation. 

4.1.3 Launching the program 

Thc final function of the Binder is to enable the launch of 
the application. If the application is a MPI application, then 
a global synchronization must he carried out as  part of the 
MPI protocol at the beginning of the execution. As a result, 
the application manager indicates to the Binder that the ap- 
plication has been written using MPI. For MPI applications, 
the Binder notifies the application manager that the program 
is ready for launch. The application manager receives noti- 
fications from Binders running at all required resources and 
then launches thc application with synchronization. If, as in 
the case of EMAN, the application is not an MPI applica- 
tion, then no global synchronization is required. For such 
applications, the Binder launches the application and noti- 
fies the application manager when the program terminates. 

4.1.4 A stratcgy for heterogenous platforms 

The computational resources in the GrADS infrastructure 
varies from site to site. Currently, there are IA-32 and IA-64 
based machines on the GrADS testbed. Consequently, the 
Gr.4DS Binder has to deal with heterogeneity in the target 
machines. The design of the Binder wits carefully chosen 
to accomodate differences in machine characteristics. By 
using a high-level representation of the program and con- 
figuring and compiling it only at the target machine, the 
code is not specialized for a particular architecture when the 

Binder rcccives it. As a result, the Binder can successfully 
cope with heterogeneous architectures. Preserving high- 
level program information until the target machine also pro- 
vides opportunities for architecture-specific optimizations. 
This will be explored in future GrADS research. 

5. Workflow Scheduling Test Case 

In this section, we apply some of the strategies described 
in the previous sections in the context of launching EMAN 
[141. a Bio-Imaging application onto the Grid using the 
G A D S  infrastructure. EMAN has been developed at the 
Baylor College ofMedicine and primarily deals with 3D re- 
construction of single panicles from electron micrographs. 
Figure-3 gives an overview on what EMAN is about in a 
nutshell. Human intervention and expertise is needed to 
come up with a preliminary 3D model from the electron 
micrographs. The refinement from a preliminary model to 
the final 3D model is fully automated. This step is the most 
computationally intensive step and benefits from harness- 
ing the power of the Grid. In this work we have scheduled 
and executed the refinement worMow for EMAN. The dif- 
ferent components in the EMAN refinement Workflow is 
described in the following figure-4. It is essentially a linear 
Workflow with some of the components being potentially 
parallel. 

We have scheduled EMAN Refinement Workilow com- 
ponents using the GrADS WorMow Scheduler and exe- 
cuted the Workilow on heterogeneous platforms using the 
GrADS Binder and the rest of the G A D S  execution system. 
Figure-5 is a snapshot of the demonstration of the same that 
we plan for SC2003. The upper leftmost window shows the 
different stages of the G A D S  execution system. The upper 
rightmost window shows the application component that is 
currently executing and the lower leftmost window shows 
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mujar ments. A similar approach is used to match computational 
resources. This issufficient only to the extent of a single 
comnonent and hard constraints that can be expressed using - 
ClassAds. The Data Grid [lo] Resource Broker also uses 
a similar approach. Single jobs are expressed in JDL(Job 
Description Language), a ClassAds type language. The 
broker performs matchmaking retuming all resources suit- 
able for that JDL expression and then ranks the resources. 
It’s limitation is also similar to that in Condor-G broker. 
The GridLab [I21 resource broker also does similar match- 
making but they plan to incorporate better features in fu- 
ture. The GridFlow [2] scheduler performs Workflow man- 
agement and Scheduling side-by-side. It is mostly con- 
cerned with scheduling workflows of parallel message pass- 
ing jobs, They take a hierarchical view of scheduling con- 
sisting of Global workAow Management with local sub- 
workflow scheduling. The GrADS MPI scheduler [51 is a 
modular, application level scheduler hascd on application 
performance model and mapping strategies. It is also con- 
cemed with scheduling parallel MPI jobs. The concept of 
generation and execution of application workflows has been 
introduced in the context of the Pegasus planner, a part of 
the GriPhyn project [6]. But currently, resource selection is 
done randomly in Pegasus. Our work is novel in the way we 
schedule workflow components based on component per- 
formance models and execute them on heterogeneous Grid 
resources using a novel binding scheme. 

Figure 4. EMAN Refinement Workflow 

7. Conclusions and Future Work 

Figure 5. EMAN Demonstration Snapshot 

the entire set of machines available and highlights the ones 
chosen for the current component. The available resources 
are heterogeneous resources, having a mix of IA-32 and IA- 
64 machines. The lower rightmost window shows the text 
outputs of the Workflow Engine and the G A D S  Applica- 
tion Manager. 

6. Related Work 

A good deal of literature exists on developing sched- 
ulers for different Grid frameworks. One of the widely 
used Grid frameworks is the Condor-G [SI framework. The 
resource brokerlscheduler in Condor& uses the Condor 
Matchmaking [I61 framework to implement the schedul- 
ing algorithm. The MDS information is translated to stor- 
age ClassAds and then matched with user storage require- 

We have come up with strategies to schedule and execute 
components of an Application Workflow on the Grid and 
have implemented some of these strategies in the context of 
launching EMAN on the Grid. In future, we plan to evaluate 
the schedules we get and the improvements thereof. We also 
plan to extend this work to incorporate different optimiza- 
tions l i e  pipelining and converting file U 0  to messaging. 
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