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Abstract

It is increasingly difficult for complex scientific programs to attain a significant fraction of peak
performance on systems that are based on microprocessors with substantial instruction-level parallelism
and deep memory hierarchies. Despite this trend, performance analysis and tuning tools are still not used
regularly by algorithm and application designers. To a large extent, existing performance tools fail to
meet many user needs and are cumbersome to use. To address these issues, we developed HPCVIEW—a
toolkit for combining multiple sets of program profile data, correlating the data with source code, and
generating a database that can be analyzed anywhere with a commodity Web browser. We argue that
HPCVIEW addresses many of the issues that have limited the usability and the utility of most existing
tools. We originally built HPCVIEW to facilitate our own work on data layout and optimizing compilers.
Now, in addition to daily use within our group, HPCVIEW is being used by several code development
teams in DoD and DoE laboratories as well as at NCSA.
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1 Introduction

The peak performance of microprocessor CPUs has been growing at a dramatic rate due to architectural
innovations and improvements in semiconductor technology. Unfortunately, other performance measures,
such as memory latency, have not kept pace, so it has become increasingly difficult for applications to
achieve substantial fractions of peak performance.

Despite the increasing recognition of this problem and a thirty-year history of papers advocating the use
of profiling tools [15] or describing their implementation[16], the regular use of performance instrumentation
and analysis tools to tune real applications is surprisingly uncommon. Our own research on program and
data transformation methods in optimizing compilers has provided us with ample motivation to analyze,
explain, and tune many codes, but we found that existing tools were not enhancing our productivity in these
investigations. We therefore wrote our own tools to address what we concluded were the impediments to our
own work.! In this paper, we describe HPCVIEW, a performance analysis toolkit that combines generalized
profile data captured from diverse sources, correlates that data with source code, and writes a hyperlinked
database that can be browsed interactively. In addition to describing the key components of the toolkit,
we discuss some of the issues that motivated us to begin this project and some of the lessons that we have
learned.

We believe that greatest impediment to the effective and widespread use of performance tools is that
existing tools are cumbersome to use when working with complex applications in an analysis and tuning
cycle. Specifically, manual tasks perceived as annoying inconveniences when a tool is applied once in a small
demonstration become unbearable costs when done repetitively in an analysis and tuning cycle for a big
program. In addition to problems that complicate the mechanical process of getting tools to provide useful

*Published in The Journal of Supercomputing, 23(1) 81-104, 2002.
1As of this writing, these tools are also being used to improve production applications by several groups at DoD and DoE
laboratories as well as at NCSA.



results, the main causes of excess user effort are shortcomings in tools’ explanatory power. That is, tools fail
to present the information needed to identify and solve a problem, or they fail to present that information
in a form that makes it easy to focus on the problem and its solution. In either case, the developer/analyst
must make up for deficiencies of tools with manual effort.

1.1 Key Issues

For performance tools to be widely useful, they must address three classes of issues, which we describe in
the following sections.

1.1.1 Usability issues related to tool interfaces

Language independence and portability are important. Tools restricted to a narrow set of systems and
applications have limited utility. Language- or compiler-based systems have limited applicability for large
problems since a large scientific program may have a numerical core written in some modern dialect of
Fortran, while using a combination of frameworks and communication libraries written in C or C++.

Architecture and location independent analysis are important. Vendor-supplied tools usually work only
on that vendor’s systems. This usually means that the analysis must be done on a machine in the same
architecture family as the target machine. This can be problematic when analysts are using a heterogeneous
collection of desktop machines and servers. Furthermore, cross-platform performance studies are extremely
useful, but are very difficult to do with vendor tools, each tied to a specific hardware/OS/compiler suite.

Manual intervention for recompilation and instrumentation are costly. Recompiling an application to
insert instrumentation is labor intensive. Worse, inserting instrumentation manually requires performing
consistent modifications to source code. While tolerable for small examples, it is prohibitive for large appli-
cations, especially in a tuning cycle. When instrumentation is inserted before compilation, the presence of
instrumentation may inhibit optimization, in which case it will not measure the performance of optimized
code; alternatively, optimization may move instrumentation, in which case the measured interval may not
include all or only the code from the region of interest. Neither case is acceptable. Inserting instrumentation
in aggressively optimized object code is prohibitively difficult.

Tools need to present compelling cases. Performance tools should identify problems explicitly and priori-
tize what look like important problems, or provide mechanisms that enable a user to search for the problem
using a browser. It is unreasonable to require users to hunt through mountains of printouts or many screens
full of data in multiple windows to identify important problems. Tools need to assist the user by ranking
potential problem areas and presenting a top down view.

1.1.2 Breadth and extensibility of the space of performance metrics

Any one performance measure produces a myopic view. The measurement of time or one species of system
event seldom identifies or diagnoses a correctable performance problem. Some metrics measure potential
causes of performance problems and other events measure the effects on execution time. The analyst needs
to understand the relationships among these different kinds of measurements. For example, while Amdahl’s
law would have us focus on program units that consume large amounts of time, there is a performance
problem only if the time is spent inefficiently. Further, one set of data may be necessary to identify a
problem, and another set may be necessary to diagnose its causes. A common example is that measures such
as cache miss count indicate problems only if both the miss rate is high and the latency of the misses is not
hidden.

Data needs to come from diverse sources. Hardware performance counters are valuable, but so are other
measures such as “ideal cycles”, which can be produced by combining output from a code analysis tool that
uses a model of the processor with an execution time profiling tool [9]. Other code analysis and simulation
tools generate information that is not otherwise available. If a code must run on several architectures, it
should be easy to use data collected on multiple systems to do cross-system comparisons. Tools should
support data combination and comparison for this purpose; otherwise, users will have to perform such tasks
manually.

Raw event counts are seldom the real measures of interest. Derived measures such as cache miss ratios,
cycles per floating point operation, or differences between actual and predicted costs are far more useful



and interesting for performance analysis. While doing the mental arithmetic to estimate such metrics may
occasionally be acceptable, it becomes annoying if needed frequently. Furthermore, a tool that computes
derived measures explicitly can then use them as keys for sorting or searching.

1.1.3 Data attribution and aggregation issues

Data collection tools provide only approximate attribution. In modern multi-issue microprocessors with
multiple functional units, out-of-order execution, and non-blocking caches, the amount of instruction-level
parallelism is such that it is very difficult or expensive to associate particular events with specific instructions.
On such systems, line level (or finer) attribution can be misleading. For example, on a MIPS R10K processor,
the counter monitoring L2 cache misses is not incremented until the cycle after the second quadword of
data has been moved into the cache from the bus [22, page 270]. If an instruction using the data occurs
immediately after the load, the system will stall until the data is available and the delay will probably be
charged to some instruction “related” to the load. As long as these two instructions are from the same
statement, there’s little chance for confusion. However, if the compiler has optimized the code to exploit
non-blocking loads by clustering load instructions from multiple statements, misses may be attributed to
unrelated instructions from other parts of the loop. This occurs all too often for inner loops that have been
unrolled and software pipelined. The nonsensical fine-grain attribution of costs confuses users. On the other
hand, at high levels of optimization, such performance problems are really loop-level issues. Even when
there is fine-grain mis-attribution, loop-level information is still sensible. For out-of-order machines with
non-blocking caches, per-line and/or per-reference information can only be accurate or useful if sophisticated
hardware instrumentation such as ProfileMe [6] on the Compaq Alpha EV67 processors and successors is
used.

