
2004 IEEE International Symposium on Cluster Computing and the Grid

Scheduling Workflow Applications in GrADS

Anirban Mandal, Anshuman Dasgupta, Ken Kennedy,
Mark Mazina, Charles Koelbel, Gabriel Marin,

Keith Cooper, John Mellor-Crummey
Department of Computer Science, Rice University,

Houston, TX 77005, USA
{anirban, anshuman, ken, mmzn, chk, mgabi, keith, johnmc}@cs.rice.edu

Bo Liu, Lennart Johnsson
Department of Computer Science,

University of Houston,
Houston, TX 77204, USA

(boliujohnsson} @cs.uh.edu

Abstract

In this work, we describe new strategies for scheduling
and executing Woruow applications on Grid resources us-
ing the G A D S [I31 infrastructure. Worl$low scheduling is
based on heuristic scheduling srmtegies that use combined
computational and memory hierarchy application compo-
nent performance models. The Workflow is executed using
a novel strategy to bind and launch the application onto
heterogeneous resources. We apply these strategies in the
context of launching EMAN, a Bio-imaging workJlow uppli-
cation, onto the Grid.

1. Introduction

For the past several years, the Grid Application Devel-
opment Software (G A D S) Project, with support from the
NSF Next Generation Software Program, has been devel-
oping tools to make the construction of applications for the
Grid easier, while maintaining a high standard of overall
performance. This work has led to the development of a
prototype software infrastructure called GrADSoft that runs
on top of Globus and facilitates the scheduling, launch-
ing, and performance monitoring of tightly coupled Grid
applications, particularly those that require MPI commu-
nications. At the heart of the GrADS infrastructure is the
notion that each Grid program he represented as a config-
urable object program consisting of the application code
plus a mapper, which would determine how to assign tasks
in the application to different components of a collection of

0-7803-8430-X/04/$20.00 02004 IEEE

grid rcsources, and a resource selection performance model,
which could be used to estimate the overall performance of
the application when run on a collection of grid resources
using a task assignment produced by the mapper. The key
to this strategy has been to provide tools for automatic and
semi-automatic construction of mappers and performance
models. The GrADS team has explored this approach by
implementing and executing a number of prototype appli-
cations on GrADS software layer running on a special col-
lection of geographically distributed clusters that form the
CrADS Testbed.

Although this work ha? focused on tightly-coupled appli-
cations, it became clear to us that the strategy could also be
used to improve the development and execution of so-called
workRow applications in which the overall workflow is rep-
resented by a directed acyclic graph in which each vertex is
an application that forms a component of the overall work
to be done and each edge represents a data dependency be-
tween specific application components. Usually substantive
data transfers will take place along edges in the worktlow
graph.

Currently, there are a number of tools supporting the ex-
ecution of workflow applications, the most prominent be-
ing the Condor DAGMan [4] tool. However, most of these
tools schedule the workflow dynamically at each step, so
that the overall mapping and schedule is determined by the
state of the Grid at the series of points when the application
components are ready to execute. A much better outcome
can be achieved in some cases by applying in-advance static
scheduling to the process to ensure that the key computa-
tional steps are executed on the right resources and large-

790

mailto:johnmc}@cs.rice.edu
mailto:cs.uh.edu

2004 IEEE International Symposium on Cluster Computing and the Grid

scale data movement is minimized.
In this paper, we present a strategy that extends the

GrADS approach of using mappers and performance esti-
mators to workflow applications. In addition, we present
results of our experiments with the extended GrADSoft in-
frastructure on a workflow application taken from the do-
main of medical image reconstruction.

