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Abstract

Tuning the performance of applications requires understanding the interactions

between code and target architecture. Hardware counters, present in all modern

processors, can identify possible causes of performance problems and can pinpoint

sections of code that execute at a low fraction of machine peak performance. However,

the information provided by hardware counters is often insufficient to understand the

causes of poor performance or to realistically estimate the potential for performance

improvement.

This thesis presents techniques to measure and model application characteristics

independent of the target architecture. Using information gathered from both static

and dynamic analysis, this approach not only makes accurate predictions about the

behavior of an application on a target architecture for different inputs, but also pro-

vides guidance for tuning by highlighting the factors that limit performance at differ-

ent points in a program. We introduce several new performance analysis metrics that

estimate the maximum gain expected from tuning different aspects of an application,

or from using hardware accelerator coprocessors. Our approach models the most im-

portant factors affecting application performance and provides estimates of unfulfilled

performance potential due to a mismatch between an application’s characteristics and



the resources present on the target architecture. We model an application’s instruc-

tion execution cost and memory hierarchy utilization, and we identify performance

problems arising from insufficient instruction-level parallelism or poor data locality.

To demonstrate the utility of this approach, this thesis presents the results of

analyzing and tuning two scientific applications. For Sweep3D, a three-dimensional

Cartesian geometry neutron transport code benchmark from the DOEs Accelerated

Strategic Computing Initiative, our analysis identified opportunities for improvement

that shortened execution time by 66% on an Itanium2-based system. For the Gyroki-

netic Toroidal Code (GTC) from Princeton Plasma Physics Laboratory, a particle-

in-cell code that simulates turbulent transport of particles and energy in burning

plasma, our techniques identified opportunities for improvement that shortened exe-

cution time by 33% on the same Itanium2 system.
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Chapter 1

Introduction

Over the past two decades, there has been a dramatic increase in the peak perfor-

mance of microprocessors, due to both architectural innovations and improvements

in semiconductor technology. At the same time, it has become increasingly difficult

for applications to sustain a significant fraction of peak performance. This is due,

in part, to an imbalance between the resources offered by super-scalar architectures

and the actual needs of applications. The need to understand how to better tailor an

application to a particular architecture, combined with a growing interest in recon-

figurable architectures, heterogeneous processors [29], and grid computing [39], make

the need for performance analysis and modeling tools more acute than ever.

Application performance modeling fills this need. Models of application perfor-

mance have many uses, including understanding how performance scales under differ-

ent conditions, guiding mapping of application components to a collection of hetero-

geneous resources, predicting how an application would perform on proposed future

architectures, and providing insight into the design of custom architectures. In ad-

dition, accurate models of application performance can identify mismatches between

application and architecture characteristics, pinpoint sources of inefficiency and iden-

1



tify opportunities for tuning. However, building accurate application performance

models is difficult because a large number of variables affect execution behavior,

such as application specific factors, architectural characteristics, and data input pa-

rameters. Moreover, these factors interact in complex ways, making it difficult to

understand what limits performance at different points in a program.

Hardware counters, present on all modern microprocessors, provide a low over-

head mechanism for observing resource utilization during an application’s execution.

However, while they can highlight possible causes of performance problems, such as

identifying loops where high fractions of cache misses occur, this information is rarely

sufficient to help one understand and correct the underlying problem. For example,

performance measurements based on hardware counter sampling can identify loops

that fail to sustain a satisfactory fraction of peak performance by monitoring the

number of instructions retired per machine clock cycle. However, they fail to provide

the insight necessary to distinguish between a problem due to a mismatch between

the application’s instruction mix and the machine’s execution units, and one caused

by the presence of recurrences, which limit the amount of instruction-level parallelism

in tight loops.

When faced with a performance problem, we must first understand the causes

for poor performance before we can design an appropriate solution. For example, if

recurrences limit instruction-level parallelism in a frequently executed loop, we must

transform the code to increase the amount of fine-grain parallelism. If, on the other

hand, there is plenty of instruction-level parallelism but the instruction mix does not

match the number and type of execution units present on the target architecture, we

2



can improve performance either by moving to a different more appropriate architec-

ture, or by adjusting the architecture, which is possible when the architecture is a

field-programmable gate array (FPGA).

To address the shortcomings of current techniques, this thesis presents an approach

based on detailed modeling of the main factors affecting performance. Our goal is

to complement the information provided by hardware performance counters with

additional metrics that aid tuning by highlighting the factors that limit performance

at different points in a program.

The thesis of this work is that it is possible to characterize applications

in an automatic way (1) to predict their performance on different platforms

with reasonable accuracy, and (2) to automatically identify several types

of performance bottlenecks, provide insight into ways of addressing them

and estimate the potential gains from doing so.

In this thesis we consider performance problems that arise from poor data local-

ity, insufficient instruction-level parallelism, or a mismatch between the application’s

instruction mix and the resources offered by the target architecture. Our goal is to an-

swer questions about an application’s performance such as: Is a program slow due to

a costly algorithm? Does the program have insufficient instruction-level parallelism,

or is there a mismatch between the number and type of resources provided on the

target machine, and the type of resources required by the most frequently executed

loops of the application? Is the application bandwidth starved, or is it limited by

the memory latency? How much bandwidth at each level of the memory hierarchy is

needed to fully utilize the execution units if we could perfectly prefetch all data?

3



1.1 The Modeling Framework

We use static and dynamic analysis of binaries as the basis for performance mod-

eling and prediction. Because we analyze and instrument object code, our tools

are language independent and naturally handle applications with modules written

in different languages. In addition, binary analysis works equally well on optimized

executables; we do not need our own optimizer to predict performance of optimized

code. Finally, object code is more concrete for performance evaluation; it is easier to

predict performance of a mix of machine instructions with predictable latencies than

to estimate the execution cost of high-level language constructs.

Working on binaries, however, does have drawbacks. First, a tool that models

performance of application binaries is limited by the binary analysis library it uses.

We mitigate this by measuring and modeling application characteristics that are ma-

chine independent, and then using those models to predict performance on arbitrary

RISC-like architectures. Second, certain high-level information is lost when the source

code is translated to low-level machine code, or may require more thorough analysis

to extract.

To analyze and model application performance, we developed a toolkit that 1) an-

alyzes a program’s object code to collect measurements of the main application char-

acteristics affecting performance, 2) builds scalable models of the measured dynamic

application characteristics, and 3) uses these models to predict the performance of ap-

plications on different target architectures. The toolkit’s binary analysis capabilities

are based upon the Executable Editing Library (EEL) [32], which supports analysis

4
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Figure 1.1: Modeling framework diagram.

and instrumentation of SPARC binaries. The focus on SPARC binaries is not a signif-

icant limitation since our toolkit uses binary analysis to construct architecture-neutral

models for predicting application behavior and performance on arbitrary RISC-like

architectures by combining these models with a description of the resources of a target

machine. Because the EEL library has not been publicly maintained since 1995 and

since both the Sun Forte compiler and the GNU GCC compiler have been updated

continually since that time, we had to enhance EEL to understand and manipulate

the control flow idioms used by today’s compilers. Our enhancements to the EEL

library are described in Appendix A.

Figure 1.1 shows an overview of our modeling framework adopted by our toolkit.

There are four main functional components: static analysis, dynamic analysis, an

architecture-neutral modeling tool, and a modulo-scheduler for cross-architecture per-
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formance predictions and bottleneck identification.

