
RICE UNIVERSITY

Semi-Automatic Synthesis of Parameterized

Performance Models for Scientific Programs

by

Gabriel Marin

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

John Mellor-Crummey
Senior Faculty Fellow, Computer Science

Kenneth W. Kennedy
Ann and John Doerr University Professor,
Computational Engineering

Vijay S. Pai
Assistant Professor, Electrical and
Computer Engineering

Houston, Texas

April, 2003

Semi-Automatic Synthesis of Parameterized

Performance Models for Scientific Programs

Gabriel Marin

Abstract

Building parameterized performance models of applications in an automatic way is

difficult because of the large number of variables that affect performance, including

architecture-dependent factors, algorithmic choices and input data parameters. In

general, application performance is a non-convex and non-smooth function in this

multivariate parameter space.

This thesis describes techniques to measure and model application characteristics

independent of the target architecture. This approach produces an architecture-

neutral model for an application. For predictable applications, such models have

a convex and differentiable profile. Our approach succeeds in modeling the most

important application factors that affect performance and enables us to explore the

interactions between a target architecture and application characteristics.

To date, work has concentrated on modeling the performance of intervals of se-

quential computation. Our models are designed to characterize node performance

between synchronization points in parallel programs, with the eventual goal of mod-

eling the performance of parallel applications.

Acknowledgments

First of all, I would like to thank my advisor, John Mellor-Crummey, for his support

and continuous guidance. His advice was a substantial help in my understanding of

performance analysis. Also, John’s careful reading of the draft of my thesis greatly

improved the clarity of the final version.

Next, I would like to thank Ken Kennedy and Vijay Pai for their contribution as

members of the committee of this thesis. I am grateful to Richard Hanson for the

discussions we had regarding modeling strategies.

My parents have always encouraged me and guided me to independence. I am

grateful to them for their generosity.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vi

List of Tables viii

1 Introduction 1

2 Background 4

2.1 Performance Prediction Techniques 5

2.1.1 Profile-based approaches . 5

2.1.2 Simulation-based approaches 7

2.1.3 Pencil-and-paper analytical methods 8

2.2 Memory Performance Analysis . 10

2.2.1 Understanding How Caches Work 10

2.2.2 General Techniques for Memory Performance Analysis 14

3 Toolkit Design and Implementation 17

3.1 Updates to the EEL library . 18

3.2 Static Analysis . 21

3.3 Dynamic Analysis . 21

3.3.1 Collecting Execution Frequency Histograms 22

3.3.2 Collecting Communication Data 28

3.3.3 Monitoring Memory Access Behavior 31

3.3.4 General Features of the Binary Instrumenter 33

v

3.4 From Data to Parameterized Models 35

3.4.1 Building models of the execution frequency 35

3.4.2 Building models of the memory access pattern 37

3.5 Mapping the Models to a Target Architecture 43

4 Experiments 46

4.1 Characterizing the PSTSWM Application 46

4.1.1 Constructing FLOP Count Models for PSTSWM 46

4.1.2 Validating the FLOP Count Models 51

4.1.3 Memory Reuse Distance Models for PSTSWM 53

4.2 FLOP Count Models for CRM . 60

5 Conclusions 64

Bibliography 66

Illustrations

2.1 A loop nest to multiply a pair of matrices. 13

3.1 Toolkit architecture overview. 17

3.2 Step by step example for inserting counters into a CFG 28

3.3 Example of reuse distance histogram. All references with reuse

distance less than the cache size are hits. 38

3.4 The error distribution of the average memory reuse distance model

for Sweep3D. The x axis represents the problem size and the y axis

represents the fraction of accesses. The model has less than 1% error

for three quarters of the accesses and the tendency is to have a higher

precision for larger problem sizes. 39

3.5 The surface on the right is the parameterized model for one of the

most frequently executed memory accesses in Sweep3D. On the left is

the original data collected for that instruction. The x axis represents

the problem size, on the y axis is normalized number of accesses and

the z axis represents the reuse distance. 41

3.6 Example of predicting the cache misses using a memory reuse

distance model . 42

3.7 The collected data and the constructed model for another frequently

executed memory access from Sweep3D. The x axis represents the

problem size, on the y axis is normalized number of accesses and the

z axis represents the reuse distance. 43

vii

4.1 The number of FpAdd operations measured for all valid NLON

values less than 256 . 48

4.2 The number of FpAdd and FpMult operations, measured for

NLON = 2k, k = 4, 9. 49

4.3 The accuracy of the constructed model in two variables, relative to

the measured data collected by our tool. 51

4.4 L1 miss counts predicted vs. measured for the four most important

computational routines in PSTSWM. 55

4.5 Dynamic memory operation count predicted vs. measured. 55

4.6 The innermost loop of routine rspiv. 56

4.7 Depending on the alignment of each column of the SUM array, the

two elements referenced in one iteration can be located either in the

same memory block(left), or in different memory blocks(right). 58

4.8 Data collected for one of the accesses to the SUM array. About half

of the reuse distance histograms have a similar fraction of accesses

with distance zero (10%). The other histograms, marked with an

arrow, seem to have a variable fraction of accesses with distance zero. 59

4.9 L1 miss count predicted vs. measured after the divergent data points

have been removed. 59

4.10 Dynamic memory operation count predicted vs. measured for the

binary compiled with -dalign. 60

Tables

3.1 Classification of SPARC native instructions into generic RISC classes. 45

4.1 Two variable routine-level models of the count of dynamic floating

point instructions and their relative error (first part). 62

4.2 Two variable routine-level models of the count of dynamic floating

point instructions and their relative error (second part). 63

1

Chapter 1

Introduction

Characterizing and modeling the performance of parallel applications has been a long-

standing goal of computer science research. An accurate performance model for an

application has many uses including understanding its scalability, providing guidance

for resource selection at launch time, guiding on-line performance monitoring and

run-time adaptation, and providing input for design of future architectures that will

meet an application’s resource needs.

Building accurate performance models for parallel applications is difficult. Sim-

ply knowing the number of floating-point operations a scientific application executes

provides little indication of its performance. Scientific codes rarely achieve peak per-

formance. On a single node, memory hierarchy latency and bandwidth are significant

limiting factors. Also, an application’s instruction mix can dramatically affect per-

formance; today’s superscalar processors can execute multiple instructions in parallel

if they are provided with the right mix of instructions. For parallel programs, com-

munication frequency, communication bandwidth and serialization complicate the

situation further.

Traditionally, scientists have manually built analytical models of an application’s

performance. This requires a thorough understanding of the algorithms that are used

in an application, as well as of their implementation. The advantage of manually

constructing such models is that they can be very precise. However, building accurate

models in this way is laborious and painstaking.

The thesis of this work is that it is possible to characterize the performance of

sequential and parallel applications in a semi-automatic way, with a reasonable accu-

2

racy. Building parameterized performance models of parallel and single node applica-

tions is difficult because of the large number of variables that affect performance, in-

cluding architecture-dependent factors, algorithm/application choices and input data

parameters. Moreover, these factors interact in complex ways, producing a perfor-

mance function that is non-convex and non-smooth in this multivariate parameter

space.

This thesis proposes separating the contribution of application-specific factors

from the contribution of characteristics of the target architecture. The benefits of

this approach are two fold: first, by modeling the application-specific factors we can

build architecture-neutral models, portable across different platforms; second, models

that describe the algorithmic and application choices are most of the time monotonic

polynomial functions that are easier to synthesize. Our approach succeeds at building

parameterized analytical models of the most important characteristics of black-box

applications in a semi-automatic way.

We build models using information from both static and dynamic analysis of an

application’s binary. By working with application binaries instead of program source

code, we are able to build language-independent tools that can naturally analyze

applications with modules written in different languages or linked with third party

libraries. By analyzing binaries, the tool can also be useful both to application writers

and to compiler developers by enabling them to evaluate performance and scalability

of algorithms as well as to verify the effectiveness of their manual or compiler-based

optimizations. We use static analysis to construct the control flow graph of each rou-

tine in an application and to examine the instruction mix inside the most frequently

executed loops. We use dynamic analysis to collect data about the execution fre-

quency of basic blocks, to collect information about synchronization among processes

and to measure reuse distance seen by individual memory accesses.

The rest of this thesis is organized as follows. Chapter 2 presents background in-

formation and recent related work. Chapter 3 describes in more detail the goals, the

3

design and the implementation of our performance toolkit. Chapter 4 discusses ex-

periments using our toolkit to synthesize performance models for several applications.

Chapter 5 presents our conclusions and identifies directions for future work.

4

Chapter 2

Background

Performance analysis and modeling comprise the process of building mathematical

constructs to describe performance characteristics of a computer system. Performance

prediction represents the computation of an estimated execution time of a program on

a given architecture. Predicting the execution time of an application under varying

conditions is one of the most important, and yet most difficult, aims of performance

analysis research.

Performance analysis research is useful to several groups of people. Compiler

writers, application developers and computer architects have the most interest in this

research area. Application developers need performance analysis to understand the

causes of inefficiency in their programs, guide procurements and guide the selection

of an appropriate set of resources at application launch time. Compiler writers may

use performance tools to understand opportunities for optimization, estimate poten-

tial payoff of optimizations on today’s architecture or to evaluate the performance

of the code they generate for the architectures of tomorrow that are in the design

stage. Finally, computer architects may use performance models to understand the

causes of performance inefficiencies, estimate their impact, and explore the impact of

architectural changes.

Existing performance prediction methods range from back-of-the-envelope esti-

mates to detailed analytical models or cycle-accurate simulations. Recent work in

this field focused on finding an approach that will cut the time overhead required by

the full-scale simulators while maintaining a reasonable level of accuracy. In the next

section, I present some of the recent work in this field. In section 2.2, I describe the

5

existing techniques for analyzing memory access behavior.

2.1 Performance Prediction Techniques

We can divide the existing techniques into three main categories: profile-based ap-

proaches, simulation-based approaches and pencil-and-paper analytical methods.

2.1.1 Profile-based approaches

Profile-based performance prediction methods use hardware performance counters or

code instrumentation to collect performance data during an application’s execution.

Afterwards, a post-processing tool analyzes this data to determine places where most

time is wasted and, hence, are the most profitable to be optimized, or to compute an

estimate for the application’s execution time.

Hardware performance counters are a set of special registers available on most

modern microprocessors. These registers count events related to events that take place

inside the processor or the memory subsystem when application software is executed.

Hardware performance counters can capture statistics about executed instructions or

memory hierarchy behavior with a minimal time overhead. Hardware performance

counters are especially useful in gathering data about the interaction between the

application and the hardware it is running on. The method presented in this thesis

constructs models for characteristics of an application that are not dependent on the

hardware; therefore, hardware counters are not used by our toolkit.

Alternatively, code instrumentation can be used to collect information about appli-

cations’ performance. Code instrumentation can be performed either on source code

or on object code. Object code instrumentation can be classified further as dynamic

instrumentation, link-time instrumentation, or static instrumentation. In recent

years, several tools/libraries for binary instrumentation have emerged. DynInst [9]

is a portable application program interface (API) that enables development of tools

and applications that require run-time code patching. Dynamo [5] is a run-time dy-

6

namic optimization system that focuses on optimization opportunities which manifest

themselves only at runtime and, hence, are difficult for a static compiler to exploit.

Purify [15] is a well known tool for memory error and leak detection that uses ob-

ject code instrumentation at link-time to monitor memory allocation, deallocation

and memory accesses performed by an application. The category of static binary

instrumentation is represented by EEL [18], ATOM [28] and Etch [26] libraries that

enable tools and applications to analyze and modify binary programs without being

concerned with low-level architecture details.

Snavely, Wolter and Carrington [27] assume that a parallel application’s perfor-

mance is based on two major factors: its single node performance and its use of a

communication network. They consider that the network interconnect contribution

can be estimated with reasonable results by a network simulator. For single proces-

sor performance, their investigations focus on memory-bound codes, such as the NAS

Parallel Benchmarks [4] (NPB) kernels. Therefore, they use the “rule of thumb” that

the per-processor performance of an application is predominantly a function of how

it exercises the memory subsystem. Their performance prediction method consists of

collecting Machine Signatures, characterizations of the rates at which a machine can

execute fundamental operations independent of the particular application, and Ap-

plication Profiles, summaries of the fundamental operations to be carried out by the

application in abstraction of any particular machine. Then the application profiles

are mapped onto the machine signatures using a Convolution Method. For the NPB

kernels they considered, the errors of the estimates are less than 20% in all cases.

The cost of the modeling is a sixty-fold slowdown for collecting the Application Pro-

files and a roughly equal amount of time spent in gathering the Machine Signatures.

However, the latter information can be used for other applications without any fur-

ther overhead. This time overhead is favorable when compared to a cycle-accurate

simulation that can have as high as a six orders of magnitude slowdown without a

significant gain in accuracy for these memory-bound kernels.