Compiler transformations introduce problems with cost attribution. Many of the transformations that
compilers perform to improve performance confound both performance tools and users. Some optimizations,
e.g. common sub-expression elimination, combine fragments from two or more places in the source pro-
gram. Other optimizations, e.g. tiling, introduce new control constructs. Still other optimizations, e.g. loop
unrolling and software pipelining, replicate and interleave computations from multiple statements. Finally,
“unoptimizing” transformations such as forward substitution of scalar values, or loop re-rolling, may be
introduced to reduce register pressure or to facilitate downstream analysis and optimizations.? Such trans-
formations, combined with imperfect attribution mechanisms, may move memory references into statements
that were carefully designed to touch only values in registers.

With instruction-level parallelism, aggregated properties are vital. Even if profiling instrumentation could
provide perfect attribution of costs to executable instructions and if compilers could provide perfect mapping
from executable instructions to source code, a program’s performance on machines with extensive instruction-
level parallelism is less a function of the properties of individual source lines, and more of a function of the
dependences and balance among the statements in larger program units such as loops or loop nests[4].

For example, the balance of floating point operations to memory references within one line is not partic-
ularly relevant to performance as long as the innermost loop containing that statement has the appropriate
balance between the two types of operations, a good instruction schedule that keeps the pipelines full, and
memory operations that can be scheduled with most of their cache miss latency hidden.

We have thus found that aggregated information is often much more useful than information gathered on
a per-line and/or per-reference basis. In particular, derived metrics are more useful at the loop level rather
than at the line level. A key to good performance is matching the mix of issued operations in a loop, known
as the loop balance [3], with the hardware capabilities, known as the machine balance. Balance metrics
(FLOPS per cycle issued versus the peak rate, bytes of data loaded from memory per instruction versus
peak memory bandwidth per cycle) are especially useful for suggesting how one might tune a loop.

The relevant level of aggregation for reporting performance data is often not known a priori. Typical per-
formance tools report information only for a small, fixed number of program constructs, typically procedures
and/or source lines (statements). As we argued earlier, for most performance problems, these are usually
not the right levels of granularity.

2However, if the downstream analysis/optimization stumbles, the resulting executable may run slower than code compiled
with less aggressive optimization.



In other cases, understanding interactions among individual memory references may be necessary. If
performance metrics are reported at the wrong granularity, the analyst has to interpolate or aggregate
information by hand to draw the right conclusions. Data must be available at a fine enough level, but
aggressive compiler optimization combined with instruction-level parallelism and out-of-order execution put
a lower bound on the size of the program unit to which a particular unit of cost can be unambiguously
charged. To compensate, tools must aggregate data flexibly at multiple levels.

1.2 Owur Approach

The focus of the HPCVIEW project has been to develop tools that are easy to use and that provide useful
information, rather than on inventing new performance measures or new ways to collect measurements.

The observations in the previous section should not be construed to be a set of a prior: design principles,
rather they are the product of our experiences. Before starting work on HPCVIEW, we developed MHSIM, a
multi-level memory hierarchy simulator to help analyze the effects of code and data transformations on cache
behavior [20, 21]. Analyzing conventional reports from MHSIM by hand was too tedious, so we modified it
to correlate its results with source code and produce hyper-linked HTML documents that can be explored
interactively. While MHSIM proved to be extremely useful, it had three shortcomings: (1) memory hierarchy
event counts alone offer a myopic viewpoint — what is important is whether these misses cause stalls or
not, (2) in many cases the simulator was overkill because similar, though less detailed, information can be
obtained at far less expense using hardware performance counters, and (3) many performance problems are
not simple matters of memory hierarchy issues. We began work on HPCVIEW to broaden the applicability
of the ideas behind the MHSIM interface.

A principal design objective of HPCVIEW was to correlate source code with data from multiple, diverse
instrumentation sources and to present the information in an easily understood, interactively-browsable form
that facilitates top-down performance analysis. Like MHSiM, HPCVIEW produces a hyper-linked HTML
document for interactive exploration with commodity browsers. Our use of a commodity browser interface
has three key advantages. First, it provides users with a familiar interface that gets them started quickly.
Second, it eliminates the need to develop a custom user interface. Third, commodity browsers provide a
rich interface that includes the ability to search, scroll, navigate hyper-links, and update several panes of
a browser window in a coordinated fashion. Each of these capabilities facilitates exploration of the web of
information in the program performance dataset.

2 HPCVIEW

The HPCVIEW performance analysis toolkit is a collection of scripts and programs designed to facilitate
performance analysis and program tuning by correlating performance measurements from diverse sources
with program source code. A program called hpcview is at the toolkit’s center.

Performance data manipulated by hpcview can come from any source, as long as a filter program can
convert it to a standard, profile-like input format. To date, the principal sources of input data for hpcview
have been hardware performance counter profiles. Such profiles are generated by setting up a hardware
counter to monitor events of interest (e.g., primary cache misses), to generate a trap when the counter
overflows, and then to histogram the program counter values at which these traps occur. SGI’s ssrun
along with Compaq’s uprofile and dcpi utilities collect profiles this way on MIPS and Alpha platforms,
respectively. Any information source that generates profile-like output can be used as an hpcview data
source. Currently, we use vendor-supplied versions of prof to turn PC histograms collected by ssrun or
uprofile into line-level statistics. Scripts in the HPCVIEW toolkit transform these profiles from their
platform-specific formats into an architecture-independent XML-based profile format.

To direct the correlation of performance data with program source test, hpcview is driven by a config-
uration file that specifies paths to directories that contain source code, a set of performance metrics, and
parameters that control the appearance of the display. Performance metric specifications either point to a
file containing measured profile data, or describe a computed metric as an expression of terms that consist
of previously-defined measured or computed metrics. Optionally, the configuration file can also name a file
that describes a hierarchical decomposition of the program, either the loop nesting structure, or some other
partitioning.
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Figure 1: The HPCVIEW user interface.