The static analysis subsystem shown in Figure 1.1 is not a standalone application

but rather a component of every program in our toolkit. We employ static analysis

to recover high-level program information from application binaries, including recon-

structing the control flow graph (CFG) for each routine, identifying natural loops and

loop nesting in each CFG using interval analysis [63], and understanding the names

of the program variables referenced by each memory instruction. Other uses of static

analysis involve modeling aspects of an application that are important for its perfor-

mance but are independent of its execution characteristics, such as, understanding

the instruction mix in loop bodies, computing dependences between instructions that

determine the instruction-level parallelism (ILP), identifying irregular and indirect

memory access patterns, and finding opportunities for structure or array splitting.

We tackle two particularly difficult problems, understanding what program variable

names are associated with each memory instruction and computing memory depen-

dences within loops from machine code, by computing symbolic formulas that describe

the memory locations accessed by each memory reference. This process is presented

in more detail in section 3.1.

Often, many important characteristics of an application’s execution behavior can

only be understood accurately by measuring them at run time using dynamic analysis.

Our toolkit uses binary rewriting to augment an application to monitor and log

information during execution. To understand the nature and volume of computation

performed by an application for a particular program input, we collect histograms

indicating the frequency with which particular control flow graph edges are traversed
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at run time. To understand an application’s memory access patterns, we collect

histograms of reuse distance [7]—the number of unique memory locations accessed

between a pair of accesses to a particular data item—observed by each load or store

instruction. These measures quantify key characteristics of an application’s behavior

upon which performance depends. By design, these measures are independent of

architectural details and can be used to predict the behavior of a program on an

arbitrary RISC-like architecture.

Collecting dynamic data for large problem sizes can be expensive. To avoid this

problem, we construct scalable models of dynamic application characteristics. These

models, parameterized by problem size or other input parameters, enable us to predict

application behavior and performance for data sizes that we have not measured [41,

42].

To obtain cross-architecture performance predictions, we combine information

gathered from static analysis and dynamic measurements of execution behavior. We

then map this information onto an architectural model constructed from a machine

description file. This process has two steps. First, we predict the program’s mem-

ory hierarchy behavior by translating memory reuse distance models into predictions

of cache miss counts for each level of the memory hierarchy on the target architec-

ture. We predict capacity and compulsory misses directly from reuse distance models

and estimate conflict misses using a probabilistic strategy [42]. Second, we predict

computation costs by identifying paths in each routine’s CFG and their associated

frequencies, and mapping instructions along these paths onto the target architecture’s

resources using a modulo instruction scheduler.
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1.2 Gaining Insight into Performance Bottlenecks

We extended the modeling framework described in the previous section to identify

performance bottlenecks and determine the potential for improvement from correcting

them. We designed a modulo instruction scheduler that attributes each clock cycle

of the execution cost to either application dependences or contention for machine

resources. Based on this work we introduce new metrics that describe the potential

for improvement from increasing the amount of instruction-level parallelism, or from

additional machine resources.

To understand if an application is bandwidth starved, we present the minimum

bandwidth requirements at each level of the memory hierarchy necessary to sustain the

computation’s speed if we could ideally prefetch all data, and we compute execution

delays caused by insufficient bandwidth availability.

To understand the causes for poor data locality, we collect reuse information

separately for each data reuse pattern. This approach enables us to understand not

only where we experience a high number of cache misses, but also where data was last

accessed before it was evicted from cache, and what program loop causes the data to

be repeatedly accessed.

We present an algorithm to identify poor spatial reuse caused by layout of data

in memory. We call the fraction of data in a memory block that is not accessed

the fragmentation factor. We compute fragmentation factors for each reference and

each loop nest in the program by analyzing the strides with which data arrays are

traversed. We compute metrics that show how many cache misses at each memory
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level can be eliminated by transformations such as array or structure splitting.

We present general guidelines for interpreting these performance metrics and we

exemplify their use by describing the steps involved in tuning of three scientific ap-

plications.

The rest of the thesis is organized as follows. Chapter 2 presents background

information and an overview of related work. Chapter 3 describes the application

characteristics that can be understood through static analysis. Chapter 4 presents

our binary instrumentation infrastructure and describes the application character-

istics that we measure using dynamic analysis. Chapter 5 explains the process of

building scalable architecture-neutral models of edge execution frequencies and mem-

ory reuse distance histograms. Chapter 6 presents a machine description language

used for modeling a target architecture, and describes the implementation of a modulo

instruction scheduler used for computing cross-architecture predictions of computa-

tion cost. Chapter 7 describes extensions to the modeling framework and introduces

new performance metrics for gaining insight into performance bottlenecks. Chapter 8

describes the process of analyzing and tuning three scientific applications. Chapter 9

summarizes the contributions of this dissertation, discusses the limitations of this

work, and outlines several open problems related to this work.
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Chapter 2

Background

Performance analysis and modeling comprise the process of building mathematical

constructs to describe performance characteristics of a computer system. Performance

prediction entails estimating the execution time of a program on a given architecture.

Predicting the execution time of an application under varying conditions is one of the

most important, and yet most difficult, aims of performance analysis research.

Performance analysis research is important to several groups of people. Compiler

writers, application developers and computer architects have the most interest in this

research area. Application developers need performance analysis to understand the

causes of inefficiency in their programs, to make procurement decisions or to guide

the mapping of application components onto a set of heterogeneous resources. Com-

piler writers may use performance tools to understand opportunities for optimization,

estimate potential payoff of optimizations on today’s architectures or to evaluate the

performance of the code they generate for the architectures of tomorrow that are in

the design stage. Finally, computer architects may use performance models to under-

stand the causes of performance inefficiencies, estimate their impact, and explore the

impact of architectural changes.
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Existing performance prediction methods range from back-of-the-envelope esti-

mates to detailed analytical models or cycle-accurate simulations. Active areas of

research in this field are on finding performance prediction approaches that reduce

the time overhead required by full-scale simulators while maintaining a reasonable

level of accuracy, and methods for attribution of execution inefficiencies to applica-

tion features or to application/architecture interactions which provide insight into

application tuning. Next section summarizes some of the recent related work in this

field. Section 2.2 presents background information and a summary of the existing

techniques for analyzing memory access behavior. Section 2.3 describes related work

in the area of performance bottleneck identification and application tuning.

2.1 Performance Prediction Techniques

We can divide the existing performance prediction techniques into three main

categories: profile-based approaches, simulation-based approaches and pencil-and-

paper analytical methods.

2.1.1 Profile-Based Approaches

Profile-based performance prediction methods use hardware performance counters

or code instrumentation to collect performance data during an application’s execution.

Afterwards, a post-processing tool analyzes this data to determine places where most

time is wasted and, hence, are the most profitable to be optimized, or to compute an

estimate for the application’s execution time.
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Hardware performance counters are a set of special registers available in most

modern microprocessors. These registers count events that take place inside the

processor or the memory subsystem when application software is executed. Hardware

performance counters can capture statistics about executed instructions or memory

hierarchy behavior with a minimal time overhead. Hardware performance counters

are especially useful in gathering data about the interaction between the application

and the hardware it is running on. The method presented in this thesis constructs

models for characteristics of an application that are independent of the hardware;

therefore, hardware counters are not used by our toolkit.

Alternatively, code instrumentation can be used to collect information about an

application’s execution behavior. Code instrumentation can be performed either on

source code or on object code. Object code instrumentation can be classified fur-

ther as dynamic instrumentation, link-time instrumentation, or static instrumenta-

tion. In recent years, several tools/libraries for binary instrumentation have emerged.