7

However, considering the requirements of executing profiled applications at full

scale to get node characterizations, and simulating communication traces at full scale

to estimate the synchronization cost, we consider that even a sixty-fold slowdown

is an important deterrent for using this method on large data sizes for which the

original program can run for days. The memory-bound rule can be safely applied

to many scientific applications, but this should not be a general assumption. Other

factors, such as the instruction schedule dependencies, can affect the estimates more

than just a few percent. Snavely et al’s work is the closest in concept to the method

presented in this thesis. We also focus on collecting application characteristics inde-

pendently of the target machine. Unlike Snavely et al., we consider not only models for

memory-bound applications; our models consider a variety of factors that can affect

performance, including memory hierarchy latency, the instruction schedule depen-

dencies and instruction mix inside the most executed loops, and the synchronization

among processes. More importantly, we build scalable models of these application

characteristics. As a result, we can predict performance of an application for larger

problem sizes than the ones that are practical for monitoring and simulating at scale.

2.1.2 Simulation-based approaches

Performance prediction methods based on simulation consist of executing an appli-

cation in conjunction with a program that emulates the target architecture. Since

each dynamic instruction must be simulated, these methods have a significant time

overhead. On the other hand, a detailed simulation can produce a very accurate pre-

diction of the application’s performance. Trace-based simulators are a common style

tool supporting this type of method. To use a trace-based simulator, the application

is instrumented using a profile-based tool to collect a trace of fundamental events

that occur during its execution. The resulting trace file is then fed into a program

which simulates only a fraction of the dynamic instructions originally executed by

the application. Hence, this method is much faster than a cycle-accurate simulation.

8

However, speed comes at a cost and the trade-off in this case is the accuracy of the

prediction and the level of detail about the phenomena taking place inside the simu-

lated machine. A general drawback of simulators is that the user has to simulate the

application under study for each data set of interest. Still, simulation or trace-based

simulation can be used together with other techniques to construct scalable models

of an application’s performance.

The POEMS [2] project by Adve et al., is an environment for end-to-end perfor-

mance modeling of complex parallel and distributed systems. The POEMS modeling

effort spans the domains of application software, runtime libraries, operating system,

and hardware architecture. The POEMS effort aims to assemble component models

from these different domains into an end-to-end system model. The composition pro-

cess is specified using a generalized graph model of a parallel system, combined with

interface specifications describing the component behaviors and evaluation methods.

The POEMS framework is a complex system that aims at building complete end-to-

end models using a large range of modeling paradigms including analysis, simulation

and direct measurement. The drawbacks of this approach are the high complexity

of the system with possible long execution times for the simulators and the system’s

dependency on the task graph that can be generated only by the Rice dHPF com-

piler [22]. This thesis explores another approach for building scalable models of an

application’s computation using dynamic analysis of application binaries without any

special compiler support.

2.1.3 Pencil-and-paper analytical methods

The pencil-and-paper method is the traditional technique for building performance

models. It requires a deep understanding of the algorithms that are used in an applica-

tion, details about their implementation and a good knowledge of the synchronization

techniques chosen by the developers. As a result, this method is not widely used in

industry. It is used only by highly skilled researchers. However, it will continue to be

9

used until more automated methods become mature enough to achieve the desired

levels of accuracy. On a smaller scale, pencil-and-paper models can also be used to

validate models constructed with other techniques.

Sundaram-Stukel and Vernon [29] analyze and construct a LogGP performance

model for Sweep3D, a wavefront application with a complex synchronization struc-

ture. They focus on building accurate models of MPI communication primitives using

micro-benchmarks on two or four nodes. They show that the LogGP model predicts

with high accuracy the measured application execution time for large problem sizes

running on 128 nodes or more. Stukel and Vernon found poor scaling beyond two

thousand nodes for the Sweep3D application using the current algorithm, due to

synchronization overhead. We also plan to use the LogP [11, 13] or LogGP [3] mod-

els to characterize the time spent in communication and synchronization primitives.

The LogP models combined with our single-node modeling approach can provide the

support to construct models of entire parallel applications.

Hoisie et al. [16] studied the performance of wavefront algorithms implemented us-

ing message passing on 2-dimensional logical processor arrays. Wavefront algorithms

are widely used in parallel computing since they enable parallelism in computations

that contain recurrences. Hoisie’s group is focused on predicting performance of wave-

front applications on cost-effective machines that have non-uniform network topolo-

gies, such as in a cluster of SMPs interconnected by a network of lower dimensionality.

This type of architecture is the main candidate for building the multi-TeraOp systems

of tomorrow. In their work on wavefront applications, they successfully captured the

communication pattern in their model resulting in an accurate performance model

validated on a cluster of Origin 2000 machines with up to 1024 processors.

While the pencil-and-paper approach has produced some of the most accurate

models to date, the obvious disadvantage is the human effort required to construct

them.

10

2.2 Memory Performance Analysis

With the continuously widening gap between the peak performance of microproces-

sors and the available memory bandwidth, it is unanimously accepted that memory

hierarchy response is the factor most limiting node performance. Cache memories

are small, fast buffers placed between the processor and the main memory to help

hide the large latency of memory accesses. Caches are effective only if an application

exhibits temporal or spatial cache reuse. For an application with a working set much

larger than the cache size, a stream of random accesses to the working set will have

little or no cache reuse. To increase the reuse in the cache, one can either increase

the size of the cache to be approximately the size of the working set or one can op-

timize the application to exploit temporal reuse of data that is already in the cache

before evicting it. In this section I describe the main techniques for assessing how an

application uses the memory hierarchy. First, I review how caches work.

2.2.1 Understanding How Caches Work

Caches are characterized by three principal parameters: cache size, block size, and

associativity. The cache size is the total capacity of the cache in bytes. The cache is

divided into a number of equally sized blocks called cache lines. All operations with

the next level of the memory hierarchy are performed with a cache line granularity.

The size of the cache line defines the number of bytes that are fetched from memory

when a cache miss occurs, or the number of bytes written to memory when a modified

cache line has to be evicted. The capacity of the cache (C) is equal to the number of

blocks (N) times the block size (B).

The associativity represents the number of unique cache lines in which a memory

block can reside. If a memory block can be loaded into one cache line only, the cache

has a direct mapping. If the block can be loaded into any cache line, the cache is fully

associative. If the block can reside in a set of exactly k cache lines, then the cache is

k-way set-associative.

11

The level of associativity built into a cache memory affects the performance of the

entire system. Fully associative caches are expensive and difficult to build; therefore,

caches used in practice have a much lower level of associativity. To understand how the

associativity level can affect the performance, one must consider how memory blocks

are mapped into the cache lines depending on the type of cache. Let R be the ratio

between the size of the memory and the capacity of the cache. Because the capacity

of the cache is much smaller than the size of the memory, on average R blocks from

the memory compete for each one of the N blocks in the cache. In a fully associative

cache any of the R ∗ N memory blocks can occupy any of the N cache blocks. In a

k-way set-associative cache, R ∗ k memory blocks compete for a set of k blocks in the
cache. Even if the ratios are equal, there is a difference in the size of the two sets.

For a fully associative cache, the layout of the data in memory has little importance.

For a system with a lower level of associativity (k), if the accesses to memory are

referencing only one set of R ∗ k memory blocks, then only the corresponding set of k
cache lines is used. Therefore, more optimizations are necessary when compiling an

application for a machine with a low level of cache associativity, to ensure that the

most frequently accessed data structures are uniformly distributed over the N/k sets.

A cache hit is classified as a temporal reuse or a spatial reuse. We say that

a memory access has temporal reuse in the cache if a previous access to the same

location fetched the memory block into the cache or kept it from being replaced. A

memory access has spatial reuse in the cache if a previous access to a location from the

same memory block caused the cache line to be in the cache. A cache configuration

with a cache line of size one has no spatial reuse.

Cache misses can be classified in three categories: compulsory misses, capacity

misses and conflict misses. Compulsory misses are also called cold misses because

they are caused by a cold cache. A cold miss is produced by accessing a memory block

that was not referenced before. If an application has to access each memory block

only once in the entire execution, then all memory accesses will result in compulsory

12

misses. Reducing the number of compulsory misses requires explicitly prefetching the

data. Another (theoretical) solution is to reduce the number of blocks in memory by

increasing the block size.

An access to a memory block bi is a capacity miss if and only if at least N different

other blocks were referenced since the last access to bi. This is equivalent to saying

that capacity misses are misses that would occur in a fully associative cache with

an LRU replacement policy and that are not compulsory misses. The number of

capacity misses can be reduced by either increasing the number of blocks in the cache

or by restructuring the application to reuse blocks while they are in cache, if there is

potential temporal reuse that is not being exploited.

A reference that hits in a fully associative cache and misses in a k-way set-

associative one is called a conflict miss. It means the referenced block bi was accessed

in the recent past because the reference is a hit in a fully associative cache, but at

least k other different memory blocks from the set of R ∗ k blocks that compete for

this set of cache lines were also referenced since then, causing the eviction of block

bi. Conflict misses are the most difficult to model or to predict since they are the

result of a complex interaction between the characteristics of the cache sub-system,

the layout of the data in memory and the access pattern used by application to access

this data.

In fact, in certain cases an application can have a negative number of conflict

misses, meaning the program will see more misses with a fully associative cache than

with a 2-way set-associative. This behavior can be illustrated with an unoptimized

matrix-multiply program. Figure 2.1 presents the “C” code for a simple matrix-

multiply program. Arrays X, Y and Z are laid out in memory in row-major order -

consecutive elements of a row occupy consecutive locations in memory. If we consider

a case where the matrix line size expressed in bytes (M ′) is less than the size of

the cache (C) but the number of elements in a line or column (M) is greater than

the number of blocks in the cache, we would expect to see only spatial reuse for

13

consecutive stride one accesses to X performed in the inner loop and no temporal

reuse from the middle loop in case of a fully associative cache.

for(i=0 ; i<M ; i++)
for(j=0 ; j<M ; j++)
{

Z[i][j] = 0;
for(k=0 ; k<M ; k++)

Z[i][j] += X[i][k]*Y[k][j];
}

Figure 2.1 : A loop nest to multiply a pair of matrices.

The program references a full row of matrix X and a full column of matrix Y

before reusing the same row of X in the next iteration of the middle loop. We can

compute how many blocks are accessed by the inner loop. A line of the matrix X

occupies M ′/B blocks, where B is the block size in bytes. An entire column of Y

occupies M blocks, where M is the number of elements in a column, because two

consecutive elements of a column occupy two different memory blocks. From the

hypothesis, M is greater than the number of blocks in the cache. As a result, one

column of Y occupies more blocks than the total number of blocks in the cache. The

program cannot see temporal reuse for the accesses to A from the middle loop.

For a 2-way set-associative cache, accesses to array Y will generate a lot of conflict

misses, many times causing the eviction of an another element of Y, referenced not

long before. This effect will permit some of the elements of X to stay in cache for the

entire execution of the inner loop, and the application will experience temporal reuse

in the next iteration of the middle loop. Accesses to the Y array produce conflict

misses but because they are already counted as capacity misses and X experiences

more hits than in the case of a fully associative cache, by the definition above, accesses

to X have a negative number of conflict misses.

14

2.2.2 General Techniques for Memory Performance Analysis

Existing techniques for understanding how an application uses the memory hierar-

chy include cache simulator methods, compile time analysis techniques, profile-based

methods and dynamic code monitoring and optimization.

Cycle accurate simulators were described in section 2.1.2. They emulate the entire

target machine, and therefore, they must simulate the cache in the process. Cache

simulators do not need to simulate execution of all of an application’s instructions,

only the memory references. The simulation can be performed either offline, on a trace

of references collected with the help of a profiling tool, or on-the-fly by executing an

instrumented version of the program. Except for compile time analysis methods, all

the other methods may make use of a cache simulator. The disadvantages of a trace-

based cache simulator are the possibly large disk space needed to store the traces with

tens or hundreds of millions of memory references, and the need to separately collect

and simulate a trace of memory references for each configuration of input parameters

and cache parameters that must be analyzed.

Recent work by Mueller et al. [25] proposes the use of regular section descriptors

(RSD) and partial address traces to represent the data traces in constant space,

solving the first disadvantage presented above. Mueller et al. use dynamic binary

rewriting to collect the partial data traces. However, the presented algorithm deals

only with regular access patterns of streams that have a constant stride. Extending

the algorithm to handle arbitrary strides might be possible, but with a big cost

increase.

This thesis presents another method for analyzing the data access pattern of an

application by characterizing the memory reuse distance for each memory reference.