When initiated, hpcview reads the specified performance data files and attributes the metrics to the
nodes of a scope tree. A scope tree represents the hierarchical program structure known to the tool, including
program constructs such as files, procedures, loops, and source lines. Next, hpcview uses performance metrics
read from files as operands for computing any derived metrics at each node of the scope tree. Finally, hpcview
associates the performance metric data with individual lines in the source text and produces a hierarchical
hyper-linked database of HTML files and JavaScript routines that define a multi-pane hypertext document.
In this document, hyperlinks cross-reference source code lines and their associated performance data. A
generated HTML database can be interactively explored using Netscape Navigator 4.x or Internet Explorer
4+.

To help new users on SGI and Compaq machines, we wrote a script called hpcquick to orchestrate the
process of creating a configuration file for a set of metrics and running hpcview. As a side effect, hpcquick
leaves behind an executable script and the configuration file it synthesized for the user to modify and extend
to perform additional analyses. For production use, we typically write a custom script to automate the
entire process from initiating the data-gathering runs to generating the browsable database of performance
information.



2.1 The HPCVIEW User Interface

The HPCVIEW interface consists of a single browser window containing multiple panes. A screenshot of the
interface displaying some data for the ASCI Sweep3D benchmark program [13] is shown in Figure 1. The
top-left pane contains links to all of the source files, grouped by directory, for which there is performance
information. The “Other Files” section lists source files not found using the search paths in the configuration
file. Clicking on a file name in the left pane causes the file to be displayed in the source file pane and the
performance data panes to display the available metrics for that file as well.

The source-file pane, on the top-right, displays an HTML version of the current source file. The code is
augmented with line numbers and hyperlinks used to navigate the performance data panes at the bottom of
the window to display the performance data associated with that line. Hyperlinks in the performance data
panes navigate the source pane to the associated source file and line. For functions or files not found using
the configuration paths, hpcview generates a synopsis in place of the missing code.

The two panes at the bottom present the performance data as a hierarchical partitioning, namely, a tree.
At the top of the hierarchy is the program. Using a typical structural decomposition, the nodes below the
program are files. Below files in the hierarchy are procedures. Procedures may contain one or more levels
of loops and/or individual source lines. Individual source lines are the leaves of the tree. An individual
source line appears in the tree when it has at least one non-zero performance metric associated with it; thus,
the leaves of the tree are sparse. Not all lines will have values for all metrics. For instance, floating point
operations and cache misses often are associated with different lines. Missing data is indicated with a blank.

The tables of data presented in the performance panes are sorted in decreasing order according to the
currently selected performance metric. Initially, the leftmost metric in the display is the one selected.
Clicking on the ‘sort’ hyperlink of a different metric’s column header will display the data sorted by that
metric.

When a browser first reads an HPCVIEW database, the current scope is the entire program and the
source files are shown as its children. Navigation through the hierarchy is done by clicking on the up- and
down-arrow icons at the left of each line. The selected scope is moved to the “Current” pane with its ancestor
and descendants shown above and below it, respectively.

To the left of the hierarchical display of the scope tree are iconic links that are used to adjust the view
of the scope hierarchy by “flattening” or “unflattening” the descendants of the current scope. Flattening
the current scope replaces each non-leaf scope shown in the descendants pane with its children. Leaf scopes
cannot be flattened further, so they are retained as is. Progressive unflattening reverses the process until the
descendants pane shows only children of the current scope. Interactive, incremental flattening was added to
HPCVIEW version 2.0 and the completely flat line-level pane in earlier versions was removed. This change
specifically supports and encourages top-down performance analysis. When tuning the performance of a
scientific program, the most important question often is to identify the most costly loop in the program.
At the top level, files are initially displayed as the children of the program. After one round of flattening,
the program’s descendants become the set of procedures. However, knowing the cost of each procedure still
doesn’t tell us which contains the most costly loop. By flattening one more level, all top-level loops are
viewed as peers with the most costly one at the top of the display. Without the ability to flatten a profile in
this way, one would be forced to navigate into each procedure to look for the one containing the highest-cost
loop.

The combination of panes containing sorted performance data, the hierarchical structure of the data in
the tree, the ability to look at all of the peers at each level of the tree, along with simple navigation back
and forth between source code and the performance data are the keys to the effectiveness of the HPCVIEW
interface.

2.2 Computed Metrics

Identifying performance problems and opportunities for tuning may require computed performance met-
rics that, for instance, compare the instruction mix in a program’s loop nests (loop balance) to the ideal
instruction mix supported by the target architecture.

When attempting to tune the performance of a floating-point intensive scientific code, it is often less useful
to know where the majority of the floating-point operations are than where floating-point performance is low.
For instance, knowing where the most cycles are spent doing things other than floating-point computation



is useful for tuning scientific codes. This can be directly computed by taking the difference between the
cycle count and FLOP count, and displaying this measure at loop and procedure level. Our experiences with
using multiple computed metrics such as miss ratios, instruction balance, and “lost cycles” using HPCVIEW
underscore the power of this approach.

To support the computation of derived metrics, the configuration file assigns an internal name to each
metric as part of its definition. The definition of each computed metric is a MathML [10] expression that
refers to previously-defined metrics, either computed or read from a file.

2.3 Program Structure

A program’s performance is less a function of the properties of individual source lines than of the dependencies
and balance among the statements in larger program units such as loops or loop nests. For example, the
balance of floating point operations to memory references within any one line is not particularly relevant to
performance as long as the innermost loop containing that statement has the appropriate balance between
the two types of operations and a good instruction schedule.

As HPCVIEW processes its performance profile inputs, it incrementally builds a scope tree that reflects
the program structure. A scope tree describing program structure can be supplied by the user; if not,
the structure will be inferred as performance profiles are processed. The root of the tree represents the
entire program. Below the root are nodes representing the files containing source code. Below the files are
procedures and, using typical profile data without any additional informantion, below the procedures are
nodes representing lines. Some compilers (e.g. SGI) use lines as surrogates for entire statements, while other
compilers (e.g. Compaq) provide attribution of costs to individual lines (and columns within lines) within
multi-line statements.

To better organize the information available from the performance data, hpcview (the program) can
also be instructed to initialize the scope tree with information from one or more XML “structure” files (see
Figure 2) that contain a tree representation of a hierarchical decomposition of the program as defined by
some external source. The program structure description that we use is extremely general. Here is a list of
the possible scopes and the relationships among them.

e Program scope — is the root of the tree and can include files and groups.

File scope — can contain procedures, statements, loops, and groups.

Procedure scope — can contain loops, statements, and groups.

Loop scope — may include zero or more loops, statements, and groups.

Statement scope — specifies a contiguous range of source lines.

e Group scope — is a catch-all scope that can include zero or more files, procedures, loops, statements,
or other groups.

The group scope is not bound to any conventional syntactic program unit; it can include any set of scopes
and it can be included in any other scope. The motivation for this virtual unit is to support arbitrary,
non-syntactic partitionings. The simplest use is to aggregate non-adjacent statement ranges into a single
unit. It can also be used to represent a semantic partitioning of the program in which program units with
related function are aggregated for reporting purposes.