2. Workflow Applications

Many important Grid applications fall into the category
of Workflow Applications, examples being LIGO [l] pulser
search on the Grid, image processing on the Grid [ll] etc.
Instead of the application being a single large component
doing all the tasks. the Workflow Application consists of a
collection of several interacting components that need to be
executed in a certain partial order €or successful execution
of the application as a whole. These components have spe-
cific control and data dependencies between them. In most
cases, the Application Worknow can be represented
rected Acyclic Graph(DAG) where each node in the DAG
represents an application component and the edges denote
controlldata dependencies. In the most general case, some
of the application components can be parallel components
like MPI jobs. The main issues for executing WorkRow Ap-
plications on the Grid are

the ability for the components to seamlessly access
the required Grid resources

efficient selection of resources for the components in
order to achieve good performance

satisfying all dependencies and automating the Grid
execution of the entire workflow

We intend to address these issues in the following sections.
F i s t , we will describe our approach to scheduling Work-
flow application components. Then we will discuss the
framework that incorporates these strategies and executes
the application workflow.

3. Scheduling Workflow Applications

The design space for Grid Schedulers in general is very
rich. First, it depends on what objective function the user
wants to minimize or maximize - examples being minimiz-
ing overall job completion time, minimizing communica-
tion time and volume, and maximizing resource utilization
or throughput. Second, it depends on how the job require-
ments, job performance models, and Grid resource models
are specified and used. The scheduler must also carefully
choose between different implementations of user autben-
tication, allocation, and reservation. Other choices include

scheduling application components €or single or multiple
users and whether rescheduling or replanning is required.
In our WorkRow scheduling work, we have chosen the fol-
lowing design parameters. Our objective function was to
minimize overall job completion time or the makespan of
the application. We develop a Grid resource model through
calls to different Grid services - Monitoring and Discovery
Service (MDS) [7] and Network Weather Service (N W S)
[19]. We derive application component performance mod-
els using methods described in a later section. The schedul-
ing problem we are trying to solve can be stated as follows.

3.1 Problem Statement

Given a DAG of the Workflow representation of the ap-
plication, let the set of available application components
tiom the DAG be denoted by C = {cl; c2, ... cn,} and the
set of available Grid resourccs be G = (TI, r2, ... rn}. The
scheduling problem is to output a mapping from elements
of C onto elements of G, or in other words, to output a
mapping of which component runs on which Grid resource
in what order.

3.2 Approach

We take a two-stage approach to solve the problem. In
the first stage, for cach component, we rank the resources
and assign specific rank values to each resource on which
the component can he mapped. Rank values reflect the ex-
pected performance of a particular component on a particu-
lar resource. We will explain how to assign these rank val-
ues in detail in the next section. This step is sufficient if we
have a single component to map. It will output, €or a par-
ticular component, a set of resources with associated rank
values. In the second stage. we take the rank values for each
component and build up a Performance Matrix. We then use
certain known heuristics to obtain a mapping of components
to resources. These steps are explained in detail below.

3.2.1 Calculation of rank values

Calculating rank values involves matching a specific com-
ponent to a set of resources and then ranking the resources.
For this purpose, we assign rank values for each possible
mapping of the component to an available resource. Ac-
cording to our ranking convention, resources with a lower
rank are a better match for the component. The rank value
for each resource is assigned in the following manner.

At first it is checked whether the Grid resource meets
certain hard requirements [like required OS, required
memory, storage, required minimum CPU speed etc.]
for the component. If the resource doesnt meet the

791

2004 IEEE International Symposium on Cluster Computing and the Grid

hard requirements, it is given a rank value of infin-
ity. The resource properties are derived from calls to
MDS services.

Next, the rank values for the eligible resources are
evaluated. Rank value is a weighted linear combi-
nation of expected execution time on the resource,
T~ for the component, ci denoted by eCost(c,, ~ j)

and expected cost of data movement denoted by
dCost(ci, ~j).

~ a n k (q , ~ j) = wlxeCost(c,,rj)+wzxdCost(ci; ~ j)

The weights can be customized to give more im-
portance to one over the other. eCost(%,Tj) is
derived tiom Application component performance
model and is described in detail in the next section.
rlCost(c;, T ~) is calculated as follows. .Let m a p (y)
denote the resource on which ci has been mapped
to, vo l (q) denote the volume of data produced by e,,
Parent(%) denote the set of parent component? for
ci and T x (T ~ , T ,) denote the unit data transfer time
from resource T~ to resource rq. Then dCost(ci, r j)
is defined as

(1)

size and memory access latency, network latency and band-
width).