Memory reuse distance is a measure of the number of distinct memory locations that

are accesses between two references at the same datum. Comparing the reuse distance

information seen by a memory reference and the number of blocks present in a cache

sub-system (see Section 2.2.1), provides a direct indication if the memory access is a

15

hit or not in the considered cache configuration. Although we collect detailed enough

information to predict the miss ratio independently for each memory reference in the

program, the output is rather compact and requires an almost constant space. Also,

we can deal with strides that are arbitrary polynomial functions, not only constants.

Furthermore, this work presents a method to predict how the memory reuse data

extrapolates at a different problem size that we did not collect data for.

The MHSim [23] memory simulator by Mellor-Crummey, Fowler and Whalley,

uses source-to-source translation of Fortran programs to instrument all memory ac-

cesses with code that simulates a parameterized cache system on-the-fly. Next, the

MHSim simulator processes the annotated data trace and correlates cache miss infor-

mation to line numbers in the source code. However, since MHSim uses source-level

instrumentation, the collected trace of memory references may not correspond to the

actual order in which accesses are executed by an aggressively optimized binary. For

instance, source-level instrumentation might prevent loop transformations such as

tiling, that change the order in which data is accessed.

Lebeck and Wood [19] implemented CProf, another cache profiler. They use static

instrumentation of application binaries to substitute the memory references with calls

to a function that simulates caches online. This thesis uses a similar mechanism for

static binary instrumentation, but we process the stream of accesses online to create

a compact representation of the data access pattern exhibited by the application

instead of simulating the cache on-the-fly.

Ding and Zhong [12] collect histograms of the memory reuse distance of all mem-

ory references in an application to provide a measure for program locality. They

use a modified compiler front-end to insert instrumentation code that assigns the

information collected to data structures in the source code. The memory perfor-

mance analysis in this thesis is also based on collecting reuse distance information.

Though the similarities stop here, Ding and Zhong’s study is the closest to our work

on memory locality analysis. Since we are interested to predict the performance of

16

applications executed on arbitrary architectures, and we consider detailed informa-

tion such as instruction schedule dependencies inside the most frequently executed

loops, we must recover the access pattern seen by individual references in order to

decide if a longer latency corresponding to a specific miss can be hidden by other

useful work. As a result, we characterize each memory reference individually, unlike

Ding and Zhong who produce a source-level centric view of how the program accesses

each data structure.

The category of compile time techniques is represented by the work of Ghosh,

Martonosi and Malik [14]. They describe methods for generating and solving cache

miss equations to get a detailed representation of cache misses in loop-oriented scien-

tific codes. Ghosh et al.’s approach uses static analysis of the source code to generate

a set of linear Diophantine equations whose solutions correspond to potential cache

misses. This approach is suitable for compilers to guide memory optimizations.

The next Chapter presents the design and implementation choices for our perfor-

mance analysis toolkit.

17

Chapter 3

Toolkit Design and Implementation

Our performance modeling toolkit is a collection of scripts and programs designed to

facilitate performance analysis and the construction of scalable performance models

for scientific applications. Figure 3.1 presents a high level view of the components of

our toolkit.

Figure 3.1 : Toolkit architecture overview.

We use static and dynamic analysis of binaries to derive architecture-neutral mod-

els for an application. We aim to predict the performance on any given target archi-

tecture by convolving the models with a description of the resources available on the

target machine.

18

Analyzing binaries instead of source code has several advantages: we do not need

separate handling for each source language, we do not need to analyze a possible large

number of source files located in multiple different directories, and we can deal with

situations when the source code is unavailable such as when the application is linked

against libraries available only in binary form. Other issues avoided are the usual dis-

crepancies between the structure of source code and the structure of highly-optimized

object code. Also, it is easier to analyze a mixture of low-level instructions that a

machine can execute directly, with a predictable latency, than to try estimating the

execution cost for high-level language constructs. Finally, instrumentation of object

code, as opposed to source code, can properly account for the effects of aggressive

optimizations; source level instrumentation may inhibit key optimizations that are

critical for high performance.

3.1 Updates to the EEL library

Our binary analysis tools are built on top of the Executable Editing Library (EEL) [18].

The EEL library was released in 1995 and it has not been publicly maintained since

then. Since both the Sun Forte compiler and the GNU gcc compiler were updated

constantly in this time, we had to bring EEL up to date on understanding control

flow mechanisms used by today’s compilers.

Special effort was put into recovering the control flow of indirect jumps. We greatly

extended the previous method for correctly understanding the dispatched indirect

jump instructions which account for the vast majority (often 100%) of indirect jumps

in a program. Also, we replaced the old method for dealing with register indirect

jumps which considered the target address computed along one path only. The new

improved method is a fix point algorithm that checks each new path leading to the

jump instruction and adjusts the set of possible targets until no new path is discovered.

Additional extensions of the static analysis capabilities of the EEL library include

support for V8plus binaries and an improved method for identifying “hidden routines”

19

in the .text segment, in the sense that the new method produces much fewer false

positives. EEL uses the term hidden routine to refer to pieces of code that are neither

identified as routines in the symbol table, nor reachable from the nearest preceding

routine entry specified in the symbol table. Since compilers include a large number

of read-only data in the .text segment, there is a high chance that some words of

data will have the same binary representation as valid instructions. EEL used to

mistakenly consider many such words of data as hidden routines. We conduct some

more checks before we classify sequences of seemingly valid instructions as hidden

routines.

While all the extensions enumerated above improve the quality and the accuracy

of the results produced by the static analysis, these extensions have a more important

contribution at increasing the robustness of the edited binaries produced by the EEL

library. A better understanding of the control flow in programs can only result in

more stable instrumented binaries.

EEL permits addition and deletion of code at arbitrary locations in the program.

Since the size of the text segment cannot be changed as other sections in the binary

follow at addresses right after the end of the text segment, EEL creates a completely

new section named .edited text which is placed after all the other sections in the

executable. The new section includes the code from the original .text section modified

as wanted, and it can grow as large as needed without affecting any other existing

sections. The principal challenge for having such a powerful capability, as moving

the code to a different location, is to update all the control flow instructions to

transfer the control flow to the correct instruction in the new section. For this reason,

understanding the original control flow correctly is such a necessary task.

Unfortunately, the target of some indirect jumps cannot be determined using

static analysis. For instance, in the “C” language, function pointers can be stored

into variables or passed as arguments to other functions. A complex and costly

inter-procedural analysis may determine the target of some of these pointers. EEL

20

implements a simpler solution that uses the space occupied by the old .text section

to store a translation table. Every instruction in the original section is replaced with

an unconditional annulled branch instruction that transfers control to the new lo-

cation of the instruction. With this mechanism, whenever control flow reaches the

old location of a routine entry because of an “unknown” indirect jump, the uncondi-

tional branch will transfer the control back to the correct instruction. But all relative

branch instructions have a limited range. If the distance between the old and the new

address of an instruction is greater than the spanning range of the available uncon-

ditional branch instruction, the translation table will contain only the address where

the instruction is now located. To accommodate these situations, EEL replaces the

indirect jumps whose target cannot be determined, with a code patch that uses the

translation table to compute the destination target at run-time.

The above solution works well in practice most of the time. However, occasionally,

unpatched code from system shared libraries invokes a routine from the original .text

segment. Such cases occur in the finalization code of Fortran programs on SPARC

machines. We modified the EEL mechanism to handle also such cases. Instead of

storing in the translation table the address of the new location of every instruction in

the old .text section, for routine entries we place a sequence of three valid instructions

that act as a trampoline and can transfer control to any place in the address space.

Although the trampoline code overwrites the entries corresponding to the second and

the third instructions of a routine, we consider that in practice, unknown indirect

jumps and control transfer instructions from system shared libraries do not jump to

the second or the third instruction of a routine. Until now, we did not encounter any

case in which this assumption did not hold.

Finally, we added support in the EEL library to modify the .dynamic section of

a program to include an arbitrary number of new shared library names that must

be loaded when the program starts. No binding of the global symbols from the new

libraries is performed by the loader. However, the code in the special initialization

21

function init is executed when the library is loaded. In the case of a user compiled

shared library, the initialization routine can be replaced with custom code. The

code in the initialization function can export the addresses of the desired symbols in

a special area of the program’s address space that is reserved in the instrumented

binary. We use this mechanism to force instrumented programs load the libdl.so

library and export the entry addresses of dlopen and dlsym routines to the profiling

code.

3.2 Static Analysis

Our static analysis subsystem, which includes the binary analyzer as shown in Fig-

ure 3.1, is not a standalone application but rather a component of every program

in our toolkit. We use static analysis to recover high-level program structure from

application binaries, including reconstruction of the control flow graph for each rou-

tine, identification of the natural loops in each procedure’s control flow graph using

interval analysis [30] and determination of loop nesting. In other instances we use

static analysis to recover low-level details about an application, e.g. the instruction

mix in basic blocks or loop bodies, or the schedule dependencies among instructions.

As we describe in the next section, the binary instrumenter uses information from

static analysis to determine the most suitable places for adding profiling code.

The next section presents the goals, the strategy and the implementation of our

dynamic analysis framework.

3.3 Dynamic Analysis

An application’s performance is a measure of how the program utilizes the resources

provided by the underneath machine. Characterizing the contribution of the application-

centric factors in separation of the target architecture results in models portable across

different architectures. Except for program structure information and instruction

schedule dependencies that are determined by static analysis, we must observe how

22

the application exercises the memory hierarchy, determine the instructions’ execution

frequency, and assess the frequency of synchronization among processes. Although

static analysis can provide partial answers to these questions using complex inter-

procedural analysis, we need to perform dynamic analysis of the binary to get more

complete and accurate results.

We collect histograms of execution frequency during a sequence of computation

intervals, information about communication volume and frequency, and histograms

of reuse distance seen by each load or store instruction. These factors, combined

with information from static analysis, provide a good indication of an application’s

estimated performance and are independent of any architectural details. For each of

these measures, we construct parameterized models by collecting data for a carefully

chosen set of input parameters and then fitting models to the data collected.

We use binary rewriting to profile an application’s binary and to collect the dy-

namic data. The static analysis subsystem analyzes each routine by building its

control flow graph and performing interval analysis on the graph. The instrumenter

uses this information to determine the places where the instrumentation code must

be inserted, based on the type of data we want to collect. The following subsec-

tions describe in more detail the design and implementation for our data collection

infrastructure.

3.3.1 Collecting Execution Frequency Histograms

At each synchronization point in the program, we record the communication partner

and the amount of data sent and/or received. Between synchronization points we

record a characterization of the computation expressed as a histogram of basic blocks

executed. Our aim is to characterize the computation between any two consecutive

synchronization points and separately store this data for each synchronization inter-

val. Moreover, the data we collect must be architecture-independent. It is not enough

to measure the CPU time or the wall clock time spent in each synchronization in-

23

terval because the execution time is strongly affected by the hardware on which the

application is executed and at the same time it provides no indication of where the

inefficiencies are. Inside a synchronization interval we are not interested in a trace

of the execution but only in the precise count for each basic block. Thus, collect-

ing the histogram of basic block counts is the reasonable thing to do. We do not

need to insert a counter in each basic block in order to measure the precise execution

frequency of each basic block. Information sufficient to recover basic block counts

and the execution frequency of each control flow graph (CFG) edge can be collected

efficiently by placing counters on a subset of selected CFG edges [6].

A routine’s control flow graph has the same properties as a flow network. Each

directed edge in a control flow graph has an execution frequency, just like each edge

in a network flow has a stated capacity. The nodes in the graph are edge junctions.

Except for the entry and exit nodes, all the nodes∗ in the graph have the property

that the control flow that enters into the node must equal the control flow that leaves

the node. This is the flow conservation property analogous to Kirchhoff’s law for the

physics of electrical current.

Using the conservation property and the observation that there is no need for

more than one counter on a linear sequence of nodes and edges, we can compute the

minimum number of counters (NCmin) required to recover the execution frequency

for the entire graph. In a connected graph the inequality NE ≥ NV − 1 holds true
always. NE represents the number of edges in the graph and NV is the number of

vertices. I consider only control flow graphs with one entry and one exit nodes. If

the graph has multiple entry or exit points, a simple transformation of adding one

absolute starting node with edges flowing into each of the initial entry points and

∗This is true in the vast majority of cases. Some programming mechanisms, such as

setjmp/longjmp family of functions in “C”, do not have the conservation property. However, these

mechanisms are used in handling exceptions or unexpected errors and are seldom encountered in

scientific codes.

24

a similar transformation for the exit node will ensure that any control flow graph

has only one entry and one exit nodes. The static analysis subsystem automatically

normalizes the control flow graphs to have this property. For such a graph, only a

sequential list of nodes has NV − 1 edges. Adding an invisible edge from the exit

node to the entry node [6], the conservation property holds for all the vertices in the

graph, including the entry and exit nodes. Having the conservation property for the

entry / exit nodes makes sense because the number of times the control enters into

the routine must be equal to the number of times the control leaves the routine.