Structure files can be generated in several ways:

e They can be emitted by a compiler to reflect the program structure discovered in source files.
e Structure can be derived from static or dynamic analysis of an executable’s object code.

e They can be defined explicitly. For example, annotations applied to the code of a library could be used
to induce a hierarchical partitioning by semantic category.



We initially used a compiler-based structure generator [21] to emit loop information. This was limited
to Fortran77 programs and required explicitly applying the tool to each source file. We are currently using
static analysis of binary executables to extract a control flow graph and to recover apparent loop structure.
This is described in the next section. Explicit construction of structure files from program annotations
is something we intend to support in the near future to provide the flexibility to define abstractions that
aggregate program units by functional characteristics, or other semantic criteria.

3 Extracting Structure from Executables

The principal disadvantage of analyzing source files to determine a program’s structure is that it requires
separate handling for each source language. Other issues include the need to analyze many source files in
many directories, unavailable source files, along with discrepancies between the structure of source code and
the structure of the highly-optimized object code. To address all of these problems, we developed bloop,
a tool that leverages the Executable Editing Library (EEL) [17] infrastructure to construct a hierarchical
representation of an application’s loop nesting structure based on an analysis of the executable code.

Figure 2 shows an example of an XML document constructed by bloop. This document contains an
hpcview scope tree encoding an application’s static structure. The XML document includes scope trees for
the procedures hypre_SMGRelaxFreeARem and hypre_SMGRelax in the context of an elided scope tree for the
semi-coarsening multigrid application to which they belong.

<PGM n="/apps/smg98/test/smg98">

<F n="/apps/smg98/struct_linear_solvers/smg_relax.c">
<P n="hypre_SMGRelaxFreeARem">
<L b="146" e="146">
<S b="146" e="146"/>
</L>
</P>
<P n="hypre_SMGRelax">
<L b="297" e="328">
<S b="297" e="297"/>
<L b="301" e="328">
<S b="301" e="301"/>
<L b="318" e="325">
<S b="318" e="325"/>

</L>
<8 b="328" e="328"/>
</L>
<S b="302" e="312"/>
</L>
</P>
</F>
</PGM>

Figure 2: A partially-elided scope tree produced by bloop.

To construct a scope tree representation for an executable, bloop first builds a control flow graph for
the executable by analyzing the control flow of the machine instructions in each procedure. Next, it uses
interval analysis [24] to identify the natural loops in each procedure’s control flow graph and to determine
their nesting [11]. Then, bloop uses object-to-source mapping information recorded by compilers in an
executable’s symbol table to map each instruction in each basic block to the corresponding source code



location. The combination of interval nesting information, the position of each basic block in the interval
nesting structure, and source statement locations contained in each basic block, enables bloop to recover
the loop nesting structure from the executable and locate the position of source statements within it.

The major difficulty with this strategy is that code transformations used by optimizing compilers result in
complicated mappings between machine instructions and source statements. Instructions related to a single
source program statement often appear in many different basic blocks in the loop nesting structure present
in the executable. For instance, loop-invariant code motion can hoist some fragments of a statement out of
one or more loop levels. Also, loop optimizations such as software pipelining may split a source loop into
multiple object loops—e.g., prolog, steady state, and epilog phases—with each of these object code loops
containing instructions mapped to the same range of source lines.

Since each statement originally appeared uniquely in the program’s source code, it is natural to try to
represent and view performance data in a form in which each source statement appears only in its original
place. Thus, common profiling tools (e.g., SGI and Compaq’s prof commands) report performance metrics
at the source line level without distinguishing among multiple different fragments or instances of the same
source line. To handle data from such sources, our current source code scope tree representation of a
program’s structure puts each source construct in at most one place. On the other hand, a single source
construct can be mapped to machine instructions in several different places in the object-level control flow
graph. We therefore developed a normalization mechanism?® to generate an approximation to the structure
in which each source statement is reported in at most one position. The fragment shown in Figure 2 is an
example of this normalized representation.

To normalize a scope tree representation, bloop repeatedly applies the following rules until a fixed point
is reached.

e Whenever instances of one statement appear in two or more disjoint loop nests, the normalizer recur-
sively fuses their ancestors from the loop nesting level of the outermost of the statement instances, out
to the loop nesting level of their lowest common ancestor. Rationale: loop transformations often split a
loop nest into several pieces; to restore the representation to a source-like nesting requires fusing these
back together.

e When a statement appears at multiple distinct loop levels within the same loop nest, all instances
of the statement other than the innermost are elided from the mapping. Rationale: the statement
probadbly incurs the greatest cost in the innermost loop; moving the costs incurred in outer loops inward
will produce an acceptable level of distortion.

Finally, since the structure produced by bloop is intended only to organize the presentation of performance
metrics, all of the loops in each perfect loop nest are collapsed into the outermost loop of the nest. This
makes it less tedious to explore the scope hierarchy since it avoids presenting exactly the same information
for each of the loops in a perfect nest.

One unfortunate consequence of our current reliance on vendor tools for gathering performance profiles
is that the reporting of performance metrics at the source line level by these tools can make it impossible
in some case to attribute performance metrics correctly. In particular, if a program contains multiple loop
nests on the same line — e.g, such a case arises when a macro expands into multiple loop nests — one cannot
distinguish the performance of the individual loop nests. The normalized representation produced by bloop
for such cases dutifully fuses such loop nests so that these aggregate statistics can be reported sensibly.

A substantial benefit of using a binary analyzer such as bloop to discover program structure is that the
results of compiler transformations such as loop fusion and distribution are exposed to the programmer. For
example, when loops are fused in the executable, the normalized representation reported by bloop shows
statements in the fused loop as belonging to a common loop nest.

It is worth noting that any inaccuracy by a compiler in mapping object instructions to source constructs
degrades the accuracy with which bloop can generate a reasonable normalized scope tree. While mapping
information seems to be accurate for the SUN and Alpha compilers, the SGI C compiler sometimes associates
incorrect source line numbers with instructions performing loop condition tests and adjusting the values of
loop induction variable. We have not yet found a reliable method to compensate for this bug. It affects

3A command line switch to bloop suppresses normalization. This is useful for understanding compiler transformations and
will be used in a future version of HPCVIEW to display transformed code.



the reported line numbers of the loop scopes and it sometimes distorts the structure of the normalized tree.
One significant limitation of the bloop implementation is that it cannot yet extract symbolic information
from binaries produced with Sun’s vendor compilers. bloop gathers symbolic information using the GNU
binutils library, which lacks support for these compilers.