To characterize an application’s single node perfor-
mance, we consider both the number of floating point op-
erations executed as well as its memory access pattem. We
do not aim to predict an exact execution time, but rather give
an estimated execution time to the scheduler so that it can
determine the hardware configuration that is most effective
for the application components from the set of nodes avail-
able on the grid. To understand the volume of computation
performed by an application for a particular program input,
we use hardware performance counters to collect floating-
point operation counts from several executions of the pro-
gram with different, small-size input problems, and we ap-
ply least square curve-fitting on the collected data.

To understand an application’s memory access pattem.
we collect histograms of memory reuse distance (MRD) -
the number of unique memory block? accessed between a
pair of references to the same block - observed by each load
and store instruction [15]. Characterizing memory access
behavior for programs in this way has two major advan-
tages. First, data reusc distance is independent of cache
configurdtion or architecture details. Second, reuse distance
is a meilwre of data reuse, which is the main determinant in
cache performance.

We collect reusedistance information separately for each
reference in the program, for several, small-size input prob-

dCost(%, ‘‘7) = vOL(P) xTz (maP(P) , T 3)
p t P o r m t (e ,)

,-~
(2)

Tz(rp; T ~) is estimated from latencybandwidth in-
formation from the NWS. Note that when the rank
for the current set of available components is being
calculated, the mapping for the parents of the current
components will be already known. For a single com-
ponent, the resource having the lowest rank may be
retumed ilq the hest match.

In the next section, we will describe how the eCost(c,, T ~)

values are calculated using application component perfor-
mance modeling.

3.2.2 Component Performance Modeling

The Workflow scheduler uses performance analysis to de-
termine the run-time resources needed by an application,
and to compute a mapping for different components that
minimizes the program’s execution time. The performance
of a grid application is a function of both its single node
performance and how it utilizes the network infrastructure.
To estimate the execution cost of an application on arbitrary
grid configurations, we analyze an application’s behavior
by modeling its characteristics in isolation of any architec-
tural details. We then estimate the application’s execution
cost on a target platform described by its available hardware
resources (e.g. number and type of execution units, cache

lems. We use the memory reuse distance data to model the
behavior of each memory instruction, and to predict the
fraction of hits and misses for a given problem size and
cache configuration. Our modeling strategy dynamically
finds groups of accesses that have a similar growth func-
tion for the reuse distance. and models each such group by
two polynomials: one models how the number of accesses
in that group changes with problem size, and one models
how the average reuse distance of those accesses changes
with problem size. To determine the cache miss count for a
different problem size and cache configuration, we evaluate
the MRD models for each reference at the specified problem
size, and count the number of references with reuse distance
greater than the target cache size.

As mentioned above, our goal is to indicate better ma-
chines for execution rither than predict the exact execution
time for the application. We use the following simplified
model.

(3)
A + B + C + D

EstExecTime(psize) = CpuGlock (arch)

totalFp(psize)
FpPipelineNuin(arch)

A = k o x x FpRptRt(urch,) (4)

792

PO04 IEEE International Symposium on Cluster Computing and the Grid

In the equations, { k o ; kl, k2 , k,} are constants, psize
is the problem size and arch is the target architecture.
FpRptRt(arch) is the repeat rate of the floating point
pipeline. It is the number of cycles that occur between the
issue of one instruction and the issue of the next instruction
to the same execution unit. MissPnlty, the penalty for a miss
in an arbitrary level of the memory hierarchy, is the differ-
ence between the access time to the next memory level and
the access time to the current memory level.

L(j)MissPnlty(arch) = P - Q (8)
P = L (j + l)k~tency(arch) (9)
Q = L(j)Latenq/(arch) (10)

3.3 Solving for final mapping

The rank values being known, we now describe how we
use these rank values to find an efficient mapping of com-
p a n c m onto resources. We build a matrix using these rank
values called the performance matrix, M where the entry
p i j denotes the rank value of executing the i - th com-
ponent on the j - th resource. This mapping problem is
an NP-complete problem since Minimum Multiprocessor
Scheduling problem is NP-complete [9] . An optimal ap-
proach for solving the mapping problem is to model the
problem a. an Integer Linear Programming (ILP) problem
and solve the corresponding ILP. But it turns out that, in
our case. with the ILP modeling we came up with, the num-
ber of variables in the corresponding ILP is too large for
the available solvers. So we resorted to known heuristics to
solve the mapping problem.