Knuth and Stevenson [17] demonstrate that a placement of the counters such that

the set of edges without a counter does not create any cycle in the undirected graph,

is a necessary and sufficient condition for any solution to the problem of measuring

edge and node execution frequency using edge counters. As Ball noticed in [6], a

spanning tree of a control flow graph has the maximum number of edges that do not

contain a cycle. Therefore, the set of edges that are not part of the spanning tree

corresponds to the minimum number of counters needed to profile the entire graph.

The number of edges in any spanning tree of a connected control flow graph with NV

vertices is NETree = NV − 1. The minimum number of counters needed is equal to

the number of edges that are not part of the spanning tree:

NCmin = (NE + 1)−NETree = NE −NV + 2.

The spanning tree is computed on the graph extended with an edge from the exit

node to the entry node. For the simplest possible graph, consisting of a sequential list

of nodes, NE = NV − 1 and therefore, one counter suffices to recover the execution
frequency of all the nodes and edges in the graph.

An undirected graph with cycles does not have a unique spanning tree. As a

result, the problem of placing NE −NV + 2 counters on NE edges does not have a

unique solution. From the set of possible solutions we must select the configuration

that minimizes the run-time overhead. The run-time overhead is given by the number

of extra instructions the profiled binary must execute. Because each counter executes

25

practically the same code, we have to minimize the number of times any counter is

executed. This is equivalent to placing counters on the edges with a low execution

frequency, or in other words, avoiding placing counters on the most executed edges.

We already know that the sub-graph represented by the edges without a counter

must not contain any cycle, therefore, the optimal solution is to build the maximum

spanning tree of the control flow graph and to place counters on the edges that are

not part of the tree.

Not all theoretical combinations for placing the counters are possible in practice

due to technical limitations. Some of the edges in the control flow graph cannot be

easily instrumented, meaning that allowing code insertion on them would create too

many problems for rewriting a valid, working executable. The theoretical solutions

that contain counters on unmodifiable edges are avoided from the start. Because

counters are inserted only on edges that are not part of the spanning tree, the solution

consists in initializing the tree with the uneditable edges plus the edge from the exit

node to the entry node that does not exist in the initial graph. If the set of uneditable

edges contains a cycle, the problem of profiling for the execution frequency by placing

counters on selected edges does not have a valid solution. In practice such a scenario

is not possible.

Collecting the exact computation cost between two synchronization points for a

parallel application raises another restriction. Whenever a subroutine is invoked, that

subroutine might execute a communication primitive either directly or indirectly by

one of its own callees. In such a case, the current computation interval is closed and

another interval begins. But we must determine the exact count of the blocks and

edges that are executed in each interval. One solution is to insert enough counters

in the graph to allow us to recover the execution frequency independently on each

side of the call instruction. We can think of a subroutine call as a point where the

control flow leaves the current routine and it may return during the same interval or

not. Because a call instruction is a point where the control flow leaves the routine,

26

we can include the call instruction in the set of exit nodes and consider there is a

virtual edge from the node of the call instruction to the exit node. By adding this

virtual edge to the graph and including it in the set of initialization edges for the

spanning tree, we ensure that all the edges incoming into or outgoing from the node

of the call instruction are measured independently. Each virtual call-to-EXIT edge

that is included in the initialization set of edges for the spanning tree, forces one

control flow edge that otherwise would connect the “call” node to the rest of the tree

not to be included in the spanning tree. As a result, each call instruction increases

the number of inserted counters by one. The formula for the minimum number of

counters needed to solve the problem of profiling for the execution frequency of all

the blocks and edges in the control flow graph, becomes:

NCmin = NE −NV + 2 + num calls. (3.1)

After all the uneditable edges and call-to-EXIT edges are included in the spanning

tree, we can apply Kruskal’s algorithm [10] to build the maximum spanning tree†

(MST) of the control flow graph (CFG). In order to compute the MST, we have to

augment all edges with a weight value. For the weight value of an edge we can use

either its execution frequency measured during a previous execution of the program,

or an estimative execution frequency computed with some heuristic.

We implemented a simple heuristic algorithm to compute the weight values of all

the edges based on four basic rules:

• the entry node in the CFG has a weight value of one;

• the weight value of a vertex is divided equally among all its outgoing edges if
none of these edges is an exit loop edge;

†Maximum spanning tree is the short form for the term maximum-weight spanning tree which

represents the acyclic subset of edges that connects all vertices of the CFG and whose total weight

is maximized.

27

• each loop has a multiplicative factor equal to ten;

• the weight of a node is the sum of the weights of its incoming edges.

In addition to these four rules, a separate algorithm handles the exit edges and the

nodes in which the exit edges originate. A CFG edge whose head node is part of a

loop and its tail node is outside the loop is an exit edge. In most cases exit edges

have their tail node in the program scope immediately outside the one that contains

its head node. Still, we encountered cases in which the exit edge crosses several levels

of a loop nest. To accommodate these cases, we apply the following algorithm to

compute the estimated weight of an exit edge (ei):

1. determine the outermost loop (L) for which this edge is an exit edge;

2. find the number (Nexit) of edges that exit loop L;

3. the weight of ei is the weight of the loop L’s head divided by Nexit;

4. all the other outgoing edges of the ei’s head node receive an equal fraction of

the remainder weight of that node, after the newly computed weight of ei is

subtracted.

The final step consists of placing counters on the edges that are not part of the

maximum spanning tree. Figure 3.2 presents a sample control flow graph with one

loop and the steps that must be performed to determine the optimal insertion place

for the counters. The number of counters inserted is validated by formula (3.1), where

NE = 5 and NV = 5. We count only the edges existent in the original CFG. From

Figure 3.2(d) we can recover the execution frequency for all the blocks and edges in

the CFG.

B1 = B3 = B5 = c1;B4 = c2;B2 = c1 + c2

28

(a)

1

9
91

1

1

(b)

1

9
91

1

1

(c)

B1

B2

B3 B4

B5

c1

c2

(d)

Figure 3.2 : (a) Sample routine CFG; (b) Add an edge from the EXIT node to
the ENTRY node and estimate edges execution frequency; (c) Build the Maximum
Spanning Tree (MST) of the modified CFG; (d) Insert counters on edges that are not
part of the MST.

3.3.2 Collecting Communication Data

In order to model a parallel application, we must capture details about synchroniza-

tion events. For each event, we collect a snapshot of the stack trace which provides

us with the exact location in the program that generated the event. Additionally, we

identify the socket or sockets on which messages are exchanged and the volume of

data transferred on each socket in each direction during this communication event. A

communication event is defined by a call to a communication function. Routines to

be considered as communication functions are read from a configuration file passed

as an argument to the instrumenter. Enabling the user to specify the communication

functions provides more flexibility and results in easy portability to other message

passing libraries based on sockets. In fact, the instrumenter has no knowledge about

the semantic of the specified functions. It inserts code around all calls to these func-

tions to collect the volume of data transferred on sockets while the execution control

29

flow entered and did not return from one of them.

Calls to communication functions specified in the configuration file also delimit

computation intervals. We collect separate execution histograms for each computation

interval. One can collect a single histogram for an entire execution by passing a

configuration file with no communication functions defined. Our approach can be used

to divide the computation in intervals, not necessarily delimited by communication

functions, but by any function call. If the code of the analyzed application is available

and can be modified, one can insert a call to a dummy function and specify the name

of that function in the configuration file. In this way, with some user intervention,

more useful data can be collected sometimes. For example if there is a main execution

loop, one can collect data separately for each iteration by inserting a call to an empty

function at the beginning or the end of the loop’s body. This is useful if the studied

application changes behavior over time (e.g. increasing or decreasing amount of work

as with algorithms on triangular matrices).

In designing our dynamic instrumentation, we needed to decide which data struc-

ture better suits our needs for collecting execution and communication data. An

array with one entry for each instrumented counter provides the minimum overhead

for finding an entry and incrementing its associated value. However, in an usual ap-

plication only a fraction of the counters are executed and with the static allocated

array of maximum possible size, the space usage is not optimal. The memory over-

head is not a very big concern though, because it is proportional to the number of

inserted counters and therefore proportional to the size of the analyzed code. The

code size is just a (large) constant for a given application (it does not depend on

other input parameters). An implementation issue is the need for an extra register

required to pass the counter’s global index to the event handler routine. The low

overhead of this implementation requires a global counter index for fast access into a

fixed sized array. The space problem is more significant if we look at the output data

file. Saving a full execution frequency histogram with a bin for each counter at each

30

synchronization point for a program with many communication events, will quickly

create a disk space problem. A solution to this problem is to write to disk only the

non-zero counters, but this requires traversing the entire sparse array each time we

write the data into the file. Another possible solution would be to use an hybrid

vector-array data structure. We present a hybrid vector-hashtable solution below.

To solve the extra register problem and also the less important run-time memory

overhead problem, we opted for an hybrid data structure consisting of an hash table

and a vector, with cross-references between them. The hash table is used for quickly

finding the entry for a previously referenced edge or to determine if the counter was

never touched before, and the vector structure is used to quickly iterate through all

edge counters in the hash table. Each edge counter occupies one entry both in the

hash table, based on the result of the hash function, and in the vector, placed in the

order they were referenced for the first time.

This hybrid data structure has an O(1) average complexity for insert and find

operations, while traversing the elements and the memory space required are linear

in the number of distinct edge counters referenced. The overhead of computing the

hash key each time a counter is incremented, is larger than in the case of a static

array index solution. With the proposed data structure we use the counter’s address

as input for the hash-function. The address of the edge counter is the address of the

call to the event handler routine. This information is passed in a default register to

the callee function by the SPARC ABI. A delete operation is not as efficient with

this data structure, but collecting profile data does not require deleting individual

elements. The clearAll operation has an overhead directly proportional to the size of

the data structure, and thus to the number of distinct executed counters. The clearAll

operation is used much less frequently than insert and find operations, once at every

synchronization event when a computation interval ends and another one begins. At

this point, the compact data in the vector is written in the output file and the data

structures are reinitialized.

31

3.3.3 Monitoring Memory Access Behavior

During execution we compute a characterization of an application’s memory access

behavior. Because we focus on collecting architecture-neutral information only, we

decided to capture the pattern the application uses to access the memory. We collect

the memory reuse distance [7, 21, 12] seen by each data access during execution.

Reuse distance is a measure of the number of distinct memory locations accessed by

the program between two references at the same datum.

Characterizing memory access behavior in terms of data reuse in programs has

two important advantages. First, data reuse is independent of any cache config-

uration or architecture details. Second, “data reuse is the main determinant in

cache performance because all cache reuse comes from reuse of the same or adja-

cent data” [12]. Therefore, reuse distance separates application-specific factors from

architecture-dependent factors and has all the properties that we want.

We collect reuse distance information separately for each reference in the program.

Before each memory reference we invoke a library routine that augments a histogram

of reuse distance values for the reference. In addition to the address of the reference,

the event handler needs to know the address of the memory location referenced and

the number of bytes touched by this instruction. Our implementation of the event

handler computes a compressed form of the complete histogram of reuse distances

seen by each memory reference. To compress the size of the output data, we coalesce

bins with near distances before the data is written in the output file. The small loss of

detail has no noticeable effect on the precision of the models of reuse distance that we

construct, but the reduction in space is often significant. The event handler routine

uses a hash table to assign a logical timestamp to each memory block referenced by

the program. The timestamp enables us to determine the reuse distance between a

pair of accesses to the same datum. The hash table stores only the timestamp of

the last access to each block. This data structure would be enough to count how

many memory locations, distinct or not, were referenced since the last access to the

32

same datum. To determine the number of distinct memory locations accessed, we

use a balanced binary tree with one entry (node) for each memory block referenced

by the program. The sorting key of the balanced search tree is the logical timestamp

associated with the last access to that location which we obtain from the hashtable.

By using a unit size memory block we collect pure temporal reuse distance which

cannot account for the spatial reuse in the cache lines. However, by setting the

memory block to be equal with the cache line size, we can also measure the spatial

reuse in a cache line because we collect the reuse distance of data blocks rather than

data elements. The size of the memory block our runtime library uses is defined by

an environment variable; therefore collecting data for different cache line sizes does

not require re-instrumenting the code or re-compiling the event handler routine.