3.1 Research Issues

In its current incarnation, HPCVIEW does not provide any facilities for aggregating performance metrics
up the dynamic call chain. We are exploring methods for capturing dynamic call chain information through
binary instrumentation performed using EEL [17]. One problem we aim to address with this approach is the
attribution of communication costs to appropriate points in a program rather than having all communication
costs attributed to a few run-time library routines that are called from many places.

To better understand the impact of compiler optimizations, we have a project underway to write new
data collection tools that distinguish among distinct line instances. This approach will avoid the inaccuracy
encountered when using SGI and Compaq’s prof commands, which aggregate information from all line
instances. Combining our line-instance based performance metrics with the un-normalized control structure
information recovered by bloop, will enable more detailed analysis of the effectiveness of aggressive loop
transformations. Furthermore, combining line instance information with raw profile data will enable us to
correctly compute loop-level statistics, even when there are multiple loop nests on a single line. We are
currently developing a new tool, xprof, to perform this function. We expect this will be useful to developers
of optimizing compilers. We also believe that this capability will be useful for application tuning, especially
for understanding the relationships among performance, source-level program structure, and the detailed
structure of the code generated at each level of optimization.

4 Using the Tools

In this section, we briefly illustrate how HPCVIEW is used by walking through an analysis and tuning
of Sweep3D [13], a 3D Cartesian geometry neutron transport code benchmark from the Department of
Energy’s Accelerated Strategic Computing Initiative (ASCI). As a benchmark, this code has been carefully
tuned already, so the opportunities for improving performance are slim.

The hardware platform used for these sample application studies is a single 300MHz MIPS R12000
processor of a 16-processor SGI Origin 2000. Each processor has a 32KB 2-way set-associative primary data
cache, an 8MB 2-way set associative unified secondary cache, and a 64-entry TLB that maps a pair of 16KB
pages per entry.

To automate the collection of data and the generation of the HPCVIEW display shown in Figure 1, we
used a script that runs the program seven times. When a run is initiated, the execution environment is
directed to take a statistical sample of some program event during the execution. A separate monitored
run was needed to collect the data for each of the columns labeled CYCLES, L1 MISS, L2 MISS, TLB
MISS, and FLOPS. The column labeled MACCESS presents the memory accesses, a synthetic metric that
was computed as the sum of graduated loads and graduated stores; loads and stores were each collected
in a separate monitored run. Once the data was collected, a script ran SGI’s prof utility to report the
performance metrics collected in ASCII, conversion filters to translate the SGI’s Ascil data format into our
architecture-independent XML representation, and, finally, hpcview to correlate the source program with
each of the metrics and generate an HTML database with the results.

Each of the numbers in the performance metrics is computed by multiplying the number of samples by
the inverse of the sampling rate (expressed either as events per sample or events per cycle). A program-wide
total for each metric is displayed in the corresponding column header. An initial assessment of the program’s
performance and the potential for improvement can be performed by comparing these totals. Comparing
the total number of cycles to the total number of FLOPs, we see that the program completes a floating
point operation once every 4.2 cycles.* While this indicates that there is a substantial gap between achieved

4Each of these ratios combining multiple metrics could have been computed using HPCVIEW directly; however, we did not
use this approach to generate the figures for this paper because using more metrics would require a scrollable display, which is
cumbersome to present using static screen snapshots.
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performance and peak floating point performance, a comparison between the number of FLOPs and the
number of memory accesses shows that there are 1.7 memory operations per FLOP. Since only one memory
operation can be performed in each cycle, the number of memory operations places an upper bound on
achievable floating point performance unless the program can be restructured to increase temporal reuse of
values in registers and reduce the number of memory operations. The ratio between the number of cycles
and the total number of memory operations is 2.4. Thus, the program performance could potentially be
improved if memory hierarchy utilization can be improved. While tools such as SGI’s perfex [25] provide such
whole-program metrics and can be used for this sort of analysis, HPCVIEW provides the same perspective
for each scope level within a program including files, procedures, and loops.

We continue our overall performance assessment using the totals shown in Figure 1. The primary cache
miss rate computed as the ratio of the L1 MISS and MACCESS columns is 8.8%. The secondary cache miss
rate (computed as the ratio of L2 misses to L1 misses) is 2.5%. The TLB miss rate is about 0.4%. While
there is some room for improvement in memory hierarchy utilization, the miss rates are not particularly
excessive at any of the levels in the hierarchy, so the impact of improvements should be modest.

To determine if any source lines were responsible for a large share of the execution time, we navigated
to the computational loop responsible for 97% of the execution time and flattened it to display all of the
statements inside it as descendants. The top two source lines in the descendants display account for 29% of
the program’s total execution time. In the column displaying TLB information, we see that the top two lines
account respectively for 22% and 21% of the TLB misses in the entire execution. A click on the hyperlink
associated with the top line in the performance display caused the source pane to display and highlight
the selected line. A quick examination of the most costly source line and its surrounding loops yields the
reason for its poor TLB performance: accesses to flux(i,j,k,n) are performed in a loop nest in which the
innermost loop iterates over i (the stride-1 index), but the immediately enclosing loop iterates over n. This
iteration order causes the program to access a dense vector, then hop to another page to access another
vector. The second line in the performance display pane refers to another line in the program accessing
src(i,j,k,n) in the same fashion. Transforming the program or the data so that the loop nests iterate over
the array dimensions left to right will yield the best performance for Fortran’s column-major layout.

An examination of the program showed that except for a few lines in an initialization procedure, there
were no other accesses to the src and flux arrays in the code. In this case, permuting the dimensions of
these arrays so that they are referenced with n in the second dimension, i.e., src(i,n,j,k), will better
match their layout to the access order and avoid excessive page faults. Figure 3 shows the same information
for this improved version of the program. The two corresponding lines in the modified program remain
the most costly as shown in the line-level performance display (line numbers have changed slightly between
versions: 482 is now 479 and 392 is now 389). Comparing the aggregate TLB misses for corresponding pair
of lines in these two programs, we see that they have dropped from 43% of misses to only 2%. Despite the
improvement in TLB performance, these two lines remain the most costly in the program, accounting for
28% of the execution time, which as a whole is slightly less than 2% faster than the original version. This
was the first of a series of transformations that we applied to the program using HPCVIEW to focus our
tuning efforts.

4.1 Other Examples

HPCVIEW has also been used on several large production codes including CHAD, an 88,000 line Fortran
90 code for three-dimensional fluid flows with chemical reactions and fuel sprays developed at Los Alamos
National Laboratory. With CHAD, HPCVIEW helped uncover poor spatial and temporal reuse in a key
procedure. Poor reuse occurred because the vendor Fortran 90 compiler didn’t fuse aggressively enough after
scalarizing a large collection of Fortran 90 vector statements. Grouping compatible vector statements by
hand enabled the compiler to fuse more loops, leading to a 40% reduction in loads.