DynInst [11] is a portable application program interface (API) that enables develop-

ment of tools and applications that require run-time code patching. Dynamo [5] is

a run-time dynamic optimization system that focuses on optimization opportunities

which manifest themselves only at runtime and, hence, are difficult for a static com-

piler to exploit. Purify [22] is a well known tool for memory error and leak detection

that uses object code instrumentation at link-time to monitor memory allocation,

deallocation and load/store operations performed by an application. The category

of static binary instrumentation is represented by EEL [32], ATOM [61], Etch [58]

and Pin [37] libraries that enable tools and applications to analyze and modify binary
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programs without being concerned with low-level architectural details.

Snavely, Wolter and Carrington [59] start from the premise that a parallel appli-

cation’s performance is based on two major factors: its single node performance and

its use of a communication network. They consider that the network interconnect

contribution can be estimated by a network simulator. For single processor perfor-

mance, their investigations focus on memory-bound codes, such as the NAS Parallel

Benchmarks [4] (NPB) kernels. Therefore, they use the “rule of thumb” that the

per-processor performance of an application is predominantly a function of how it

exercises the memory subsystem. Their performance prediction method consists of

collecting Machine Signatures – characterizations of the rates at which a machine

can execute fundamental operations independent of the particular application – and

Application Profiles – summaries of the fundamental operations to be carried out by

the application in abstraction of any particular machine. Next, they use a convolu-

tion method to combine application profiles with machine signatures to determine the

performance of an application on a particular architecture. For the NPB kernels they

considered, the errors of the estimates are less than 20% in all cases. The modeling

costs are a sixty-fold slowdown for collecting the Application Profiles and a roughly

equal amount of time spent in gathering the Machine Signatures. However, the latter

information must be collected once for each machine and can be used for multiple

applications without any further overhead. This time overhead is favorable when

compared to a cycle-accurate simulation, which can dilate execution time by as much

as a factor of four to size orders of magnitude without a significant gain in accuracy

for these memory-bound kernels.
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However, considering the requirements of executing profiled applications at full

scale to characterize node performance, and simulating communication traces at full

scale to estimate the synchronization cost, we consider that even a sixty-fold slowdown

is an important deterrent for using this method with large data sizes on which the

original program might run for days. The memory-bound rule can be safely applied

to many scientific applications, but this should not be a general assumption. Other

factors, such as the instruction schedule dependences, can affect the estimates more

than just a few percentage points. Snavely et al’s work is the closest in concept to

the method presented in this thesis.

Like Snavely et al, we focus on collecting application characteristics independently

of the target machine. However, we focus on single node performance. Rather than

considering only models for memory-bound applications, our models consider a variety

of factors that can affect performance, including memory hierarchy latency, the in-

struction schedule dependences and instruction mix inside frequently executed loops.

More importantly, we build scalable models of these application characteristics. As a

result, we can predict the performance of an application for larger problem sizes than

ones that are practical for monitoring and simulating at scale.

2.1.2 Simulation-Based Approaches

Performance prediction methods based on simulation consist of executing an ap-

plication in conjunction with a program that emulates the target architecture. Since

each dynamic instruction must be simulated, these methods have a significant time

overhead. On the other hand, a detailed simulation can produce a very accurate pre-
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diction of the application’s performance. Trace-based simulators are a common style

of tools supporting this type of method. To use a trace-based simulator, the applica-

tion is instrumented using a profile-based tool to collect a trace of important events

that occur during its execution. The resulting trace file is then fed into a program

which simulates only a fraction of the dynamic instructions originally executed by

the application. Hence, this method is much faster than a cycle-accurate simulation.

However, speed comes at a cost and the trade-off in this case is the accuracy of the

prediction and the level of detail about the phenomena taking place inside the simu-

lated machine. A general drawback of simulators is that the user has to simulate the

application under study for each data set of interest. Still, simulation or trace-based

simulation can be used together with other techniques to construct scalable models

of an application’s performance.

The POEMS [1] project by Adve et al., is an environment for end-to-end perfor-

mance modeling of complex parallel and distributed systems. The POEMS modeling

effort spans the domains of application software, runtime libraries, operating system,

and hardware architecture. The POEMS effort aims to assemble component models

from these different domains into an end-to-end system model. The composition pro-

cess is specified using a generalized graph model of a parallel system, combined with

interface specifications describing the component behaviors and evaluation methods.

The POEMS framework is a complex system that aims at building complete end-to-

end models using a large range of modeling paradigms including analysis, simulation

and direct measurement. The drawbacks of this approach are the high complexity

of the system with possible long execution times for the simulators and the system’s
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dependency on the task graph that can be generated only by the Rice dHPF com-

piler [46]. This thesis explores another approach for building scalable models of an

application’s computation using dynamic analysis of application binaries without any

special compiler support.

2.1.3 Pencil-and-Paper Analytical Methods

The pencil-and-paper method is the traditional technique for building performance

models. It requires a deep understanding of the algorithms that are used in an

application, details about their implementation and a good knowledge of the dynamic

structure of an execution imposed by synchronization in the application. As a result,

this method is not widely used in industry; it is used only by highly skilled researchers.

However, it will continue to be used until more automated methods become mature

enough to achieve the desired levels of accuracy. On a smaller scale, pencil-and-paper

models can also be used to validate models constructed with other techniques.

Sundaram-Stukel and Vernon [62] analyze and construct a LogGP performance

model for Sweep3D, a wavefront application with a complex synchronization struc-

ture. They focus on building accurate models of MPI communication primitives using

micro-benchmarks on two or four nodes. They show that the LogGP model predicts

with high accuracy the measured application execution time for large problem sizes

running on 128 nodes or more. Stukel and Vernon found poor scaling beyond two

thousand nodes for the Sweep3D application using the current algorithm, due to

synchronization overhead.

Hoisie et al. [24] studied the performance of wavefront algorithms implemented
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using message passing on two-dimensional logical processor arrays. Wavefront algo-

rithms are widely used in parallel computing since they enable parallelism in compu-

tations that contain recurrences. Hoisie’s group is focused on predicting performance

of wavefront applications on cost-effective machines that have non-uniform network

topologies, such as in a cluster of SMPs. In their work on wavefront applications,

their models successfully captured the communication patterns of these applications.

Their results show accurate performance predictions validated on a cluster of Origin

2000 machines with up to 1024 processors.

While the pencil-and-paper approach has produced some of the most accurate

models to date, their obvious disadvantage is the human effort required to construct

them.

2.2 Memory Performance Analysis

With the large gap between the peak performance of microprocessors and their

memory systems, it is unanimously accepted that memory hierarchy response is the

factor most limiting node performance for data intensive applications. Cache memo-

ries are small, fast buffers placed between the processor and the main memory to help

hide the large latency of memory accesses. Caches are effective only if an application

exhibits temporal or spatial data reuse1. For an application with a working set much

larger than the cache size, a stream of random accesses to the working set will exhibit

little or no data reuse. To improve the reuse of data in cache, one must optimize

applications to exploit temporal reuse of data that is already in the cache before

1We define these terms on page 19.
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evicting it, and to improve spatial reuse by placing data that is accessed together into

the same cache block or into non-conflicting blocks. This section describes the main

techniques for assessing how an application uses the memory hierarchy. However,

first we review how caches work.

2.2.1 Understanding How Caches Work

Caches are characterized by three principal parameters: cache size, block size, and

associativity [53]. The cache size is the total capacity of the cache in bytes. The cache

is divided into a number of equally sized blocks called cache lines. All operations with

the next level of the memory hierarchy are performed with a cache line granularity.

The size of the cache line defines the number of bytes that are fetched from memory

when a cache miss occurs, or the number of bytes written to memory when a modified

cache line has to be evicted. The capacity of the cache (C) is equal to the number of

blocks (N) times the block size (B).