Our implementation of the event handler executes the following pseudo-code for

a memory access to the location addri by the program instruction instk:

step 1 Generate a logical timestamp tnew
i equal to the next available value of the

global timestamp counter, and increment the global counter.

step 2 Search the hash table for the memory block bi with address addri (complexity

O(1)). If the address is not found, then this memory access corresponding to

the load or store instruction instk is the first reference to block bi; increment

the number of cold misses seen by instruction instk, and insert a new entry

(key=addri, value=t
new
i) into the hash table (all operations are in constant

time); then go to step 5. If addri is found in the hash table, then block bi was

touched before by this or another instruction; go to the next step.

step 3 Read the timestamp tlast
i corresponding to the previous access to bi, and

replace into the hash table the value corresponding to block bi with the newly

generated timestamp tnew
i .

step 4 Delete the node with key tlast
i from the binary search tree. While searching

for the node to be deleted, we count the number of nodes (NN) with the key

33

greater than tlast
i . NN corresponds to the number of distinct memory blocks

that have been referenced since the previous access to bi. Each node of the tree

maintains a field size representing the number of nodes in the sub-tree rooted

at it. For a binary search tree with the greater keys on the right, NN is a

sum of terms (nodej.size− nodej.leftChild.size), for every nodej with the key

greater than tlast
i that was encountered on the path from the root to the node to

be deleted. The delete and count operations have an aggregate O(logN) time

complexity, where N is the number of distinct memory blocks touched by the

application until that moment. Next, record that memory instruction instk saw

an access with reuse distance NN .

step 5 Insert a node with key tnew
i into the binary tree. This step has complexity

O(logN).

Time complexity for computing the reuse distance seen by one memory reference

is O(logN). Overall, the overhead of collecting memory reuse distance information

for the entire execution is O(MlogN) and the memory space required by the data

structures for monitoring reuse distance is O(N), where M is the number of dynamic

memory instructions executed. Time and space complexities are both significant even

with these optimized data structures. Collecting memory reuse distance is much more

expensive than collecting the histogram of edge counters.

3.3.4 General Features of the Binary Instrumenter

The Executable Editing Library (EEL) [18], on top of which our binary analyzer and

instrumenter are built, provides support for insertion of static machine code into the

binary. To avoid the need to re-instrument an application binary each time we want

to change the way instrumented events are processed, we added support for enabling

instrumented code to invoke routines provided in a dynamically loaded shared library.

In the initialization part of the modified binary, we added support for opening a shared

34

library and locating symbols in it. We locate the appropriate symbols in the shared

library and bind them to small stub routines to which the instrumenter statically

inserts calls into the edited binary. The name of the library, as well as the symbol

names to be searched, are passed as arguments to the instrumenter, and the edited

binary uses the provided names. This approach enables the user to supply a new

shared library which can process the events differently. To ensure it is used, a user

have to include the new library’s location in the LD LIBRARY PATH environment

variable, eventually before other libraries that have an identical name. Therefore, our

edge counters are in fact calls to the stub routines which in turn will invoke the

corresponding code from the shared library which is determined only at run-time.

Our infrastructure for dynamic execution analysis also supports selective or partial

execution profiling. Selective profiling is provided by the optional use of include file

and/or exclude file arguments. If an include file is provided, only the routines

specified in that file are profiled. If an exclude file is specified, the routines listed in

this file will not be profiled. Partial execution profiling is accomplished by inserting

calls to two special routines provided in a small library. These calls can be inserted

only in the application’s source code. The instrumenter detects the presence of these

hooks in the binary and adds the necessary code to start or to stop the collection

of data. Starting and stopping data collection is implemented by dynamically mod-

ifying the code of the event handling trampolines to either forward the events to

the actual event handler routines or to return immediately without processing the

events. Although this approach requires access to the source code and partial recom-

pilation and linking of the binary, we found it to be very useful. One can exclude

initialization and finalization steps from data collection, or collect information only

for particular fragments of code at specific times during the execution (including the

routines called from those particular pieces of code). The start collect and stop collect

handlers are executed as any other ordinary code and calls to them can be guarded by

conditional statements, effectively enabling data collection to be started and stopped

35

under arbitrary conditions.

The instrumentation infrastructure that we developed for collecting data about

program behavior is quite flexible and can be easily adapted to collect other informa-

tion or to perform different types of online analysis.

3.4 From Data to Parameterized Models

Though the mechanics of data collection are somewhat complex, assimilating the

collected data into accurate models of application performance is a fundamentally

mode difficult undertaking.

The goal of this work is to build parameterized models that enable us to predict

performance for data sizes that we haven’t measured. To achieve this goal, we first

collect data from multiple runs with different and determinable input parameters.

Input parameters should include a numerical measure of the problem size and the

number of processors used during the execution.

We compute a parameterized curve for a program variable by using the collected

data of multiple runs in which that parameter is modified and all the others are

maintained constant.

3.4.1 Building models of the execution frequency

A program’s performance is a function of application characteristics and resources

available on the target architecture. An architecture-neutral model considers only

the application-specific factors. The most important architecture-neutral factors that

influence the performance of a single node execution are the number of instructions

executed, the mix of instructions, the instruction schedule dependencies in the most

frequent executed loops, and the memory access pattern exhibited by the application.

To build models parameterized by the problem size‡ for the execution frequency

of each edge counter, we use quadratic programming [20] on the edge counter’s exe-

‡The tool can be used to build a model in any input parameter, not only problem size. It requires

36

cution frequency data, collected from multiple runs with different problem sizes. We

use a modeling strategy implemented in Matlab to determine the function that best

approximates the input data we collected. The approximation function is written as

a linear combination of a set of orthogonal basis functions. The program uses either

a default monomial base or a set of user-provided basis in symbolic form so that

logarithmic or other non-linear contributions to the model can be considered. The

modeling program computes the coefficients of the basis functions in the linear combi-

nation that closest approximates the collected data. We include restrictions to reduce

or remove oscillations of the resulting fit and to ensure that the computed function is

either convex or concave, depending on the program characteristic that is modeled.

Our approach works best with scientific codes that have predictable execution pat-

terns, namely, ones that do not use adaptive algorithms. For such applications, we

show that we can compute accurate models even in multiple parameters. For adaptive

algorithms, we can produce an approximate model with reasonable accuracy for one

parameter models.

The data files collected with our infrastructure must be initially processed by a

filter program which outputs data in a format understood by our Matlab scripts.

The filter can be configured to output either counters frequencies or the number of

executed instructions. A set of command line arguments controls the output in each

case. For example, counters can be sorted either by location (grouped by routines)

or by frequency with the most executed ones first. Optionally, the output can be

limited to a most significant threshold. Instructions are classified by type and can be

aggregated at any level in the scope-tree of the program. We defined a set of generic

RISC instruction classes and a module for translating native SPARC instruction into

generic RISC instructions. The filter computes the number of executed instructions

for each generic class and each basic block in the program. Using static analysis of the

multiple runs where the desired parameter is varied and the others are maintained constant or are

a fixed linear transformation of the varied parameter.

37

binary, the filter builds a scope-tree that reflects the program structure [24]. There

are three possible scopes that can be used to describe the program structure:

• Program scope - is the root of the tree and its children are routines;

• Routine scope - is on the second level in the tree and its children are loops;

• Loop scope - can include any other number of loops.

If the binary contains debugging information, the routine and loop scopes are anno-

tated with source file information, including the name of the source file and the range

of line numbers corresponding to that scope in the source file. If the binary con-

tains source line number information, the filter performs a normalization step which

attempts to fold together the information for loops that have overlapping ranges of

source line numbers, and the same parent in the scope-tree. Such loops are the result

of compiler optimizations, including loop fission, software pipelining, loop-invariant

code motion, or tiling. The instruction count can be outputted at program level, at

routine level or at individual loop level. For example, if we select to output instruction

counts at routine level, we can build a separate model for the execution frequency of

each instruction type and each routine. In all the above cases, the filter can receive

the optional arguments include file and/or exclude file having the same semantic

as for the binary instrumenter (see Section 3.3). All these options make the filter a

flexible tool for transforming the edge counters data into other forms from which it

can be modeled.

3.4.2 Building models of the memory access pattern

We use a similar approach to model the memory access pattern exhibited by the

application so we can predict the memory hierarchy response of the application on

any target architecture. Using dynamic analysis, we collect the memory reuse distance

seen by each memory reference. Temporal reuse distance is a measure of the number of

distinct memory locations referenced between a pair of accesses to the same datum.

38

Spatial reuse distance is a measure of the number of distinct locations referenced

between a pair of accesses to the same cache line. Temporal reuse distance is a

totally architecture-independent measure, while the spatial reuse distance depends

only on the length of cache lines.

For a fully-associative cache, we can predict if a memory access is a hit or a miss

by simply comparing its reuse distance with the cache size (see Figure 3.3). Beyls

and D’Hollander [8] show that reuse distance predicts the number of cache misses

accurately even for caches with a low associativity level or direct mapped caches.

However, a model based on reuse distance alone cannot predict conflict misses.

Reuse Distance

L2 size

L1 Hits L2 Hits

L1 size

Number of
References

Figure 3.3 : Example of reuse distance histogram. All references with reuse distance
less than the cache size are hits.

We use reuse distance data to model the behavior of each memory instruction and

to predict the fraction of hits and misses for a given problem size and cache configu-

ration. Our first attempt at predicting if a memory instruction is a hit or a miss for

a given problem size tried using the average reuse distance for that instruction. We

were able to produce a very accurate parametric model for the average reuse distance

of memory accesses in Sweep3D (see Figure 3.4), a three-dimensional particle trans-

port problem used as an ASCI benchmark for evaluating high performance parallel

architectures [1]. However, this model proved inaccurate for predicting the number

of misses when we compared against results measured during a run on an SGI Origin

2000. On the Origin, we measured L1 and L2 cache misses during execution using

39

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<1%
1−2%
2−5%
5−10%
10−20%
>20%

Figure 3.4 : The error distribution of the average memory reuse distance model for
Sweep3D. The x axis represents the problem size and the y axis represents the fraction
of accesses. The model has less than 1% error for three quarters of the accesses and
the tendency is to have a higher precision for larger problem sizes.

hardware performance counters. After analyzing the discrepancies between measured

and predicted values, we realized that most memory instructions had a dual behavior:

only a fraction of the accesses by a load/store accessing a stride one sequence were

misses while our model was predicting either 100% hits or 100% misses. By consid-

ering only the average reuse distance when forming our model, we lost a significant

part of the information that we collected. One very large reuse distance averaged

with several very short reuse distances results in a larger than cache size average,

which yields a prediction of all misses.

Based on our experience, we adopted a new approach for modeling the dynamic

behavior associated with a load or store, by using a compressed form of the complete

histogram of reuse distances collected by our binary instrumentation infrastructure.

The modeling strategy first divides the histogram of accesses for an instruction into

multiple bins and then computes a separate parameterized model for each bin. The

40

algorithm for determining the number of bins and their size and structure uses a

divide and conquer approach, recursively splitting a set of accesses in two until the

two subsets have similar fitting curves. We apply the algorithm to the entire set of

data and at each step we execute a similar division for the data sets corresponding

to each problem size. We use a heuristic algorithm to determine how to partition the

accesses. Its decisions influence the convergence speed, the accuracy and the stability

of the final model. In our experiments, the partitioning heuristic that yielded the

most stable and accurate results was one that selects partition boundaries so that the

ratio between the number of references in the two partitions resulting from a split are

similar across all problem sizes. After partitioning, we perform a coalescing step that

examines adjacent bins and aggregates them together if they have similar polynomials

describing them. Each bin is modeled by two polynomials, one that models how the

number of accesses which are part of that bin changes with problem size and one that

models how the average reuse distance of these accesses changes with problem size.

Figure 3.5(a) shows the reuse distance histogram data collected by our tool for one

of the most frequently executed memory accesses in Sweep3D. Figure 3.5(b) presents

our parameterized model for that instruction. On each graph, the x axis represents

the problem size (from 8 to 46 in this case); the y axis represents the normalized

number of accesses for each problem size; and the z axis represents the reuse distance.

Our model, parameterized by problem size, can be evaluated for an arbitrarily large

problem size in a fraction of a second. The problem of determining the ratio of hits

and misses for a given cache size csize is equivalent to determining the intersection of

the model with the plane defined by z = csize. Similarly, the problem of computing

the expected behavior for one instruction at a given problem size psize is equivalent

to determining the intersection of the surface and the plane defined by x = psize. We

can also formulate the problem of determining the minimum cache size such that the

hit-ratio is h. The solution to this problem is the intersection of the built model and

the plane defined by y = h. Any two of these three problems can be combined and

41

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
5

Problem sizeNormalized frequency

M
em

o
ry

 r
eu

se
 d

is
ta

n
ce

(a) Collected data

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

x 10
5

Problem sizeNormalized frequency

M
em

o
ry

 r
eu

se
 d

is
ta

n
ce

(b) Constructed model

Figure 3.5 : The surface on the right is the parameterized model for one of the most
frequently executed memory accesses in Sweep3D. On the left is the original data
collected for that instruction. The x axis represents the problem size, on the y axis
is normalized number of accesses and the z axis represents the reuse distance.

the solution is the intersection of the surface with the corresponding two orthogonal

planes.