3.3.1 Heuristic Approach

We have chosen to apply three heuristics from the domain
of scheduling parameter sweep applications [3, 181. By ap-
plying these heuristics, we have obtained good schedules
for mapping independent tasks or parameter sweeps. These
heuristic approaches to finding a mapping run in polynomial
time hut don’t guarantee an optimal mapping. The three
heuristics we chose are

with the hope that the final makespan will he as small
as possible.

Max-min heurhtic: The first step is exactly same as
in the min-min heuristic. In the second step the max-
imum rank value over all the tuples found is chosen
and the corresponding component is mapped instead
of choosing the minimum. The intuition behind this
heuristic is that by giving preference to longer jobs,
there is a hope that the shorter jobs can be overlapped
with it on other resources.

Sufferagc heuristic: In this heuristic, both the mini-
mum and second hest minimum rank value are found
for each component in the first stcp. The difference
between these two values is defined as the sufferage
value. In the second stcp, the component having the
maximum sufferage value is chosen ncxt. The intu-
ition behind this heuristic is that jobs are prioritized
on relative affinities. The job having a high sufferage
value suggests that if it is not assigned to the resource
for which it has minimum rank, it may have an ad-
verse effect on the makespan because the next best
rank value is far from the minimum rank value.

We run all three heuristics and choose the mapping that de-
livers the minimum makespan. In the pseudocode for the
overall Workflow scheduling presented below, ECT(i.R) is
the estimated completion time of a particular component on
a particular resource. EAT(R) is the expected time at which
the resource, R will he next available [probably after the
previous component finishes on the same resource]. Algo-
rithm 1 finds out the set of avdilable components, calculates
their ranks for each resource and calls Algorithm 2 that im-
plements the scheduling heuristics to find out the final map-
ping.

while all components not mapped do
Find availComponents; // satisfy dependencies
Calculate the rank matrix:
findBestSchedule(avai1Components);

endwhile

e Min-min heuristic: For each component, the re-
source having the minimum rank value is found. De-
note this as a tuple (C, R. T). where C is the com-

Algorithm 1 . Workflow Scheduling

ponent, R is the resource for which the minimum is
achieved and T is the corresponding rank value. In 4. Workflow Execution in GrADS

-
the next step, the minimum rank value over all such
tuples is found. The componcnt having the minimum
rank value is chosen to be scheduled next. This is
done iteratively until all the components have been
mapped. The intuition behind this heuristic is that
the makespan increases the least at each iterative step

In this section we address the issue of automating the
Grid execution of the entire Workilow. We have used and
extended the GrADSoft infrastructure to handle launch-
ing of WorkRow style applications. Figure-I descrihes the
G A D S execution cycle. The application along with the

793

2004 IEEE International Symposium on Cluster Computing and the Grid

while all availComponents nor mopped do
foreach Component, j do

foreach Resource, R do
ECTU ,R)=rank(j ,R)+EAT(R);

endforeach
Find minECT(j,R) over all R
Find Znd-minECTG,R) over all R;

eodforeach
Calculate min(minECT(j,R)) over all j; Ilmin-min
Calculate max(minECT(j,R)) over all j; //max-min
Calculate min(Znd-minECT(i.R)-minECTO',R))
over all j; //sufferage
Store mapping for each heuristic;
Update EAT(R) and makespan for each heuristic;

endwhile
Select mapping with minimum makespan among three;
Output selected mapping;

Algorithm 2. findBestSchedule

performance model is handed over to thc WorkRow En-
gine, which in unison with the Workflow Scheduler sched-
ules the application components onto available resources.
The Workflow Scheduler consults the GrADS information
system for MDSINWS information and uses the available
performance models. Once the set of resources are cho-
sen, the GrADS Application Manager is invoked. The
GrADS Application Manager is the central controller for
the GrADS execution system. It interacts closely with the
GrADS Binder to launch the Worldlow Application com-
ponem onto actual Grid resources. The following section
describes the details of the GrADS Binder and how it inter-
acts with other GrADS components to launch the Workflow
components.