Associativity represents the number of unique cache lines in which a memory block

can reside. If a memory block can be loaded into one cache line only, the cache has a

direct mapping. If the block can be loaded into any line of a cache, the cache is said

to be fully associative. In practice, caches are often positioned somewhere between

these two extremes. If a memory block can reside in any of a set of exactly k cache

lines, then the cache is said to be k-way set-associative.

The level of associativity built into a cache memory affects the performance of the

entire system. Fully associative caches are expensive and difficult to build; therefore,

caches used in practice have a much lower level of associativity. To understand how

18



the associativity level can affect the performance, one must consider how memory

blocks are mapped to cache lines depending on the type of cache. Let R be the ratio

between the size of the memory and the capacity of the cache. Because the capacity of

the cache is much smaller than the size of the memory, on average R memory blocks

compete for each one of the N cache blocks. In a fully associative cache, any of the

R∗N memory blocks can occupy any of the N cache blocks. In a k-way set-associative

cache, R ∗ k memory blocks compete for a set of k blocks in the cache. Even if the

ratios are equal, there is a difference in the size of the two sets. For a fully associative

cache, the layout of data in memory is important only for clustering together data that

has temporal affinity. For a system with a lower level of associativity, data layout

algorithms must consider also conflicts between different memory blocks. Memory

blocks that map to the same cache set, are said to conflict with each other. This

is a problem only when more than k memory blocks of the working set map to a

single set of k cache blocks, while other cache sets are underutilized. Therefore, more

optimizations are necessary when compiling an application for a machine with a low

level of cache associativity, to ensure that the most frequently accessed data structures

are uniformly distributed over the N/k sets.

Whenever we access data that is already loaded into cache, we say we experience

a cache hit. Cache hits are classified as temporal reuse or spatial reuse, depending

on what memory location was previously accessed that caused the memory block to

be loaded into cache. We say that a memory access has temporal reuse if a previous

access to the same location fetched the memory block into the cache or kept it from

being replaced. A memory access has spatial reuse in the cache if a previous access to
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a different location from the same memory block caused the block to be loaded into

the cache. A cache configuration with a cache line of size one has no spatial reuse.

Cache misses can be classified in three categories: compulsory misses, capacity

misses and conflict misses. Compulsory misses, also known as cold misses, are pro-

duced when memory blocks are accessed for the very first time. If an application has

to access each memory block only once during the entire execution, then all memory

accesses will result in compulsory misses. Compulsory misses can be hidden by ex-

plicitly prefetching the data. Another (theoretical) solution is to reduce the number

of blocks in memory by increasing the block size.

Capacity and conflict misses are said to be non-compulsory cache misses, because

they occur on accesses to blocks that have been previously accessed but are no longer

in cache. An access to a memory block bi is a capacity miss if and only if at least N

different other blocks were referenced since the last access to bi. This is equivalent to

saying that capacity misses are misses that would occur in a fully associative cache

with an LRU replacement policy and that are not compulsory misses. The number

of capacity misses can be reduced by either increasing the number of blocks in the

cache or by restructuring the application to shorten the distance between accesses to

same block if there is potential temporal reuse that is not being exploited.

A reference that hits in a fully associative cache and misses in a k-way set-

associative one is called a conflict miss. It means the referenced block bi was accessed

in the recent past because the reference is a hit in a fully associative cache, but at

least k other different memory blocks from the set of R ∗ k blocks that compete for

same set of cache lines were also referenced since then, causing the eviction of block

20



bi. Conflict misses are the most difficult to model or to predict since they are the

result of a complex interaction between the characteristics of the cache sub-system,

the layout of data in memory and the access pattern used by applications.

It is possible for an application to have a negative number of conflict misses. This

means the program can exhibit more misses with a fully associative cache than with

a set-associative cache. This behavior can be illustrated with an unoptimized matrix-

multiply program. Figure 2.1 presents the “C” code for a simple matrix-multiply

program. Arrays X, Y and Z are laid out in memory in row-major order - consecutive

elements of a row occupy consecutive locations in memory. Let us consider a case

where the matrix line size expressed in bytes, M , is less than the size of the cache,

C, but the number of elements in a line or column, n, is greater than the number of

blocks in the cache. We would expect to see only spatial reuse for consecutive stride

one accesses to X performed in the inner loop and no temporal reuse from the middle

loop using a fully associative cache.

for (i=0 ; i<n ; ++i)

for (j=0 ; j<n ; ++j)

{

Z[i][j] = 0;

for (k=0 ; k<n ; ++k)

Z[i][j] += X[i][k]*Y[k][j];

}

Figure 2.1: A loop nest to multiply a pair of matrices.

The program references a full row of matrix X and a full column of matrix Y before

reusing the same row of X in the next iteration of the middle loop. We can compute

how many blocks are accessed by the inner loop. A line of matrix X occupies M/B
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blocks, where B is the block size in bytes. An entire column of Y occupies n blocks,

where n is the number of elements in a column, because two consecutive elements of

a column occupy two different memory blocks. Since n is greater than the number

of blocks in the cache, referencing an entire column of Y in the inner loop causes

eviction of the blocks allocated for X and Y in the first iterations of the loop. As a

result, the code would experience no temporal reuse for accesses to X on consecutive

iterations of the middle loop.

For a 2-way set-associative cache, accesses to array Y will generate a lot of conflict

misses, many times causing the eviction of other elements of Y referenced not long

before. This effect will cause some of the elements of X to remain in cache for the

entire execution of the inner loop, and the application will experience some level of

temporal reuse in the next iteration of the middle loop. Accesses to the Y array

produce conflict misses but because they are already counted as capacity misses and

X experiences more hits than in the case of a fully associative cache, by the definition

above, accesses to X have a negative number of conflict misses.

2.2.2 General Techniques for Memory Performance Analysis

Existing techniques for understanding how an application uses the memory hierar-

chy include cache simulator methods, compile time analysis techniques, profile-based

methods and dynamic code monitoring and optimization.

Cycle accurate simulators were described in section 2.1.2. They emulate the entire

target machine, and therefore, they must simulate the cache in the process. Cache

simulators do not need to simulate execution of all of an application’s instructions,
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only the memory references. The simulation can be performed either offline, on a trace

of references collected with the help of a profiling tool, or on-the-fly by executing an

instrumented version of the program. Except for compile time analysis methods, all

the other methods make use of a cache simulator. The disadvantages of a trace-based

cache simulator are the possibly large disk space needed to store the traces with tens

or hundreds of millions of memory references, and the need to separately collect and

simulate a trace of memory references for each configuration of input parameters and

cache parameters that must be analyzed.

Recent work by Mueller et al. [50] proposes the use of regular section descriptors

(RSD) and partial address traces to represent the data traces in constant space,

solving the first disadvantage presented above. Mueller et al. use dynamic binary

rewriting to collect the partial data traces. However, the presented algorithm deals

only with regular access patterns of streams that have a constant stride. Extending

the algorithm to handle arbitrary strides might be possible, but with a big cost

increase.

This thesis presents another method for analyzing the data access pattern of an

application by characterizing the memory reuse distance for each memory reference.

Memory reuse distance is a measure of the number of distinct memory locations that

are accesses between two references at the same datum. Comparing the reuse distance

information seen by a memory reference and the number of blocks present in a cache

sub-system (see Section 2.2.1) provides a direct indication if the memory access is a

hit or not in the considered cache configuration. Although we collect detailed enough

information to predict the miss ratio independently for each memory reference in
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the program, the output is rather compact and requires an almost constant space as

problem size increases. Also, we can deal with strides that are arbitrary polynomial

functions, not only constants. Furthermore, this work presents a method to predict

how the memory reuse data extrapolates at a different problem size that we did not

collect data for.