The actual problem that we want to solve is predicting the ratio of misses for a

given problem size and cache size.

For the memory reference whose access characteristics are reflected in Figure 3.5,

approximately 75% of the executed accesses see a small, constant memory reuse dis-

tance and therefore will be hits for any problem size. The other 25% of the accesses

end up in several bins, each one having a distinctive monotonically increasing func-

tion for the reuse distance. The constant reuse distance seen by three quarters of the

accesses is due to the spatial reuse in the cache. The cache line considered in the

model is 32 bytes long and four elements (of type double) can be packed in one cache

line. The first access to a cache line results in a large reuse distance and the next

three stride-1 accesses to the same cache line have a small reuse distance.

Figure 3.6 illustrates how an instantiation of the memory reuse distance model

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Normalized frequency

R
eu

se
 d

is
ta

n
ce

(a) Model evaluation for problem size 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Normalized frequency

R
eu

se
 d

is
ta

n
ce

 (
se

m
ilo

g
)

L1 size

L2 size

L1 hits

L2 hits

(b) Number of L1 and L2 hits predicted

Figure 3.6 : An instantiation of the model in Figure 3.5(b) for problem size 100. The
curve on the left presents the histogram of reuse distances in linear coordinates. The
curve on the right is shown on a logarithmic y-axis and includes the cuts for the L1
and L2 cache sizes.

presented in Figure 3.5(b) translates into a prediction of cache misses. The model is

evaluated for problem size 100 and we consider an architecture with 1024 L1 blocks

and 256k L2 blocks. Because the maximum reuse distance predicted for this reference

is six orders of magnitude larger that the size of the L1 cache, the curve on the right

is shown on a logarithmic y-axis. The model predicts a ratio of about 74% hits in the

L1 cache and 96% hits in the L2 cache.

Many instructions have a more uniform distribution of their accesses’ reuse dis-

tance. Figure 3.7 presents another frequently executed instruction from Sweep3D. For

this memory reference, about three quarters of the accesses have a small, constant

reuse distance. In this case, the other 25% of the accesses are grouped in a single bin

with a linear growth function for the reuse distance.

43

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
0

5

10

15

20

25

30

35

Problem sizeNormalized frequency

M
em

o
ry

 r
eu

se
 d

is
ta

n
ce

(a) Collected data

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1
0

5

10

15

20

25

30

35

Problem sizeNormalized frequency

M
em

o
ry

 r
eu

se
 d

is
ta

n
ce

(b) Constructed model

Figure 3.7 : The collected data and the constructed model for another frequently
executed memory access from Sweep3D. The x axis represents the problem size, on the
y axis is normalized number of accesses and the z axis represents the reuse distance.

3.5 Mapping the Models to a Target Architecture

Our post-processing tool constructs an annotated control flow graph (CFG) that

contains information about loop nesting structure and the execution frequency of each

basic block. We build this annotated CFG for an application using static analysis

information gathered from the application binary along with dynamic measurements

of its execution behavior or with an instantiation of the parameterized model. From

this representation, we identify paths in the control flow graph and compute their

associated frequencies. Inside nested loops, we work from the inside out; no basic

block is considered at more than one loop level. These paths serve as input for an

instruction schedule analysis tool that computes an estimate for the execution cost

of each path.

To compute the execution cost associated with a path for a (possibly different)

target architecture, we translate the instructions present in the basic blocks of the

(SPARC) application binary into instances of generic RISC instruction classes. We

44

defined a set of generic RISC instruction classes and a module for translating SPARC

binary instructions into generic instructions (see Table 3.1). We built a configurable

scheduler that is initialized with an architecture description that enables us to com-

pute predicted execution times for the specified target architecture. The architecture

description defines the number and type of execution units, and a characterization of

each generic instruction class in terms of hardware resources required. Each generic

RISC instruction has an associated set of execution units onto which it can be sched-

uled, a latency and a repeat rate. The initial scheduler prototype considers each

memory access as a primary cache hit and it does not consider the fetch/decode

stages. An ongoing effort is focused on translating our data on memory reuse dis-

tance into an estimation of latency for a given target memory hierarchy. Currently, we

use SPARC-based computers from Sun to collect the data and analyze the binaries;

we use the scheduling tool to predict performance on a MIPS R12000 processor; and

we validate our predictions against actual executions on a MIPS R12000 by collecting

performance measurements with hardware counters.

45

Native SPARC Instruction Generic RISC
Class

SETHI, ADD[X][cc], TADDcc[TV], SUB[X][cc], IB int add
TSUBcc[TV], SAVE, RESTORE
BIcc, BPcc, FBfcc, FBPfcc IB br CC
BPr IB branch
CALL, JMPL, RETT IB jump
AND[N][cc], OR[N][cc], X[N]OR[cc] IB logical
SLL, SRL, SRA IB shift
MULScc, UMUL[cc], SMUL[cc] IB int mult32
MULX IB int mult64
UDIV[cc], SDIV[cc] IB int div32
UDIVX, SDIVX IB int div64
TICC IB trap
MOVR, MOVcc, RDCCR, RDASR, RDPSR, RDWIM, IB int move
RDTBR, RDY, WRCCR, WRASR, WRPSR, WRWIM,
WRTBR, WRY
FADD{s,d,q}, FSUB{s,d,q}, FCMP[E]{s,d,q} IB fp add
FDIVs IB fp div32
FDIV{d,q} IB fp div64
FMUL{s,d,q}, FdMULq, FsMULd IB fp mult
FMOV{s,d,q}, FABS{s,d,q}, FNEG{s,d,q} IB fp move
FMOVR{s,d,q}, FMOVcc{s,d,q}
FSQRTs IB fp sqrt32
FSQRT{d,q} IB fp sqrt64
F{s,d,q,i,x}TO{s,d,q,i,x} IB fp cvt
LDSB, LDSH, LDUB, LDUH, LD, LDD, LDSBA, LDSHA IB load gp
LDUBA, LDUHA, LDA, LDDA, LDX, LDFSR, LDCSR
LDF, LDDF, LDC, LDDC IB load fp
LDSTUB, LDSTUBA, SWAP, SWAPA IB load atomic
STB, STBA, STH, STHA, ST, STA, STD, STDA, IB store gp
STX, STFSR, STCSR
STF, STDF, STDFQ, STC, STDC, STDCQ IB store fp
PREFETCH, PREFETCHA IB prefetch

Table 3.1 : Classification of SPARC native instructions into generic RISC classes.

46

Chapter 4

Experiments

This chapter describes several test cases in which our performance toolkit have been

applied. The following sections present how we constructed parameterized models of

the floating point operation (FLOP) count for two applications, PSTSWM and CRM,

and a test case in which we predict the cache miss ratio for the main computational

routines in PSTSWM.We briefly describe each of these applications in their respective

sections.

4.1 Characterizing the PSTSWM Application

PSTSWM is a message-passing benchmark code and parallel algorithm testbed from

Oak Ridge National Laboratory(ORNL). PSTSWM solves the nonlinear shallow wa-

ter equations using the spectral transform method.

4.1.1 Constructing FLOP Count Models for PSTSWM

When Pat Worley, a scientist at ORNL, heard of the capabilities of our modeling

toolkit, he requested that we use it to build a parameterized model for the lower

bound of the number of floating point instructions executed by the PSTSWM’s main

computational loop. The initialization and post-processing phases should not be

considered in the model.

In order to measure only the computational part of the main loop of PSTSWM,

we placed the start collection and stop collection special markers immediately before

and after the main loop in the code. The PSTSWM application reads a configuration

file containing several input parameters. Most of them have only a multiplicative

47

effect on the number of iterations executed. There are only two arguments that can be

independently modified which have a non-linear effect on the number of instructions

executed. These are the parameters that must appear as symbolic terms in our model.

One of these two variables, called NLON , can be any strictly positive natural number

that has prime factors in the set {2, 3, 5} only, and it must always be divisible by
four. This restriction is caused by a Fast Fourier Transformation module used in

the computation. The other significant variable, MM , can be any strictly positive

natural number that is less than one third of the value used for NLON .

We started by constructing a model in one variable. Because MM is upper

bounded by NLON , the only option was to parameterize the model by NLON and

to restrict MM either to a fixed value or to a fixed linear transformation of NLON .

The most important set of problem cases, corresponding to a triangular truncation of

the spectral coefficients, arises when MM takes the largest value possible for a given

NLON . Therefore, for any valid NLON , MM ’s value is computed by the formula

�NLON−1
3

�.
We compiled the PSTSWM application with the Sun WorkShop 6 update 2 FOR-

TRAN 95 6.2 compiler using the −O4 optimization flag. Using our instrumentation

infrastructure, the optimized binary was augmented to collect edge counter values for

the entire program, without any synchronization point defined, and using the special

inserted markers to start and stop the collection of data whenever entering or exit-

ing from the main computation loop. To automate the collection of data we wrote

a script that for each given NLON value, computes the other program arguments,

generates the input file and then executes the instrumented binary.

We used the filter tool to process the collected data files and compute a count

for each instruction type for the entire execution. The focus of our analysis was

on the floating point operations, as stated by the problem’s requirements. We did

not consider operations loading/storing floating point values from/to memory, or the

register copy operations for floating point values. Additions and multiplies are almost

48

the only operations performed on floating point numbers; we build separate models for

the frequency of adds and multiplies. Without any additional information about the

analyzed application, we used a monomial base for the first attempt at building the

models. Figure 4.1 shows the number of floating point add operations, measured by

our tool in a sequence of executions for different values of NLON . For small intervals

of NLON, the instruction count oscillates, while the general shape of the curve shows

rapid growth in the number of executed instructions as NLON increases.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5
x 10

9

NLON

F
pA

dd

Figure 4.1 : The number of FpAdd operations measured for all valid NLON values less
than 256. The measured number of executed instructions does not follow a smooth
curve.

This oscillatory behavior is caused by the Fast Fourier Transform module, which is

more efficient for problem sizes that are powers of two and least efficient for problem

sizes that are divisible by 5. Consequently, when building further models we limit our

study to problem sizes that are powers of two. Even in this case, the FFT computation

is more efficient when the number of points is a power of four than for values that

are powers of two but not powers of four (see Figure 4.2).

49

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

10
F

pA
dd

NLON

(a) Add operations

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

18
x 10

9

NLON

F
pM

ul
t

(b) Multiply operations

Figure 4.2 : The number of FpAdd and FpMult operations, measured for NLON =
2k, k = 4, 9.

Using only the six data points corresponding to NLON values that are power

of two, and the default monomial base, our toolkit computed the following one pa-

rameter models for the number of FpAdds and FpMults executed during the entire

computation in the main loop and routines it calls:

FpAdd = 100.25 ∗ NLON3 + 22235 ∗ NLON2 − 332905 ∗ NLON + 3364329 (4.1)

FpMult = 95.6 ∗ NLON3 + 14328.9 ∗ NLON2 − 228246 ∗ NLON + 2647343 (4.2)

Our next step was trying to derive a model in two variables. For the one parameter

models, we restricted MM to be about one third of NLON . Now, we want to vary

MM and NLON values independently to see if we can come up with a model in two

variables. For each NLON value in the set {16, 32, 64, 128, 256, 512}, we executed
the profiled binary several times, varying MM in the interval of admissible values

between one and �NLON−1
3

�. For eachNLON value we built a model inMM using the

default polynomial base. The resulting models are all quadratic inMM and the fitting

error computed by our tool is zero. For each of the six NLON values and for each

instruction type, the model inMM has the general formula: a2∗MM2+a1∗MM+a0.

50

Thus, for each considered instruction type, we have six models, one for each distinct

NLON value. The six models corresponding to an instruction type, have the same

general form. Each coefficient from the general formula presented above, can be

written as a model in NLON . To do so, we apply the same modeling strategy as the

one described before, using NLON as the varying factor and the coefficients a2, a1,

a0 as the measures to be modeled. Next, the coefficients of the general formula in

MM can be replaced with their computed models in NLON . The result is a model

in two variables for each instruction type:

FpAdd = (843.5 ∗ NLON + 361.5) ∗ MM2 + (7591.5 ∗ NLON + 1084.5) ∗ MM (4.3)

+(4.64 ∗ NLON3 + 21539.4 ∗ NLON2 − 637926.64 ∗ NLON + 16925208)

FpMult = (843.5 ∗ NLON + 2169) ∗ MM2 + (5844.25 ∗ NLON + 6507) ∗ MM (4.4)

+(14040.8 ∗ NLON2 − 546619 ∗ NLON + 18149057)

All of the modeling work for this experiment up to this point, was based on the

default monomial base. Usually the analyst who is working with an application and

wants to model its performance, has an idea about the algorithms used and what

their complexity terms may be. We know that the application uses an FFT library,

and that Fast Fourier Transformation has a logarithmic term describing the scaling

of its performance. We recomputed our models using a custom base that includes not

only the usual monomic terms but also a logarithmic term. With this basis set, our

modeling tool produces the following models in two variables:

FpAdd = (843.5 ∗ NLON + 361.5) ∗ MM2 + (7591.5 ∗ NLON + 1084.5) ∗ MM (4.5)

+(2255.7 ∗ NLON2log(NLON) + 2438.54 ∗ NLON2

−3093.68 ∗ NLON + 158417)

FpMult = (843.5 ∗ NLON + 2169) ∗ MM2 + (5844.25 ∗ NLON + 6507) ∗ MM (4.6)

+(745.4 ∗ NLON2log(NLON) + 6535 ∗ NLON2

−107019 ∗ NLON + 1384697.6)

51

4
5

6
7

8
9 0

2

4

6

8−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

log2(MM)

log2(NLON)

re
la

tiv
e

er
ro

r
fo

r
ad

d
co

un
t

(a) Relative error for add operations

4
5

6
7

8
9 0

2

4

6

8−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

log2(MM)

log2(NLON)

re
la

tiv
e

er
ro

r
fo

r
m

ul
t c

ou
nt

(b) Relative error for multiply operations

Figure 4.3 : The accuracy of the constructed model in two variables, relative to the
measured data collected by our tool.