4.1 The GrADS Binder

The Binder component in the GrADS infrastructure pro-
vides the final modifications to the application before it is
launched on the grid. The Binder is a distributed compo-
nent and executes on all nodes on which the application is
launched. It is responsible for compiling the GrADS ap-
plication, optimizing it for the target machine, and poten-
tially launching the program on the grid. Figure 2 depicts
an overview of the GrADS Binder and the three inputs that
it receives: the Binder is provided with resource-specific
information such as the locations of libraries via the Grid
Information Service. The Binder also obtains the character-
istics ofthe target architecture which provides opportunities
for resource specific optimizations. The third input consists
of a compilation package. The package consists of the ap-
plications's source code in an intermediate representation

RnunddK i
,. , ...

Figure 1 . GrADS Execution Cycle

Figure 2. GrADS Binder

(IR), a list of external libraries and components required by
the application, and a script to configure the application for
compilation.

4.1.1 Starting the remote Binder

The Binder executes on each machine that is chosen by the
wormow scheduler. At each machine, the Binder must be
aware of the locations of software resources. These soft-
ware resources consist not only of application specific li-
braries and header files, but also of Binder code and li-
braries on the machine. One approach to solve this would be
to specie software installation locations for every GrADS
node. However, we found this approach to be overly re-
strictive. Hence, the Binder uses the GrADS Information
Service (CIS) to locate necessary software on the sched-
uled node. On execution, the Binder first queries GIS for

794

2004 IEEE International Symposium an Cluster Computing and the Grid

the location of the local Binder code. It then launches the
local copy of the Binder which further queries GIS for the
locations of application-specific libraries. Having obtained
resource-specific information, the Binder begins to instru-
ment the code.

4.1.2 Instrumenting the code

The Binder analyzes the source code that it receives to com-
pute the points in the program to safely insert instrumen-
tation code. Autopilot code sensors [17] are inserted in
three general regions of the program: at the begining of the
source code to include header files, at the start of the main
function, and at exit points in the main function. While
creating an Autopilot sensor, a unique numeric identifier
must be assigned to the instrumented program. In the citse
of a MPI application. this can be donw with the hclp of
the MPI lihrarv that assigns a rank to each urocess. How-

Figure 3. EMAN Overview

L

ever, in non- MPI applications such as EMAN, the assign-
ment of an unique identifier posed an additional challenge.
We resolved this issue by observing that the target machine
name can uniquely identify the EMAN component. Conse-
quently, the Binder pre-processes the list of target machines
and assigns them an unique integer that is then passed on to
the Autopilot routine responsible for sensor creation.

4.1.3 Launching the program

Thc final function of the Binder is to enable the launch of
the application. If the application is a MPI application, then
a global synchronization must he carried out as part of the
MPI protocol at the beginning of the execution. As a result,
the application manager indicates to the Binder that the ap-
plication has been written using MPI. For MPI applications,
the Binder notifies the application manager that the program
is ready for launch. The application manager receives noti-
fications from Binders running at all required resources and
then launches thc application with synchronization. If, as in
the case of EMAN, the application is not an MPI applica-
tion, then no global synchronization is required. For such
applications, the Binder launches the application and noti-
fies the application manager when the program terminates.

4.1.4 A stratcgy for heterogenous platforms

The computational resources in the GrADS infrastructure
varies from site to site. Currently, there are IA-32 and IA-64
based machines on the GrADS testbed. Consequently, the
Gr.4DS Binder has to deal with heterogeneity in the target
machines. The design of the Binder wits carefully chosen
to accomodate differences in machine characteristics. By
using a high-level representation of the program and con-
figuring and compiling it only at the target machine, the
code is not specialized for a particular architecture when the

Binder rcccives it. As a result, the Binder can successfully
cope with heterogeneous architectures. Preserving high-
level program information until the target machine also pro-
vides opportunities for architecture-specific optimizations.
This will be explored in future GrADS research.