The MHSim [47] memory simulator by Mellor-Crummey, Fowler and Whalley,

uses source-to-source translation of Fortran programs to instrument all memory ac-

cesses with code that simulates a parameterized cache system on-the-fly. Next, the

MHSim simulator processes the annotated data trace and correlates cache miss infor-

mation to line numbers in the source code. However, since MHSim uses source-level

instrumentation, the collected trace of memory references may not correspond to the

actual order in which accesses are executed by an aggressively optimized binary. For

instance, source-level instrumentation might prevent loop transformations such as

tiling, that change the order in which data is accessed.

Lebeck and Wood [33] implemented CProf, another cache profiler. They use static

instrumentation of application binaries to substitute the memory references with calls

to a function that simulates caches online. We use a similar mechanism for static

binary instrumentation, but instead process the stream of accesses online to create a

compact representation of the data access pattern exhibited by the application instead

of simulating the cache on-the-fly.

Hill and Smith [23] describe forest simulation, that takes advantage of set refine-

ment and inclusion to simulate alternative direct-mapped caches that have these prop-

erties. In addition, they describe a probabilistic model for estimating set-associative
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miss ratios from fully-associative miss ratios. We use this probabilistic model to pre-

dict cache miss counts for set-associative caches from distributions of memory reuse

distance.

Over the years, memory reuse distance has been studied by many researchers in-

vestigating memory hierarchy management techniques [7, 44] or trying to understand

data locality in program executions for individual program inputs [8, 17]. Recently,

two other research groups have explored using memory reuse distance data from a

few training runs to compute cache miss rate predictions for other program inputs.

Zhong et al. [65] describe using two memory reuse distance histograms that are an

aggregation of all accesses executed by a program as the basis for modeling. Fang et

al. [20] use a similar modeling strategy but they collect data and build models on a

per-instruction basis.

Our work differs from that of Zhong et al. and Fang et al. in six important ways.

First, we characterize memory access patterns at the level of references groups de-

termined through static analysis while the other two groups, respectively, build their

models for the entire program or at the level of single instructions. Although we have

never directly compared our models against those produced by either of the other two

approaches, we have experimented with different levels of aggregation using our im-

plementation. In those experiments, we found that building models from histograms

constructed at the program or routine level for non-trivial programs results in sig-

nificant errors with our automated method. Similarly, our first implementation of

fine-grain modeling (at the instruction-level) performed no aggregation and its ac-

curacy was hurt by complex interactions between multi-word memory blocks and
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loop unrolling [40, pages 46–53]. Second, our modeling tool adaptively determines an

appropriate partitioning of reuse distance histograms into bins while the other two

groups use a fixed strategy based either on a constant number of bins (e.g. 1000) for

every histogram, or on a logarithmic distribution of distances into bins. Third, we

discover the appropriate modeling polynomials for each bin automatically and our

models are linear combinations of a set of basis functions with a dynamically deter-

mined number of terms in each model. Zhong et al. and Fang et al. use combinations

of only two terms where one is selected from a small set of pre-determined functions

and the other is a free term. Fourth, we predict the actual number of cache misses for

different input sizes rather than just a miss rate. Fifth, we predict cache miss counts

for both fully-associative and set-associative caches. Finally, our models can be used

to directly predict memory hierarchy responses for problem sizes not measured; the

other aforementioned techniques require partial execution of using the problem size

for which a prediction is desired to experimentally determine data sizes.

The category of compile time techniques is represented by the work of Ghosh,

Martonosi and Malik [21]. They describe methods for generating and solving cache

miss equations to get a detailed representation of cache misses in loop-oriented scien-

tific codes. Ghosh et al.’s approach uses static analysis of the source code to generate

a set of linear Diophantine equations whose solutions correspond to potential cache

misses. This approach is suitable for compilers to guide memory optimizations.
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2.3 Techniques for Understanding Performance Bottlenecks

Hardware counters provide a low overhead mechanism for monitoring the inter-

actions between an application and its execution platform. A variety of tools use

hardware performance counters to characterize the dynamic behavior of applications,

e.g. VTune [27], HPCToolkit [48] and OProfile [51]. While these tools correlate re-

source utilization and architectural events with source programs, they don’t provide

direct insight into the factors that cause those events or into how performance would

change if the machine characteristics were adjusted.

Many research groups use simulation or instruction schedulers to estimate applica-

tion performance on a target architecture. Lam and Wilson [31] use trace simulation

to understand the effects of control flow dependences on instruction-level parallelism.

They simulate several architectures by relaxing different scheduling constraints and

they evaluate the amount of parallelism exposed by each of those techniques. We

use a similar technique to understand the performance improvement potential from

increased instruction-level parallelism or from additional machine resources.

Chilimbi et al. [14] profile applications to monitor access frequency to structure

fields. They classify fields as hot and cold based on their access frequencies. Small

structures are split into hot and cold portions. For large structures they apply field

reordering so that fields with temporal affinity are located in same cache block. Zhong

et al. [66] describe k-distance analysis to understand data affinity and identify op-

portunities for array grouping and structure splitting. We use static analysis to

understand fragmentation of data in cache lines, and find opportunities for structure
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or array splitting.

Mellor-Crummey et al. [49] study the impact of data and computation reordering

on data reuse and performance of irregular applications. They show that a coordi-

nated approach involving both data and computation reordering exceeds approaches

that perform either data reordering or computation reordering alone. They conclude

that data reordering based on position along a space-filling curve is fast, and it prob-

abilistically increases spatial locality. In this work, we classify data reuse patterns

as strided or irregular, and we compute metrics that can identify opportunities for

applying data or computation reordering strategies.

Beyls and D’Hollander [9] describe RDVIS, a tool for visualizing reuse distance

information clustered based on the intermediary executed code (IEC) between two

accesses to the same data, and SLO, a tool that suggests locality optimizations based

on the analysis of the IEC. The capabilities of their tools are similar to those we

describe in this paper. At the same time, our implementations differ significantly in

the ways we collect, analyze and visualize the data. In addition to the histograms

of reuse distances, Beyls and D’Hollander collect the sets of basic blocks executed

between each pair of accesses to the same data. Afterwards, an offline tool clusters the

different reuse patterns based on the similarity of the IEC. A second tool analyzes the

IEC to determine the carrying scope of each reuse. In contrast, we directly determine

the scopes where the two ends of a reuse arc reside, as well as the carrying scope based

on a dynamic stack of program scopes. We cluster the reuse patterns based on their

source, destination and carrying scope directly at run-time, which reduces the amount

of collected data. Moreover, this approach enables us to leverage the modeling work
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described in [42] to predict the scaling of reuse patterns for larger program inputs.

Finally, our implementations differ also in the way data is visualized. RDVIS displays

the significant reuse patterns as arrows drawn over the intermediary executed code

between data reuses. In contrast, we focused on computing metrics that enable us to

find the significant reuse patterns using a top-down analysis of the code, which we

think it is more scalable to analyzing large codes where reuse patterns span multiple

files. In addition, we identify reuse patterns due to indirect or irregular memory

accesses, and inefficiencies due to fragmentation of data in cache lines, which enables

us to pinpoint additional opportunities for improvement.

Callahan et al. [12] define two metrics, machine balance and loop balance. Ma-

chine balance characterizes the ratio between the peak memory and floating point

performance. Loop balance represents the ratio between the number of words ac-

cessed and the number of floating point operations executed in one iteration of the

loop. The authors compare the two metrics to determine if a loop is memory-bound

or compute-bound. We compute similar metrics to identify execution delays due

to insufficient memory bandwidth, except we consider the balance between memory

bandwidth and the actual instruction schedule cost of a loop, not just its floating-

point peak performance. We compare this value directly with either the peak or the

sustainable bandwidth of a machine to determine if bandwidth is a limiting factor.