HPCVIEW has also been used to analyze SMG98 [12], a 20,000 line semi-coarsening multigrid code
written in C that was developed at Lawrence Livermore National Laboratory. Using HPCVIEW it was
straightforward to determine that the biggest problem with the code was that several of its key compu-
tational loops were memory bound. Node performance tuning efforts focused on this problem have led to
improvements of 20%.

Figure 4 shows the HPCVIEW configuration file used to produce the display of measured and computed
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Figure 3: Sweep3D after permuting dimensions of src and flux.

metrics for the ASCI HEAT benchmark (a 3D diffusion PDE solver) shown in Figure 5. The first column
in the display of Figure 5 shows CYCLES gathered by statistical sampling of the cycle counter. The second
column, ICYCLES, is “ideal cycles” as computed by SGI’s pixie utility. The third column, STALL, shows a
metric computed by HPCVIEW as the maximum of zero and the difference between CYCLES and ICYCLES.
MTOOL[9] was a tool built specifically to do exactly this kind of analysis. In contrast to MTOOL, however,
HPCVIEW’s mechanism for constructing derived metrics makes it easy to add other kinds of analyses to
the display. The final column of the figure shows graduated floating point instructions. From this display,
we see that 41% of the memory hierarchy stall cycles occur in line 1525 of file heat.F. The source window
shows that this comes from a matrix-vector multiply that uses indirect addressing to index the neighbors of
each cell. One potential way to improve performance is to break this loop into nested loops, with the inner
loop working on a vector of cells along either the X, Y, or Z axis. This would enable scalar replacement so
that successive iterations could reuse elements of vctrz along that dimension.

Figures 6 and 7 illustrate the use of computed performance metrics to compare the behavior of three
different systems: a Compaq ES40 with 500 MHz EV6 processors, a Compaq ES40 with 666 MHz EV67
processors, and an SGI Origin with 300 MHz R12K processors. In this example, we were interested in
identifying where in the benchmark program the different systems differed the most in their performance. In
Figure 7, the first three metrics defined are the raw cycle count profiles gathered on each of systems. Setting
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<HPCVIEW>
<TITLE name="heat.single" />
<PATH name="." />
<METRIC name="fcy_hwc" displayName="CYCLES">
<FILE name="heat.single.fcy_hwc.pxml" />
</METRIC>
<METRIC name="ideal" displayName="ICYCLES">
<FILE name="heat.single.ideal.pxml" />
</METRIC>
<METRIC name="stall" displayName="STALL">
<COMPUTE>
<math>
<apply><max/>
<apply><minus/>
<ci>fcy_hwc</ci> <ci>ideal</ci>
</apply>
<cn>0</cn>
</apply>
</math>
</COMPUTE>
</METRIC>
<METRIC name="gfp_hwc" displayName="FLOPS">
<FILE name="heat.single.gfp_hwc.pxml" />
</METRIC>
</HPCVIEW>

Figure 4: The HPCVIEW configuration file for Figure 5.
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Figure 5: Displaying both measured and computed metrics.

display=’’false’’ suppresses the display of these metrics. The next three computed metrics generate
cycle counter data normalized to microseconds. Then there are two computed metrics that compare EV6
and EV67 performance by taking their ratio and their difference. Two more computed metrics compare
the R12K and EV67. Finally, the STRUCTURE construct specifies a file containing the loop structure of the
program as extracted using a binary analysis of the R12K executable file.

The display in Figure 6 is sorted by the EV6-EV67 column to highlight the widest differences between
the systems. In this area of the program, performance is bounded by memory accesses to the flux and phi
arrays. Focusing only on costs attributed to line 520, the display indicates that the EV67 is faster than the
EV6 by a factor of 1.9 and faster than the R12K by a factor of 1.3. The ratios of performance differences
for the enclosing loop, however, are 1.7 and 1.6, respectively. For the whole program, the ratios swing back
again to 2.0 and 1.4. While some part of the difference between line and loop level measurements is due
to hardware properties, a substantial contribution to the difference comes from the variation in how the
different vendor compilers optimized this loop nest and how they attributed costs to individual source lines.
This example illustrates the importance of being able to examine and compare performance measurements
at several levels of aggregation.
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Figure 6: Comparison of cycle counts normalized to microseconds on three architectures.

4.2 Discussion

The ability to assemble data from multiple sources for analysis has proven to be useful for a wide variety
of tasks. By computing derived performance metrics that highlight differences among performance metrics
and then sorting on those differences, we can quickly identify phenomena of interest. This capability has
been used, as in the examples above, to diagnose the cause of performance problems. It has also been used
to compare executions of multiple nodes in a parallel computation, to identify input-dependent performance
variations, and to perform scalability studies. We have also used it to perform side-by-side comparisons
of performance between different compiler/architecture pairs and between different implementations of the
same architecture.

5 Related Work

Performance monitoring can be made more efficient by making use of special hardware features beyond simple
event counting. For instance, the experimental FLASH multiprocessor had a programmable cache controller.
FLASHPOINT [18], a performance-monitoring tool, was implemented by extending the cache controller code
with simulator-like instrumentation code at a cost of about a 10% slowdown.

The idea of computing the number of cycles lost due to architecture and system overheads has appeared
several times in the literature. MTOOL [9] estimated the number of cycles that a range of code would
take with no cache misses and compared this with the actual execution time. The difference is assumed to
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be either stalls or time spent in handlers for TLB misses and page faults. To compute the ideal execution
time, MTOOL instruments executable code by inserting counters to track the number of times each block is
executed and it uses a model of the machine to estimate the number of cycles necessary to execute the block.
Measurements are aggregated to present results at the level of loops and procedures. While this proved
useful for identifying the location of problems, diagnosis was still difficult because the causes of misses and
identification of the data objects involved was often difficult to determine from MTOOL’s output [9].

Going beyond attributing cycles “lost” to the memory hierarchy, lost cycles analysis [5] classified all of
the sources of overhead (waiting time) that might be encountered by a parallel program. The CARNIVAL tool
set [19] extended this into “waiting time analysis”. It provided a visualization tool that is similar in spirit
to the SVPABLO display, with each unit of source code having an execution time attributed to it. Colored
bars are used to indicate the percentage of time spent in each category of overhead.

All recent microprocessors have provided some form of hardware counters that can be configured to count
clock cycles or selected performance-related events. Profiling using these counters is facilitated by allowing
counter overflows to raise exceptions. The most basic way of accessing such profile information is through a
text file produced by the Unix prof command. Some graphical interfaces are emerging. SGI’s CVPERF [25]
performance analysis tool provides a variety of program views. Using CVPERF, one can display only one
experiment type, e.g. secondary cache misses, at a time. A pane displaying procedure-level summaries
enables one to bring up a scrollable source pane that shows an event count next to each source line. Sandia’s
VPROF [14] also displays a single performance metric by annotating each line with a count.