5. Workflow Scheduling Test Case

In this section, we apply some of the strategies described
in the previous sections in the context of launching EMAN
[141. a Bio-Imaging application onto the Grid using the
G A D S infrastructure. EMAN has been developed at the
Baylor College ofMedicine and primarily deals with 3D re-
construction of single panicles from electron micrographs.
Figure-3 gives an overview on what EMAN is about in a
nutshell. Human intervention and expertise is needed to
come up with a preliminary 3D model from the electron
micrographs. The refinement from a preliminary model to
the final 3D model is fully automated. This step is the most
computationally intensive step and benefits from harness-
ing the power of the Grid. In this work we have scheduled
and executed the refinement worMow for EMAN. The dif-
ferent components in the EMAN refinement Workflow is
described in the following figure-4. It is essentially a linear
Workflow with some of the components being potentially
parallel.

We have scheduled EMAN Refinement Workilow com-
ponents using the GrADS WorMow Scheduler and exe-
cuted the Workilow on heterogeneous platforms using the
GrADS Binder and the rest of the G A D S execution system.
Figure-5 is a snapshot of the demonstration of the same that
we plan for SC2003. The upper leftmost window shows the
different stages of the G A D S execution system. The upper
rightmost window shows the application component that is
currently executing and the lower leftmost window shows

795

2004 IEEE International Symposium on Cluster Computing and the Grid

mujar ments. A similar approach is used to match computational
resources. This issufficient only to the extent of a single
comnonent and hard constraints that can be expressed using -
ClassAds. The Data Grid [lo] Resource Broker also uses
a similar approach. Single jobs are expressed in JDL(Job
Description Language), a ClassAds type language. The
broker performs matchmaking retuming all resources suit-
able for that JDL expression and then ranks the resources.
It’s limitation is also similar to that in Condor-G broker.
The GridLab [I21 resource broker also does similar match-
making but they plan to incorporate better features in fu-
ture. The GridFlow [2] scheduler performs Workflow man-
agement and Scheduling side-by-side. It is mostly con-
cerned with scheduling workflows of parallel message pass-
ing jobs, They take a hierarchical view of scheduling con-
sisting of Global workAow Management with local sub-
workflow scheduling. The GrADS MPI scheduler [51 is a
modular, application level scheduler hascd on application
performance model and mapping strategies. It is also con-
cemed with scheduling parallel MPI jobs. The concept of
generation and execution of application workflows has been
introduced in the context of the Pegasus planner, a part of
the GriPhyn project [6]. But currently, resource selection is
done randomly in Pegasus. Our work is novel in the way we
schedule workflow components based on component per-
formance models and execute them on heterogeneous Grid
resources using a novel binding scheme.

Figure 4. EMAN Refinement Workflow

7. Conclusions and Future Work

Figure 5. EMAN Demonstration Snapshot

the entire set of machines available and highlights the ones
chosen for the current component. The available resources
are heterogeneous resources, having a mix of IA-32 and IA-
64 machines. The lower rightmost window shows the text
outputs of the Workflow Engine and the G A D S Applica-
tion Manager.

6. Related Work

A good deal of literature exists on developing sched-
ulers for different Grid frameworks. One of the widely
used Grid frameworks is the Condor-G [SI framework. The
resource brokerlscheduler in Condor& uses the Condor
Matchmaking [I61 framework to implement the schedul-
ing algorithm. The MDS information is translated to stor-
age ClassAds and then matched with user storage require-

We have come up with strategies to schedule and execute
components of an Application Workflow on the Grid and
have implemented some of these strategies in the context of
launching EMAN on the Grid. In future, we plan to evaluate
the schedules we get and the improvements thereof. We also
plan to extend this work to incorporate different optimiza-
tions l i e pipelining and converting file U 0 to messaging.