Trimaran [13] provides an infrastructure for investigating the interplay between

architecture parameters, compiler technology and applications. It evaluates overall

application execution time using simulation. SLOPE [18] provides compiler based

sensitivity analysis and performance prediction. It classifies memory references as
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strided or random and uses a simple list scheduler to compute instruction schedules

for basic blocks, as the basis for static performance predictions. MonteSim [60], is

a Monte Carlo simulator for predicting application performance on in-order microar-

chitectures. The simulation predicts the rate at which an application’s instructions

execute on a modeled architecture and how much time it will spend stalled. In con-

trast, our work uses both static and dynamic analysis to provide application-centric

performance feedback useful for tuning in addition to computing predictions of mem-

ory hierarchy and execution behavior.

30



Chapter 3

Static Analysis

The static analysis subsystem shown in Figure 1.1 is not a standalone application

but rather a component of every program in our toolkit. We employ static analysis

to recover high-level program information from application binaries, including recon-

struction of the control flow graph (CFG) for each routine, identifying natural loops

and loop nesting in each CFG using interval analysis [63], or understanding the names

of the program variables referenced by each memory instruction. Other uses of static

analysis involve understanding and modeling aspects of an application that are im-

portant for its performance but are independent of its execution characteristics, e.g.,

understanding the instruction mix in loop bodies, computing dependences between

instructions that determine the instruction-level parallelism (ILP), identifying irreg-

ular and indirect memory access patterns, and finding opportunities for structure or

array splitting.

There are two types of schedule dependences between instructions: register de-

pendences (one instruction uses a register whose value is computed by a previous

instruction) and memory dependences (two memory instructions access the same lo-

cation and at least one of them is a write). Register dependences are easily identified.
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We perform register renaming to ensure that each register definition (def) has a

unique name and to remove false output- or anti-dependences. Following renaming,

all register dependences between instructions are readily apparent as a def and sub-

sequent uses of the same register. Determining memory dependences accurately from

machine code is a difficult problem. We tackle it by constructing symbolic formu-

las that describe the locations accessed by each reference. We use these symbolic

formulas to understand which references access the same memory locations, and to

compute the distances of the dependences [2].

On modern microprocessors, the location referenced by a memory instruction is

first computed into a register by a series of integer arithmetic instructions. Disen-

tangling these computations can be difficult because optimizing compilers often store

in registers not only the starting address of a data structure, but addresses of par-

ticular fields as well. Also, multiple base registers used in a basic block may contain

related addresses. In the next section, we describe in more detail the process of com-

puting symbolic formulas that describe the memory locations accessed by memory

references. The statically derived symbolic formulas are used to extract high level

information from executables, including: a) understanding if two references are re-

lated and their reuse distance data must be modeled together (see Section 5.2.2), b)

computing memory dependences as part of computing cross-architecture instruction

schedule costs (see Section 6.1), or c) understanding poor spatial locality due to the

layout of data in memory (see Section: 7.2.2). In Section 3.2, we describe yet another

use of the symbolic formulas to compute a mapping between memory instructions

and the names of the variables they access.
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3.1 Static Analysis of Memory References

For each memory reference, we statically derive several symbolic formulas that

describe the pattern of locations it accesses during execution. We perform this anal-

ysis intraprocedurally. We compute two types of formulas. For each reference in the

program, we compute a formula for the first location it accesses. For references in-

side loops, we also compute formulas that describe how the accessed location changes

from one iteration to the next. We describe first the process of computing the static

symbolic formulas. At the end of this section we present a matrix-multiply example

and the symbolic formulas derived for the references in the innermost loop.

We begin by constructing a first accessed location formula for each reference in a

routine. For each register used in a reference’s address computation, we recursively

traverse the CFG backwards along use-def chains until either (a) we encounter a

load immediate value, (b) we cannot trace any further inside this routine (the traced

register is the result of a function call or we reach the top of the routine), or (c)

we determine that a formula for the register was already computed while analyzing

a previous instruction. During this backward traversal of the CFG, we consider

only forward CFG edges. As we return from recursion and unwind each step of

our traversal, we compute a symbolic formula at each machine instruction along the

traversed path by applying the instruction’s operator to the formulas computed for its

source registers. We cache every intermediate result so that we don’t have to traverse

the same chain of instructions a second time when analyzing another instruction.

During a use-def chain traversal, if we find that a register is reloaded from the
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register spill area, we trace backward along CFG edges for a corresponding register

spill to the same location and then resume our use-def chain traversal from the spill

instruction. We generalized our mechanism for handling reloaded spill values to work

with arbitrary loads after we encountered a situation in one executable in which the

compiler had saved the value of a register in the data segment and later loaded it to

compute the address of a memory reference. If the value of a register is defined by

a load instruction, we trace backward along CFG edges for a store with a symbolic

formula equal to the load’s symbolic formula1, and we continue tracing back from the

register whose value was stored.

Formulas are restricted to sums of general terms including immediate values, loads

from a constant address, loads from a constant offset from the stack frame pointer (an

argument passed by reference or a local variable), loads from undetermined locations,

and registers whose formulas cannot be written as a sum of these terms (e.g. a

product of two non-constant formulas, etc.). Each term of a formula can have integer

numerator and denominator coefficients. With these restrictions, any non additive

(not an add or a sub) operation of two non-constant formulas will produce a register

term. When at least one operand is a constant, several operations can be computed

without simplification to a register value: multiply, divide, and left/right shift by

a constant value can be performed by updating the coefficients of each term in the

non-constant operand. If both operands are constants, all arithmetic and bitwise

operators are computed precisely.

1Symbolic formulas for the instructions upstream of the one currently analyzed have been already
computed.
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For memory references inside loops, we compute additional formulas that indicate

how the accessed location differs from one iteration to the next. We compute a stride

formula for each loop surrounding the reference. For each level of a loop nest, we

apply a recursive algorithm that traverses backward along CFG edges, similar to our

method for computing first accessed location formulas. However, when computing

stride formulas for a loop, we consider only forward CFG edges that are part of the

loop plus the loop’s back edge. This recursive search terminates when either (a)

we encounter a load immediate operation, (b) we traced backwards through all of

the instruction in the loop without finding a definition for this register (this register

contains an invariant value with respect to this loop), or (c) we reach a definition

for a second time. In this last case, the found instruction is part of a chain of

instructions that update an index variable. As the recursion unwinds, the stride

formulas are computed by applying the mathematical operators corresponding to

each intermediate machine instruction to the non-invariant components of the source

formulas.

The stride formulas are restricted to the same sums of general terms as the first

accessed locations formulas. However, a stride formula has two additional flags that

can be set by the recursive algorithm. The first flag indicates if an access has an

irregular stride; this flag is set if the reference’s stride is not constant for all iterations

of that particular loop. The second flag indicates if an access is indirect and it is set

if the formula for the accessed location depends on the value of another load which

has a non-zero stride with respect to this same loop.