4.1.2 Validating the FLOP Count Models

This section presents several approaches that we used to verify the accuracy of our

synthesized models. First, we verify that our model closely resembles the data col-

lected with our dynamic execution measurement infrastructure. The main purpose of

this first step is to validate our modeling tool. From this first experiment we cannot

conclude anything about the correctness of the instrumenter or the soundness of the

data collection algorithm used.

Figure 4.3 plots the relative error of the models described by the equations 4.5

and 4.6, when compared to the collected data. From the figure we can see that the

relative error of the models is less than 0.3% for the FpAdd operations and at most

3.5% for the FpMult count.

The models do not perfectly fit the collected data points because the number of

operations in the FFT module cannot be perfectly described by monotonic functions.

The varying efficiency of the FFT algorithm has a greater impact on the multiply

operation count. Later, when we will build separate models for each routine, we

52

show that the error of our models is limited to only the two routines that perform

the core FFT computation. Although the plots in Figure 4.3 cover only the range of

parameter values for which we collected data, we note that the relative error decreases

for both add and multiply operation count models when MM gets larger. The FFT

computation is independent of parameter MM , so the fluctuating efficiency of the

FFT part has a smaller contribution to the overall performance whenMM grows and

more operations are performed in the other parts of the application.

A second approach for validating the models is to do a hierarchical analysis. We

can configure the filter tool to compute the instruction counts at routine level and

we can build separate models for each routine. We limit our analysis only at those

routines that contain floating point instructions. For PSTSWM there are seventeen

routines that execute at least one floating point instruction. Tables 4.1 and 4.2 present

the models computed for each routine. It also presents the relative error of the models

compared to the row data collected for each routine and instruction type considered.

Routines are listed in the alphabetical order. Except for the first two routines, the

models perfectly approximate the measured values. The first two routines are part of

the FFT library and we explained before the cause for inaccuracy of our models.

The model for the entire program is the sum of all per routine models. We can

check how this hierarchical model compares to the original model computed directly

for the entire execution. The aggregated models for the entire program less the first

two routines are:

FpAdd = (843.5 ∗ NLON + 361.5) ∗ MM2 + (7591.5 ∗ NLON + 1084.5) ∗ MM (4.7)

+(4277.25 ∗ NLON2 + 9881 ∗ NLON + 2892)

FpMult = (843.5 ∗ NLON + 2169) ∗ MM2 + (5844.25 ∗ NLON + 6507) ∗ MM (4.8)

+(3615 ∗ NLON2 + 7772.25 ∗ NLON + 7229)

The partial models above perfectly approximate the collected data. The modeling

error is constrained at the first two routines only. Separately, we summed the models

53

for the two FFT routines:

FpAdd = (2257.7 ∗ NLON2log2(NLON)− 1858.2 ∗ NLON2 (4.9)

−12240.88 ∗ NLON + 146380)

FpMult = (769 ∗ NLON2log2(NLON) + 2692.5 ∗ NLON2 (4.10)

−106059.6 ∗ NLON + 1268178)

The models confirm our observation that the FFT computation does not depend on

MM . When MM gets larger and NLON is held constant, the relative contribution

of the FFT computation to the overall instruction count decreases and so does the

modeling error. We can substruct equations 4.7 and 4.8 from the model for the entire

program described by equations 4.5 and 4.6 to obtain another formula for the FFT

model:

FpAdd = (2255.7 ∗ NLON2log2(NLON)− 1838.7 ∗ NLON2 (4.11)

−12974.68 ∗ NLON + 155525)

FpMult = (745.4 ∗ NLON2log2(NLON) + 2920 ∗ NLON2 (4.12)

−114791.25 ∗ NLON + 1377468)

As we expected, the new models for the FFT module are not exactly equal to the

ones described by the equations 4.9 and 4.10, but the differences are not significant.

In the hierarchical approach, we were able to isolate the fluctuating instruction counts

at those routines that produce it and allowed us to build a clean, precise model for

the rest of the program. This experiment proves the viability of our approach and

the accuracy of our modeling program.

4.1.3 Memory Reuse Distance Models for PSTSWM

This section describes our attempt at characterizing the memory hierarchy behavior

for the main computational routines of the PSTSWM application.

To characterize the memory hierarchy behavior of PSTSWM, we compiled the ap-

plication for the v8plus SPARC ABI using the Sun WorkShop 6 update 2 FORTRAN

54

95 6.2 and the −O4 optimization flag. Because the memory reuse distance data is

characterized by a more complex behavior than the dynamic instruction count which

we modeled in the previous subsection, we aimed at characterizing the memory access

behavior with one variable models. As with the first attempt at constructing one vari-

able models of the FLOP count, we restricted MM to a fixed linear transformation

of NLON , using NLON as the parameterizing factor. Again we considered the set

of problem cases corresponding to a triangular truncation of the spectral coefficients,

with MM taking the largest possible value for a given NLON : �NLON−1
3

�.
Using our data collection infrastructure, we profiled the SPARC binary to collect

the memory reuse distance seen by each load and store instruction. We collected data

from multiple executions with different values of theNLON parameter in the range 16

to 288. Then, we applied the modeling strategy described in section 3.4.2 to construct

reuse distance models for the memory references in the four most important routines

of PSTSWM. We evaluated the resulting models for five different values of NLON ,

and compared the predictions of L1 miss counts and dynamic memory operation

counts against measurements with hardware performance counters (HPC) on a MIPS

R10000 processor.

Figure 4.4 presents the predicted L1 miss counts for the four routines and five

problem sizes considered. The bar graphs are normalized by dividing the predicted

values by the corresponding measured values. The y = 100% line corresponds to

the measured counts, or in other words, to an 100% accuracy of the prediction. The

prediction is very accurate for the dzp routine. For the other three routines the

relative error ranges from 10% to 30%.

Figure 4.5 presents the predicted dynamic memory operation counts for the same

four routines and five problem sizes considered before. The counts are shown in

rapport to the values measured using the HPC. We notice that the predicted counts

are from 2 to 2.7 times larger than the values measured on a MIPS R10000.

The differences between the predicted and the measured values are larger than

55

Figure 4.4 : L1 miss counts predicted vs. measured for the four most important
computational routines in PSTSWM.

Figure 4.5 : Dynamic memory operation count predicted vs. measured.

56

what we expected, especially in the case of the dynamic memory operation count.

Figure 4.6 presents the innermost loop of routine rspiv, loop that accounts for about

90% of all the memory operations in that routine. We notice that accesses to array

DATA do not depend on the loop index, therefore DATA elements are temporally

reused. Arrays SUM, ALP, and DALP are accessed with stride one. Another obser-

vation is that SUM and DATA are arrays of COMPLEX elements, while ALP and

DALP are arrays of REAL elements.

Figure 4.6 : The innermost loop of routine rspiv. DATA elements are reused. Arrays
SUM, ALP and DALP are accessed with stride 1.

Looking at the assembly code generated by the two compilers, we noticed that

the SGI compiler generated 12 loads and 8 stores for the code in the innermost loop

of routine rspiv, and the Sun compiler generated 33 loads and 21 stores for the same

code. By default, Sun compiler aligns the data in COMMON blocks at 4 bytes and

generates single word memory instructions to access double- or quad- precision data,

even if the highest level of optimization is used. The fortran compiler from Sun

requires explicit use of the −dalign flag to lay out the double- and quad-precision

57

data in memory along its natural alignment, and to generate double word memory

instructions when accessing this data. This observation explains why the predictions

for the number of dynamic memory operations were larger than the measurements on

a MIPS R10000 by at least a factor of two. On SPARC, the loop in Figure 4.6 was

also unrolled four times, resulting in increased register pressure. Thus, some of the

DATA elements could not be reused in registers, resulting in an even larger number

of loads and stores being generated.

However, these observations do not explain the inaccuracy of the predictions in the

case of the L1 miss counts. All memory accesses in the innermost loop of routine rspiv,

either reference data that was touched the previous iteration, or access the memory

with a stride one. Only the first stride one access to a memory block experiences a

cache miss. Therefore, it does not matter if four double word loads or eight single

word loads are used to access the content of a 32 bytes memory block, only the first

load sees a large reuse distance. The number of misses should be equal to the number

of memory blocks accessed in the inner loop. Also, the spill code generated by the

Sun compiler has temporal reuse and does not create extra misses. Another factor

causes the discrepancies between the predicted and measured L1 miss counts.

The SUM array has COMPLEX elements. Therefore each element of the SUM

array occupies 16 bytes. Two COMPLEX elements are packed in a 32 bytes cache

line, and two elements from the same column of the SUM array are accessed in one

iteration. Depending on the alignment of each column (see Figure 4.7), the first load

corresponding to either the first or the second SUM element experiences a large reuse

distance, and the other three double word or seven single word loads should see a

small reuse distance.

Depending on the problem size, the SUM array has either an even or an odd

number of elements on each column. The alignment of SUM’s columns alternates

when there are an odd number of elements on each column. While the overall number

of misses in one loop iteration does not depend on columns’ alignment, the reuse

58

Figure 4.7 : Depending on the alignment of each column of the SUM array, the
two elements referenced in one iteration can be located either in the same memory
block(left), or in different memory blocks(right).

distance data collected for individual memory instructions is affected. The two load

instructions that have the role of first accesses to a memory block in the two presented

scenarios, share the number of misses with different ratios for different problem sizes.

As a result, the reuse distance models for the two instructions are imprecise. The

ALP and DALP arrays, which are also accessed with a stride one, suffer from the

same alignment problems.

Figure 4.8 presents the data collected for one of the accesses to the SUM array.

We can notice that the reuse distance data corresponding to about half of all the

problem sizes for which we collected data, have an uniform ratio between the number

of accesses with distance zero and the number of accesses that experienced a large

reuse distance (about 10% of the accesses have distance zero). For the other problem

sizes, the fraction of accesses with distance zero varies between 50% and 90%. We

decided to remove the data corresponding to these divergent problem sizes and to

rebuild the reuse distance models for the four routines considered.

Figure 4.9 presents the predictions of L1 miss counts after the divergent data was

removed. The accuracy of the predictions improved for each routine and is consistent

across the five problem sizes considered.

59

0

50

100

150

200

250

300

0

0.2

0.4

0.6

0.8

1
0

1000

2000

3000

4000

5000

6000

7000

8000

Problem sizeNormalized frequency

M
em

o
ry

 r
eu

se
 d

is
ta

n
ce

Figure 4.8 : Data collected for one of the accesses to the SUM array. About half of
the reuse distance histograms have a similar fraction of accesses with distance zero
(10%). The other histograms, marked with an arrow, seem to have a variable fraction
of accesses with distance zero.

Figure 4.9 : L1 miss count predicted vs. measured after the divergent data points
have been removed.

60

We recompiled the SPARC binary using the −dalign flag and generated new

predictions for the number of dynamic memory operations. The new predictions are

presented in Figure 4.10.

Figure 4.10 : Dynamic memory operation count predicted vs. measured for the binary
compiled with -dalign.

This experiment uncovers some limitations of the tool. The current approach can

model temporal reuse distance accurately. Modeling the spatial reuse distance may

be problematic. Unlike temporal reuse which is a pure application characteristic,

spatial reuse is sensitive to data alignment and array dimensions, and depends on the

cache line size.

4.2 FLOP Count Models for CRM

The Column Radiation Model (CRM) application is a standalone version of the col-

umn radiation code employed by the NCAR Community Climate Model (CCM3).