Sun Microsystems provides a rich GUI interface to performance measurement and display tools using the
Workshop programming development environment[23] and the dbx debugger. Under Solaris8, these tools
were extended to take samples, including the full callstack, on performance counter overflow. While the Sun
tools provide a generic set of basic profiling and analysis tools, the advanced features are largely orthogonal to
the concerns addressed by HPCVIEW. The Sun tools can display multiple metrics, but there is no provision
for computing derived metrics. While data can be aggregated inclusively, and exclusively up the call chain,
there is no way of aggregating metrics at scopes below the procedure level.

Both the Sun analyzer tool and the programs for displaying information from Compaq’s Dynamic Con-
tinuous Profiling Infrastructure [2] have options for displaying performance histogram data in a listing of
disassembled object code annotated with source code. While this makes it possible to analyze highly-
optimized code where a single source line may map into multiple instances in the executable, it is a difficult
and time consuming exercise. Adve et al. [1] demonstrated a performance browser that uses compiler-derived
mapping information to interactively correlate HPF source code with the compiler’s parallelized, optimized
F77+MPI output, which is instrumented with SvPablo (see below). This combination can present MPI
performance data in terms of both the transformed and original code. Vendor compilers are increasingly
able to generate annotated listings that attempt to explain both what optimizations have been performed
and what aspects of the program inhibit optimization. To our knowledge, performance data has not been
integrated with this information for presentation.

SVPABLO (source view Pablo) is a graphical environment for instrumenting application source code and
browsing dynamic performance data from a diverse set of performance instrumentation mechanisms, which
include hardware performance counters [7]. Rather than using overflow-driven profiling, SVPABLO library
calls are inserted in the program, either by hand, or by a preprocessor that can instrument procedures
and loops. The library routines query the hardware performance counters during program execution. After
program execution is complete, the library records a summary file of its statistical analysis for each executing
process. Like, HPCVIEwW, the SVPABLO GUI correlates performance metrics with the program source and
provides access to detailed information at the routine and source-line level. Next to each source line in the
display is a row of color-coded squares, where each column is associated with a performance metric and
each color indicates the importance that source line has on the overall performance of that metric. However,
SvPABLO’s displays do not provide sorted or hierarchical displays to facilitate top-down analysis.

Recently, DeRose described the Hardware Performance Monitor (HPM) Toolkit, developed for under-
standing application performance on IBM’s Power 3 architecture [8]. The HPM toolkit provides for display
of performance metrics based on data collected by inserting measurement calipers into an application. Cur-
rently, a user must statically add instrumentation calipers to a program or use a pre-instrumented library,
though a tool for dynamic insertion of calipers is being developed. HPM can display both raw metric data
as well as a fixed set of derived metrics specified by the tool developer. The toolkit includes HPMV1iz, a
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tool that presents performance metrics correlated with source code. However, unlike HPCVIEW, metrics are
not presented in a hierarchical fashion, which precludes top-down analysis.

6 Concluding Remarks

In this paper we described some of the design issues and lessons learned in the construction and use of
HPCVIEW, a performance analysis toolkit intended specifically to increase programmer productivity in
performance engineering by being easier to use, while providing more powerful analytic capabilities than
existing tools.

As described in previous sections, we have used HPCVIEW on several whole applications. Notably,
this has included a 20,000 line semi-coarsening multigrid code written in C, an 88,000 line Fortran 90 code
for three-dimensional fluid flows, and a multi-lingual 200,000 line cosmology application. In each of these
codes the tools enabled us to quickly identify significant opportunities for performance improvement. For
large codes, however, the HTML database size grows large when many metrics are measured or computed.
Currently, we precompute static HTML for the entire set of potential displays. For example, instead of
dynamically sorting the performance metric panes, hpcview writes a separate copy of the data for each sort
order. These separate copies are written for the data in each of the program scopes. We have seen HTML
databases relating several performance metrics to a 150,000 line application occupy 300MB in approximately
10,000 files. These databases correlate performance metrics to all of the application sources. To reduce the
size of performance databases, we are completing development of a stand-alone performance browser written
in Java that creates views on demand.

Acknowledgments

Monika Mevencamp and Xuesong Yuan were the principal implementers of the first version of HPCVIEW.
Nathan Tallent and Gabriel Marin have been the principal implementers of the bloop binary analyzer for
identifying loops. We thank Jim Larus for letting us use the EEL binary editing toolkit as the basis for
constructing bloop. This research was supported in part by NSF grants EIA-9806525, CCR-9904943, and
ETA-0072043, the DOE ASCI Program under research subcontract B347884, and the Los Alamos Computer
Science Institute (LACSI) through LANL contract number 03891-99-23 as part of the prime contract (W-
7405-ENG-36) between the DOE and the Regents of the University of California.

References

[1] V. Adve, J. Wang, J. Mellor-Crummey, D. Reed, M. Anderson, and K. Kennedy. An integrated compilation and
performance analysis environment for data parallel programs. In Proceedings of Supercomputing 95, December
1995. http://www.supercomp.org/sc95/proceedings/528 _VADV/PAPER.PS.

[2] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Leung, R. Sites, M. Vandevoorde, C. Waldspurger,
and W. Weihl. Continuous profiling: Where have all the cycles gone. In Proceedings of the 16th ACM Symposium
of Operating Systems Principles.

[3] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving balance for pipelined machines.
Journal of Parallel and Distributed Computing, 5(4):334-358, August 1988.

[4] K. W. Cameron, Y. Luo, and J. Scharmeier. Instruction-level microprocessor modeling of scientific applications.
In ISHPC 1999, pages 29 — 40, Japan, May 1999.

[6] M. Crovella and T. LeBlanc. Parallel Performance Prediction Using Lost Cycles. In Proceedings Supercomputing
’94, pages 600-610, November 1994.

[6] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl, and George Chrysos. ProfileMe:
Hardware support for instruction-level profiling on out-of-order processors. In Proceedings of the 30th An-
nual International Symposium on Microarchitecture (Micro ’97), Research Triangle Park, NC, December 1997.
http://citeseer.nj.nec.com/dean97profileme.html.

[7] L. DeRose, Y. Zhang, and D. Reed. SvPablo: A Multi-Language Performance Analysis System. In 10th
International Conference on Performance Tools, pages 352-355, September 1998.

17



8]

[9]

[10]
[11]
[12]
[13]

(14]
(15]

(16]
(17]

18]

(19]

20]

(21]

(22]
(23]

(24]
(25]

7

Luiz DeRose. The hardware performance monitor toolkit. In FEuropean Conference on Parallel Computing
(Euro-Par), Lecture Notes in Computer Science 2150, pages 122-131, Manchester, United Kingdom, August
2001. Springer-Verlag.