Figure 3.1(a) presents the source code for a naive implementation of matrix mul-
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/* multiply two squared matrices */

void matrix multiply(int N, double *A,

double *B, double *C)

{
int i, j, k;

for ( i=0 ; i<N ; i+=1 )

for ( j=0 ; j<N ; j+=1 ) {
C[i*N+j] = 0;

for ( k=0 ; k<N ; k+=2 )

C[i*N+j] += A[i*N+k]*B[k*N+j]

+ A[i*N+k+1]*B[(k+1)*N+j];

}
}

first-location k-stride j-stride i-stride
L1: add %l5,0x2,%l5

A[i,k] ldd [%l3],%f4 %i1+16 16 0 8*%i0
add %l3,0x10,%l3

cmp %l5,%o5

add %l4,0x10,%l4

B[k,j] ldd [%o3],%f2 16*%i0+%i2 16*%i0 8 0
A[i,k+1] ldd [%l4-0x10],%f8 %i1+24 16 0 8*%i0
B[k+1,j] ldd [%o7],%f6 24*%i0+%i2 16*%i0 8 0

fmuld %f4,%f2,%f10

fmuld %f8,%f6,%f12

faddd %f10,%f12,%f14

faddd %f0,%f14,%f0

C[i,j] std %f0,[%l2] %i3 0 8 8*%i0
add %o3,%l1,%o3

bl,pt %icc,L1

add %o7,%l1,%o7

(a) matrix multiply source
code

(b) assembly for the innermost loop and the derived
symbolic formulas

Figure 3.1: Static analysis example. The left subfigure presents the source code for a
naive matrix multiply implementation, and on the right we have the SPARC assembly code
for the innermost loop annotated with the symbolic formulas computed for each memory
reference.

tiply. Because the program is written in C, the three matrices have been allocated as

one-dimensional arrays such that the rows of each matrix are contiguous in memory.

The three matrices are dynamically allocated and their size is passed as an argument

to the matrix multiply function, to exemplify how formulas are computed in the

presence of symbolic values.

Figure 3.1(b) presents the SPARC assembly code for the innermost loop of the

matrix multiply algorithm. The five memory references have been annotated with

the corresponding symbolic formulas we derived through static analysis. Each refer-

ence has a formula for the first accessed location, and three stride formulas, one for

each level of the loop nest. Each reference is also annotated with the corresponding

source code array access to make the code easier to understand. The k-loop was

unrolled by hand once2 and we compiled the binary with unrolling disabled to keep

2Additional code not included in the figure handles the remaining iteration of the k-loop when
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the size of the assembly code small for the purpose of this example. The reason for

unrolling the loop once is to show how this type of static analysis can uncover related

references. Those familiar with the SPARC assembly language will recall that regis-

ters %i0, ..., %i5 are used for passing the first six input arguments of a routine, and

will notice that all symbolic formulas are correctly computed relative to the source

code on the left. The compiler has peeled one iteration of the k-loop, therefore the

first location formulas correspond to i = 0, j = 0, k = 2.

To exemplify, we are going to analyze in more detail the formulas computed for

reference A[i,k]. The first location formula for A[i,k] is %i1+16. Register %i1

holds the value of the second formal parameter according to the SPARC ABI. Thus,

the value of this first location formula is equal to the starting address of A plus 16

bytes which corresponds to A[0,2]. The k-stride formula is 16 because the k-loop

is unrolled once and we access array A with unit stride. The computed value of the

j-stride formula is zero for this reference because A[i,k] does not depend on loop

index j. Finally, the value of the i-stride formula is 8*%i0. Remember that register

%i0 holds the value of the first formal parameter, which is the matrix size in our

case. Because each double precision element occupies eight bytes, the stride with

respect to the i-loop is 8 ∗N . The correctness of the formulas computed for the other

references can be similarly determined. Although each reference in the assembly code

uses distinct address registers, the symbolic formulas we recover for references to the

same array show they are related.

N is odd.
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3.2 Associating Variable Names with Access Patterns

When analyzing a program’s memory access behavior, often it is useful to under-

stand not only which program scopes contain a high fraction of data accesses that miss

in the various cache levels, but also which data objects have poor locality of reference

within each scope. While data names are easily observable in the program source

code, there is no direct way to map a memory instruction from an executable to a

specific data object name even when the object code contains debugging information.

To support debugging, compilers include some information about data objects in

an executable’s symbol table and debug section. This information is necessary for de-

bugging tools to recover the value associated with a program variable name whenever

the program execution is interrupted during a debugging session. When a program is

compiled with debugging information, compilers include entries in the symbol table

about the type, size and starting location in the data section, for each global variable.

Local variables and formal parameters of each routine are described separately into

the stabs or the dwarf section3, the location information being represented by an

offset from the frame pointer. In addition, formal parameters are listed in program

order, thus we can recover the index into the formal parameter list of each argument.

For debuggers, this information is sufficient to obtain the value associated with a

variable name at run-time. Searching the symbol table or the debug section for a

variable name gives us the memory location associated with that name. A debugging

tool can read the value from memory and display it according to the associated type

3Stabs and DWARF are formats for debugging information.
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information4.

To understand which variable is referenced by a specific memory instruction, we

need to compute a reversed mapping, from memory location to object name. When

parsing the symbol table and the debug section, we can look for entries associated

with data objects and build a mapping from location information to object name.

We construct one map for global variables, whose keys are ranges of absolute memory

locations5. We construct separate maps for the local variables and formal parame-

ters of each routine, in which keys are represented by ranges of stack offsets. For

formal parameters of routines, we build also a mapping between parameter indices

and parameter names.

One can compute a mapping from each load and store instruction to the name of

the variable it accesses by monitoring the memory locations it accesses at run-time.

Memory locations need to be collected only on the first execution of each memory

instruction. Because of this, the run-time overhead should be small. A problem with

such an approach is that for dynamically allocated data structures, only the pointer’s

location is stored in the debug section. Knowing the location of any element of

a dynamically allocated array wouldn’t tell us which data structure is referenced,

unless we keep track of the location and size of dynamically allocated memory blocks

as well. A second drawback is that by using a run-time monitoring approach, we

end up collecting location information each time the instrumented code is executed,

4For optimized binaries the information stored at the location associated with a variable may
not be the most up-to-date value if the register allocator assigns the variable to a register for the
duration of the computation, or if the compiler decides to save the value in a special spill area on
the stack and not update the permanent location unnecessarily.

5A range is defined by the starting address of an object and its ending address computed with
the help of the object size information.
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even though an association between a reference and a variable name is very static in

nature.

Another approach is to use the symbolic formulas derived for each memory ref-

erence to understand what memory locations are accessed by a reference, and based

on this information to derive a mapping between memory instructions and the names

of the variables they access. As explained in section 3.1, we build these formulas by

tracing backwards through the CFG of each routine along use-def chains, until we

either find that the definition of a register is a constant value, or we cannot trace

back any further (i.e. we reach the top of the routine, or we determine that a register

is defined by a function call). By tracing back up to the start of the routine, the

formulas reflect the way the accessed locations are computed. Even when a reference

accesses a field of an array of records, for which only a pointer to its starting location

is stored in the debugging section, its first accessed symbolic formula will contain a

term corresponding to the base pointer, plus additional terms to compute the starting

address of an element of the array and then an offset corresponding to a field.

For a memory reference, the name resolution algorithm works by inspecting each

term of its first accessed location formula as follows.

• If the term is a constant value and it is the only term of the formula, or if

the term is a load from a constant address, then we search the global variables

map for an address range containing the constant value. If found, we add the

corresponding global name to a list of candidate names for this reference.

• If the term is a load from a stack offset, or if the formula consists of just
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two terms (the stack frame register and a constant offset), we search the local

variables and formal parameters map of the routine containing the memory

reference, for a stack offset range encompassing the found offset. As before, if

we find an entry, we add the corresponding name to the list of candidate names.

• Finally, if the term is a register that is used for argument passing on function

calls according to the ABI6, we compute the formal parameter index corre-

sponding to this register and we search the formal parameters list of the routine

containing the reference for the respective index. If an entry is found, we add

the corresponding parameter name to the list of candidate names.