8. Acknowledgements

We sincerely acknowledge the help we received from
Dr. Wah Chiu and Steve Ludtke form the Baylor College
of Medicine regarding many aspects of the EMAN appli-
cation. We also acknowledge Dr. Sanjeeb Dash from IBM
T. J. Watson Research center for his insights on different
zpec ts of ILP approaches to scheduling.

References

[I] E . Earish and R. Weiss. Ligo and detection of gravitational
waves. Physics Today, 52(10), 1999.

796

2004 IEEE International Symposium on Cluster Computing and the Grid

[2] S. J. J . Cao, G. Nudd, and S. Saini. Gridflow: WorkAow
management far grid computing. In 3rd Intemational Sym-
posium on Cluster Computing and the Grid, 2003.

[3] H. Casanova. A. Legrand, D. Zagorodnov, and E Berman.
Heuristics for scheduling parameter sweep applications in
grid environment$. In 9rh Hetemgeneous Computing work-
shop (HCW'2OOOJ, 2000.

[4] Condor Team University. Condor version 6.1 . I 2 manual.
H. Dail. H. Casanova. and E Berman. A modular scheduline

I

approach for grid application development environments.
Technical Report CS2002-0708,2002.
E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, K. Blackbum, A. Lazzarini, A. Arbree, R. Ca-
vanaugh, and S. Koranda. Mapping abstract complex work-
flows onto grid environments. Journal of Grid Computing,
1(1):25-39, 2003.
S. Fitzgcrald. I. Foster. C. Kcsselman, G. van Laszewski,

~

W. Smith, and S. Tuecke. A Directory Service for Config-
uring High-Performance Distributed Computations. In Pm-
ceedingy of the 6th IEEE Symposium on High-Pefonnance
Distributed Computing, pages 365-375, 5-8 Aug. 1997.
T. T. 1. Frey, 1. Fostcr, M. Livny, and S. Tuecke. Condor-g: A
computation management agent for multi-institutional grids.
I n Tenth IEEE Symposium on High Perj%nnance Di.stribrrred
Computing (HPDCIO), 2001.
M. R. Garey and D. S. Johnson. Computers and Inrmcrabil-
iry: A Guide rn the Themy of Np-Completeness. 1979.
A. G. E Giacomini, R. PK~USO, and M. Sgaravatto. Definition
of the architecture, technical plan and KvdhatiOn criteria for
the resource co-allocation framework and mechanisms for
parallel jab partitioning, 2002.
S. Hastings, T. Kurc, S. Langella, U. Catalyurek, T. Pan. and
I. Saltz. Image processing on the grid:a toolkit or building
grid-enabled image processing applications. In 3rd lntema-
tional Symposium on Cluster Computing and the Gridid, 2003.
K. K. Juliusz Pukacki. WpY resource management.
Ken Kcnncdy et al. Toward a framework for preparing and
executing adaptive grid programs. In Inrematianal Parallel
and Distributed Pmcesving Symposium, 2002.
S. Ludtke, P. Baldwin, and W. Chiu. Eman: Semiautomated
software for high-resolution single-particle reconstructions.
J. Srrucr. B i d , 128:82-97, 1999.
G. Marin. Semi-Automatic Synthesis of Parameterized Per-
formance Mud& for Scientific Programs. Mastcr's thesis,
Dept. of Computer Science, Rice Universitv, Apr. 2003.

[16] R. Raman. M: Livny, and M. H. Solomon. Matchmaking:
Distributed resource management for high throughput com-
puting. In HPDC, pages 14s. 1998.

1171 R. L. Ribler, J. S. Vetter, H. Simitci, andD. A. Reed. Autopi-
lot: Adaptive control of distributed applications. In HPDC,

[I X] Tracy D. Bnun et al. A cornparision of eleven static heuris-
tics for mdping a c l a s of independent tasks onto heteroge-
neous distributed computing systems. Joumal of Parallel
undDirtributed Compuring, 61 :8 10-837, 2001.

[191 R. Wolslu, N. T. Spring, and J. Hayes. The network weather
service: a distributed resource performance forecasting ser-
vice far metacomputing. Future Generation Computer Sys-
tems, 15(54):757-768, 1999.

pages 172-179, 1998.

797