The CRM application has two input parameters that can be independently modi-

fied and that affect the number of floating point instructions executed. The two input

61

parameters, LON and LAT , can be any natural number without other imposed con-

straints. Using a process similar to the one described in Section 4.1.1, we performed

a series of basic block execution frequency measurements, for different values of the

input parameters LON and LAT .

Using the filter tool on the collected data files, we extracted instruction count infor-

mation for each floating point class of instructions. Besides multiplies and additions,

the CRM executes also a significant number of division and square root operations.

For the CRM application we built separate models for each loop and routine scope in

the program. This detailed modeling process produced more than 700 two variable

models. This thesis presents only the models of the FLOP counts aggregated at the

entire program level.

First, we built models parameterized by LAT for a fixed value of LON . We

repeated this process for different values of LON , obtaining an equal number of

models in LAT for each floating point instruction type. Next, we derived models

parameterized by LON for the coefficients of the models in LAT (see Section 4.1.1).

The resulting two parameter models perfectly approximate the measured counts for

all the instruction types:

FpAdd = (145718 ∗ LON + 1906) ∗ LAT + 54 ∗ LON + 599 (4.13)

FpMult = (210726 ∗ LON + 1964) ∗ LAT + 39 ∗ LON + 1057 (4.14)

FpDiv64 = (41172 ∗ LON + 93) ∗ LAT + 37 ∗ LON + 277 (4.15)

FpSqrt64 = (15451 ∗ LON + 1) ∗ LAT + 2 (4.16)

The FLOP count models for the CRM are a complete success. We were able to auto-

matically synthesize accurate two parameter models of the floating point instruction

count for every loop in the program.

62

Routine Error Derived models
cfftb 0.0096 FpAdd = 1057.14 ∗ NLON2log2(NLON)− 1723.15 ∗ NLON2

+20425.5 ∗ NLON − 244116
0.0394 FpMult = 295.77 ∗ NLON2log2(NLON) + 1035.57 ∗ NLON2

−40792.15 ∗ NLON + 487761
cfftf 0.011 FpAdd = 1200.58 ∗ NLON2log2(NLON)− 135.06 ∗ NLON2

−32666.38 ∗ NLON + 390496
0.0394 FpMult = 473.23 ∗ NLON2log2(NLON) + 1656.91 ∗ NLON2

−65267.44 ∗ NLON + 780417
dpupim2 0 FpAdd = 602.5 ∗ MM2 + 1807.5 ∗ MM + 1205

0 FpMult = 723 ∗ MM2 + 2169 ∗ MM + 2651
dzp 0 FpAdd = 180.75 ∗ NLON ∗ MM2 + 1265.25 ∗ NLON ∗ MM

+1084.5 ∗ NLON
0 FpMult = 180.75 ∗ NLON ∗ MM2 + 542.25 ∗ NLON ∗ MM

+361.5 ∗ NLON

extract 0 FpAdd = 2410 ∗ NLON2 + 1928 ∗ NLON
0 FpMult = 1928 ∗ NLON2 + 1928 ∗ NLON + 241

indi 0 FpAdd = 482 ∗ MM2 + 1446 ∗ MM + 964
0 FpMult = 723 ∗ MM2 + 2169 ∗ MM + 1446

inject 0 FpAdd = 1506.25 ∗ NLON2 + 1205 ∗ NLON
0 FpMult = 602.5 ∗ NLON2

inpiv 0 FpAdd = 482 ∗ MM2 + 1446 ∗ MM + 964
0 FpMult = 964 ∗ MM2 + 2892 ∗ MM + 1928

nonlim 0 FpAdd = 361.5 ∗ NLON2

0 FpMult = 1084.5 ∗ NLON2 + 120.5 ∗ NLON + 723
rsdi 0 FpAdd = (180.75 ∗ NLON − 723) ∗ MM2 + (542.25 ∗ NLON

−2169) ∗ MM + (361.5 ∗ NLON − 1446)
0 FpMult = (180.75 ∗ NLON − 723) ∗ MM2 + (542.25 ∗ NLON

−2169) ∗ MM + (361.5 ∗ NLON − 1446)
rspiv 0 FpAdd = (241 ∗ NLON − 964) ∗ MM2 + (723 ∗ NLON

−2892) ∗ MM + (482 ∗ NLON − 1928)
0 FpMult = (241 ∗ NLON − 964) ∗ MM2 + (723 ∗ NLON

−2892) ∗ MM + (482 ∗ NLON − 1928)
simplic 0 FpAdd = 723
step 0 FpMult = 240

Table 4.1 : Two variable routine-level models of the count of dynamic floating point
instructions and their relative error (first part).

63

Routine Error Derived models
tmpdi 0 FpAdd = 1446 ∗ NLON ∗ MM + 1446 ∗ NLON

0 FpMult = 1265.25 ∗ NLON ∗ MM + 1566.5 ∗ NLON

tmppiv 0 FpAdd = 2410 ∗ NLON ∗ MM + 2410 ∗ NLON
0 FpMult = 2048.5 ∗ NLON ∗ MM + 2470.25 ∗ NLON

tmpuv 0 FpAdd = 482 ∗ MM2 + 1446 ∗ MM + 2410
0 FpMult = 1446 ∗ MM2 + 4338 ∗ MM + 3374

uv 0 FpAdd = 241 ∗ NLON ∗ MM2 + 1205 ∗ NLON ∗ MM
+964 ∗ NLON

0 FpMult = 241 ∗ NLON ∗ MM2 + 723 ∗ NLON ∗ MM
+482 ∗ NLON

Table 4.2 : Two variable routine-level models of the count of dynamic floating point
instructions and their relative error (second part).

64

Chapter 5

Conclusions

This thesis proposes, implements and demonstrates the viability of a new performance

prediction method, which analyzes and models application characteristics indepen-

dently of the target architecture. A binary rewriting tool instruments an application’s

binary to collect data about the most important application-related factors that affect

run-time performance: the execution frequency of each basic block in the program,

the memory access pattern exhibited by each memory reference, and the volume and

frequency of communication among processes. A post-processing tool processes the

collected data into accurate architecture-neutral models. The models, parameterized

by problem size, enable us to predict important characteristics of the application

without the need to execute the program at scale. An instantiation of the models for

a set of parameters and a description of a target architecture enable us to predict the

application’s performance for an arbitrary machine.

The characteristics of regular scientific programs can be modeled with a high level

of accuracy using the proposed approach. In our experiment modeling the memory

reuse distance for the PSTSWM application, we encountered difficulties in building an

accurate model of distance because of anomalies introduced by spatial reuse. Unlike

temporal reuse distance which is an application specific factor, spatial reuse distance

seen by individual references is affected by the layout of data in memory and by the

size of the cache line. More study is needed to determine if a different approach for

accounting for the impact of spatial reuse can offset the effects of data alignment on

the measured spatial reuse distance and increase the confidence in the accuracy of

the cache miss predictions. A possible but untested solution is to aggregate the data

65

from the instructions that belong to the same loop and are characterized by circular

reuse on each other’s accessed data.

In addition to supporting accurate cross-architecture predictions, our configurable

scheduler enables us to determine the parts of a program that run most inefficiently.

Moreover, it enables us to understand what are the causes of inefficiency: limited

memory bandwidth, schedule dependencies among instructions on the critical path,

or a mix of instructions that is not balanced with respect to the number and type of

functional units on the target architecture. To facilitate the use of this performance

data, we plan to extend the HPCView [24] performance data analysis tool to present

the kinds of information produced by our tool. HPCView can correlate our perfor-

mance data to the source code and its user interface will enable us to browse the

performance data in a top-down way that will facilitate its interpretation.

In the future, we plan to translate our data on memory reuse distance into a

prediction of latency for a target memory hierarchy. With this data in hand, we

plan extending the scheduler to consider the individual latency experienced by each

memory reference. For the long term, more research is necessary to investigate if the

approach presented in this thesis can be extended to parallel applications by consid-

ering the effects of synchronization and serialization on an application’s performance.

One of the major difficulties in characterizing the performance of parallel applications

is to automatically understand the communication pattern exhibited by the applica-

tion and to represent this pattern in a form that enables scalability predictions.

66

Bibliography

[1] The ASCI Sweep3D Benchmark Code. DOE Accelerated Strategic Computing

Initiative.

http://www.llnl.gov/asci benchmarks/asci/limited/sweep3d/asci sweep3d.html.

[2] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dubeb, E. N. Houstis,

J. R. Rice, R. Sakellariou, D. Sundaram-Stukel, P. T. Teller, and M. K. Vernon.

POEMS: End-to-end performance design of large parallel adaptive computational

systems. Software Engineering, 26(11):1027–1048, 2000.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incor-

porating long messages into the LogP model for parallel computation. Journal

of Parallel and Distributed Computing, 44(1):71–79, 1997.

[4] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow.

The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames

Research Center, Dec. 1995.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic

optimization system. ACM SIGPLAN Notices, 35(5):1–12, 2000.

[6] T. Ball and J. R. Larus. Optimally profiling and tracing programs. ACM Trans-

actions on Programming Languages and Systems, 16(4):1319–1360, July 1994.

[7] B. Bennett and V. Kruskal. Lru stack processing. IBM Journal of Research and

Development, 19(4):353–357, July 1975.

[8] K. Beyls and E. D’Hollander. Reuse distance as a metric for cache behavior. In

67

IASTED conference on Parallel and Distributed Computing and Systems 2001

(PDCS01), pages 617–662, 2001.

[9] B. Buck and J. K. Hollingsworth. An API for runtime code patching. The

International Journal of High Performance Computing Applications, 14(4):317–

329, Winter 2000.

[10] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT

Press, Cambridge, MA, 1990.

[11] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel

Computation. In Principles Practice of Parallel Programming, pages 1–12, 1993.

[12] C. Ding and Y. Zhong. Reuse distance analysis. Technical Report TR741, 2001.

[13] M. Frank, A. Agarwal, and M. K. Vernon. LoPC: Modeling Contention in Parallel

Algorithms. In Principles Practice of Parallel Programming, pages 276–287,

1997.

[14] S. Ghosh and M. M. amd Sharad Malik. Cache miss equations: An analytical

representation of cache misses. In Proceedings of the 1997 ACM International

Conference on Supercomputing, pages 317–324, Vienna, Austria, July 1997.

[15] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access

errors. In Proceedings of the Winter USENIX, 1992.

[16] A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H. Alme. A General

Predictive Performance Model for Wavefront Algorithms on Clusters of SMPs.

In Proceedings of the 2000 International Conference on Parallel Processing, 2000.

[17] D. E. Knuth and F. R. Stevenson. Optimal measurement points for program

frequency counts. BIT, 13(3):313–322, 1973.

68

[18] J. Larus and E. Schnarr. EEL: Machine-Independent Executable Editing. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 291–300, June 1995.

[19] A. Lebeck and D. Wood. Cache profiling and the spec benchmarks: A case study.

IEEE Computer, 27(10):15–26, Oct. 1994.

[20] MathWorks. Optimization Toolbox: Function quadprog.

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/quadprog.

shtml.

[21] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation techniques for storage

hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[22] J. Mellor-Crummey, V. Adve, B. Broom, D. Chavarrla-Miranda, R. Fowler,

G. Jin, K. Kennedy, and Q. Yi. Advanced Optimization Strategies in the Rice

dHPF Compiler. Concurrency: Practice and Experience, 2001.

[23] J. Mellor-Crummey, R. Fowler, and D. Whalley. Tools for application-oriented

performance tuning. In Proceedings of the International Conference on Super-

computing (ICS1001), pages 154–165, Sorrento, Italy, June 2001.

[24] J. Mellor-Crummey, R. J. Fowler, G. Marin, and N. Tallent. HPCVIEW: A Tool

for Top-down Analysis of Node Performance. The Journal of Supercomputing,

23(1):81–104, 2002.

[25] F. Mueller, T. Mohan, B. de R. Supinski, S. A. McKee, and A. Yoo. Partial

data traces: Efficient generation and representation. In Workshop on Binary

Translation, IEEE Technical Committee on Computer Architecture Newsletter,

Oct. 2001.

[26] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. H. Levy, and B. Ber-

shad. Instrumentation and optimization of win32/intel executables using etch.

69

In Proceedings of the USENIX Windows NT Workshop, pages 1–7, Seattle, WA,

USA, Aug. 1997.

[27] A. Snavely, L. Carrington, and N. Wolter. Modeling application performance by

convolving machine signatures with application profiles, 2001.

[28] A. Srivastava and A. Eustace. Atom: A system for building customized program

analysis tools. In SIGPLAN Conference on Programming Language Design and

Implementation, pages 196–205, Orlando, FL, May 1994.

[29] D. Sundaram-Stukel and M. K. Vernon. Predictive Analysis of a Wavefront

Application Using LogGP. In Seventh ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP ’99), Atlanta, May 1999.

[30] R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System

Sciences, 9:355–365, 1974.