A. J. Goldberg and J. Hennessy. MTOOL: A Method for Isolating Memory Bottlenecks in Shared Memory
Multiprocessor Programs. In Proceedings of the 1991 International Conference on Parallel Processing, volume
II, Software, pages 1I-251-11-257, Boca Raton, FL, August 1991. CRC Press.

W3C Math Working Group. Mathematical markup language (MathML) 1.01 specification, July 1999.
http://www.w3.org/TR/REC-MathML.

Paul Havlak. Nesting of reducible and irreducible loops. ACM Transactions on Programming Languages and
Systems, 19(4):557-567, July 1997.

The ASCI 30-TeraOps SMG98 Sample Application. DOE Accelerated Strategic Computing Initiative.
http://www.acl.lanl.gov/30TeraOpRFP/SampleApps/smg98/smg98.html.

The ASCI sweep3d Benchmark Code. DOE  Accelerated Strategic Computing Initiative.
http://www.1llnl.gov/asci_benchmarks/asci/limited/sweep3d/asci_sweep3d.html.

C. Janssen. The Visual Profiler, 1999. http://aros.ca.sandia.gov/"cljanss/perf/vprof/doc/README.html.

T.Y. Johnston and R. H. Johnson. Program performance measurement. Technical Report SLAC User Note 33,
Rev. 1, SLAC, Stanford University, California, 1970.

D. E. Knuth and F. R. Stevenson. Optimal measurement points for program frequency counts. BIT, 13(3):313—
322, 1973.

J. Larus and E. Schnarr. EEL: Machine-Independent Executable Editing. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 291-300, June 1995.

M. Martonosi, D. Ofelt, and M. Heinrich. Integrating Performance Monitoring and Communication in Parallel
Computers. In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, pages 138-147, May 1996.

W. Meira Jr., T. LeBlanc, and A. Poulos. Waiting time analysis and performance visualization in Carnival. In
Proceedings of ACM SIGMETRICS Symposium on Parallel and Distributed Tools, pages 1-10, May 1996.

John Mellor-Crummey, Robert Fowler, and David Whalley. On providing useful information for analyzing and
tuning applications. In Joint International Conference on Measurement & Modeling of Computer Systems, pages
332-333, Cambridge, MA, June 2001.

John Mellor-Crummey, Robert Fowler, and David Whalley. Tools for application-oriented performance tuning.
In Proceedings of the 15th ACM International Conference on Supercomputing, pages 154-165, Sorrento, Italy,
June 2001.

Silicon Graphics Incorporated. MIPS R10000 Microprocessor User’s Manual Version 2.0, 1996.
http://wuw.sgi.com/processors/r10k/manual.html.

Sun  Microsystems. Analyzing  Program  Performance With ~ Sun WorkShop, 2001.
http://docs.sun.com/htmlcoll/coll.36.7/is0-8859-1/SWKSHPPERF/AnalyzingTOC.html.

R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System Sciences, 9:355-365, 1974.

M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance Analysis Using the MIPS R10000 Performance
Counters. In Proceedings Supercomputing ‘96, November 1996.

Biographies

John Mellor-Crummey earned a B.S.E. degree magna cum laude in electrical engineering and computer
science from Princeton University in 1984, and M.S. (1986) and Ph.D. (1989) degrees in computer science
from the University of Rochester. He joined Rice University in 1989 and is now a Senior Faculty Fellow
in the Department of Computer Science, the Center for High Performance Software, and the Los Alamos
Computer Science Institute.

Robert J. Fowler received the A.B. degree cum laude in Physics from Harvard University in 1971 and
the M.S. (1981) and Ph.D.(1985) degrees in Computer Science from University of Washington. He was
at the University of Rochester from 1986 to 1993. He was a visiting associate professor at University of

18



Copenhagen (DIKU) from 1993 to 1994. At Rice University since 1995, he is currently a Research Scientist
in the Department of Computer Science and the Center for High Performance Software Research. He is also
a Fellow of the Los Alamos Computer Science Institute.

Gabriel Marin earned a B.S. degree in computer science from Politehnica University of Bucharest (Bucharest,
Romania) in 1998, and is a currently working towards an M.S. in computer science at Rice University. His
research interests are distributed systems and operating systems.

Nathan Tallent earned a B.A. degree in computer science from Rice University (Houston, TX) in 1998.
He has worked on the HPCVIEW project as a part-time research programmer while a student at Westminster
Theological Seminary (Philadelphia, PA). He expects to earn a M.Div. in May 2002 and plans to pursue a
Ph.D. in historical theology.

19



<HPCVIEW>
<TITLE name="Normalized cycles R12K vs EV6 vs EV67 " />
<PATH name="." />
<STRUCTURE name= "sweep.bloop" />
<METRIC name="a" displayName="Ev6Cycles" display="false">
<FILE name="sweepsing.ev6cy.pxml" /> </METRIC>
<METRIC name="b" displayName="Ev67Cycles" display="false">
<FILE name="sweep.ev67cy.pxml" /> </METRIC>
<METRIC name="c" displayName="R12KCycles" display="false">
<FILE name="../sgivl/mapy.fcy_hwc.pxml" /> </METRIC>
<METRIC name="cy6" displayName="Ev6Cycles" >
<COMPUTE> <math><apply>
<divide/><ci>a</ci><cn>500</cn>
</apply></math> </COMPUTE> </METRIC>
<METRIC name="cy67" displayName="Ev67Cycles" >
<COMPUTE> <math><apply>
<divide/><ci>b</ci><cn>666</cn>
</apply></math> </COMPUTE> </METRIC>
<METRIC name="cyR12K" displayName="R12KCycles" >
<COMPUTE> <math><apply>
<divide/><ci>c</ci><cn>300</cn>
</apply></math> </COMPUTE> </METRIC>
<METRIC name="r1" displayName="EV6/EV67" percent="false">
<COMPUTE><math><apply>
<divide/><ci>cy6</ci><ci>cy67</ci>
</apply> </math> </COMPUTE> </METRIC>
<METRIC name="d1l" displayName="EV6-EV67" >
<COMPUTE><math><apply>
<minus/><ci>cy6</ci><ci>cy67</ci>
</apply> </math> </COMPUTE> </METRIC>
<METRIC name="r2" displayName="12K/67" percent="false">
<COMPUTE> <math><apply>
<divide/><ci>cyR12K</ci><ci>cy67</ci>
</apply> </math> </COMPUTE> </METRIC>
<METRIC name="d2" displayName="12K-67" percent="false">
<COMPUTE> <math><apply>
<minus/><ci>cyR12K</ci> <ci>cy67</ci>
</apply> </math> </COMPUTE> </METRIC>
</HPCVIEW>

Figure 7: The HPCVIEW configuration file for Figure 6.
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