One will notice that the first two cases have two variants that are somewhat

symmetric. Formulas that consist of just a constant value correspond to references

to global variables that are statically allocated at compile time. A term that is a

load from a constant address, typically corresponds to a global data structure which

is dynamically allocated and only its header or a pointer to it is allocated at compile

time in the data section. Similarly, the two variants of the second case correspond to

automatic variables allocated on stack. In the first variant the entire object is located

on the stack, while in the latter only a pointer to it is located on the stack.

The above algorithm may find several different names associated with a memory

reference when, for example, we deal with a load from an array, where the element

index is a function of other variables. In such cases we use two methods to filter

out some of the names. First, we look at the stride formulas and applying the same

6On SPARC, registers i0–i5 contain the first six arguments of a function that has its own stack
frame and register window. For optimized leaf procedures that do not have their own stack frame,
registers o0–o5 contain the first six parameters.
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algorithm as above on their terms, we remove the candidate names that are also found

in the stride formulas, because we are interested in finding the name corresponding

to the base term. Second, we filter out terms whose coefficients are greater than one,

because we expect the base term of the formula to have coefficient one, while terms

corresponding to an array index are usually scaled by a coefficient equal to the size

in bytes of one array element.

The presented algorithm works well in practice. However, not all memory ref-

erences can be successfully resolved to a name by the above algorithm. The main

offenders are accesses to dynamically allocated local objects in optimized binaries. In

such cases, our algorithm for computing symbolic formulas stops at the function call

that allocates the dynamic memory, and we do not have the information to associate

a function call with a specific local variable name. This happens in optimized binaries

because the starting address of the allocated memory block, which is returned by the

function call, is not saved by the compiler into any of the advertised stack offsets. We

observed cases when the value was either kept in a register for the duration of the

routine, or it was being temporarily stored in the spill area on the stack. Such cases

could not be resolved at run-time either.
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Chapter 4

Dynamic Analysis

Often, many of the important characteristics of an application’s execution behav-

ior, such as how it traverses data or how the amount of computation depends upon

input parameters, can only be understood accurately by measuring them at run time.

For instance, one cannot predict the behavior of a graph algorithm without knowing

at least the graph size. Our toolkit uses binary rewriting to augment an application

to monitor and log information about various aspects of its execution behavior.

To understand the nature and volume of computation performed by an applica-

tion for a particular program input, we collect histograms indicating the frequency

with which particular control flow graph edges are traversed at run time. To under-

stand an application’s memory access patterns, we collect histograms of the reuse

distance [7, 44, 17]—the number of unique memory locations accessed between a pair

of accesses to a particular data item—observed by each load or store instruction.

These measures quantify key characteristics of an application’s execution behavior

upon which performance depends. By design, these measures are independent of any

architectural details. We describe the approach for collecting each of these measures

in turn.
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4.1 Collecting Execution Frequency Histograms

The goal of our dynamic monitoring of computation is to produce a histogram of

executed basic blocks. However, we do not need to insert a counter into each basic

block to measure its precise execution frequency.

A routine’s control flow graph has the same properties as a flow network. Each

directed edge in a control flow graph has an execution frequency, just like each edge

in a network flow has a stated capacity. The nodes in the graph are edge junctions.

Except for the entry and exit nodes, all the nodes1 in the graph have the property

that the control flow that enters into the node must equal the control flow that leaves

the node. This is the flow conservation property analogous to Kirchhoff’s law for the

physics of electrical current.

Using the conservation property and the observation that there is no need for more

than one counter on a linear sequence of nodes and edges, Knuth and Stevenson [30]

prove that a necessary and sufficient condition for measuring control flow graph edge

and node execution frequencies is to add counters to a set of CFG edges such that

each cycle in the undirected CFG has a counter on at least one edge. Ball noted [6]

that a spanning tree of CFG edges has the maximum number of edges that do not

contain a cycle. Building a spanning tree for the CFG and adding a counter to each

edge not included in the spanning tree, monitors exactly one edge of each cycle—the

minimum necessary.

1This is true in the vast majority of cases. Some programming mechanisms, such as
setjmp/longjmp family of functions in “C”, do not have the conservation property. However, these
mechanisms are used in handling exceptions or unexpected errors and are seldom encountered in
scientific codes.
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Since an undirected graph with cycles does not have a unique spanning tree, the

problem of placing counters on CFG edges does not have a unique solution. The

solution we desire is one with counters on a set of edges that execute as infrequently

as possible, to minimize the cost of runtime monitoring. To achieve this, we apply

Kruskal’s algorithm [16] to construct a maximum-weight spanning tree (MST) of the

CFG—an acyclic subset of edges with maximum total edge weight that connects all

vertices—with edges weighted by their expected execution frequency [6]. Our scheme

for estimating execution frequency is described later in this section.

There are three remaining issues to address when adding counters: we want to

count how many times a routine is entered, we want to have independent frequency

measurement of edges that enter and exit an inter-procedural function call to get

precise measurements in the presence of exceptions or setjmp/longjmp constructs,

and our counter placement algorithm must avoid some of the CFG edges that cannot

be easily instrumented. To address these issues, we exploit the property that counters

are placed only on edges that are not part of the spanning tree. When we construct

the maximum-weight spanning tree, rather than starting with an empty set of CFG

edges, we initialize the tree to include all the uninstrumentable edges, as well as

a virtual edge, ev, added between the entry and exit nodes of the CFG. Adding

ev to the CFG ensures that there is at least one cycle, and by including it into

the initial set of spanning tree edges ensures that a counter will be placed on a

real, instrumentable CFG edge to count the routine’s execution frequency. To get

independent measurements across function calls, we also add virtual edges between

each function call node and the CFG exit node, and we include all these edges into the
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initial set of spanning tree edges. This will increase the number of inserted counters

by one for each function call, and will ensure that the counter placement algorithm

will provide independent measurements for the paths incoming and outgoing from a

function call.

We use the following heuristic to estimate edge execution frequency, which we

supply to the MST algorithm as edge weights:

• the entry node in the CFG has a weight of one;

• the weight of a vertex is divided equally among all its outgoing edges if none of

these edges is a loop exit edge2;

• each loop has a multiplicative factor equal to ten;

• the weight of a node is the sum of the weights of its incoming edges.

In addition to these four rules, a separate algorithm handles the loop exit edges and

the nodes in which the exit edges originate. In most cases exit edges have their tail

node in the program scope immediately outside the one that contains its head node.

However, we have encountered cases in which an exit edge crosses several levels of a

loop nest. To accommodate these cases, we apply the following algorithm to compute

the estimated weight of an exit edge (ei):

1. determine the outermost loop (L) for which this edge is an exit edge;

2. find the number (Nexit) of edges that exit loop L;

2A loop exit edge has its head node as part of a loop and its tail node outside the loop.
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Figure 4.1: (a) Sample routine CFG; (b) Add a virtual edge from the EXIT node to the
ENTRY node and estimate edges execution frequency; (c) Build the MST of the modified
CFG; (d) Insert counters on edges that are not part of the MST.

3. the weight of ei is the weight of the loop L’s head divided by Nexit;

4. all the other outgoing edges of the ei’s head node receive an equal fraction of

the remainder weight of that node, after the newly computed weight of ei is

subtracted.

The final step consists of placing counters on the edges that are not part of the

maximum spanning tree. Figure 4.1 presents a sample CFG with one loop and the

steps that must be performed to determine the optimal insertion place for the coun-

ters. We count only the edges existent in the original CFG. From Figure 4.1(d) we

can recover the execution frequency for all the blocks and edges in the CFG.

B1 = B3 = B5 = c1; B4 = c2; B2 = c1 + c2
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4.2 Monitoring Memory Access Behavior

During execution, we characterize the memory access behavior of an application by

monitoring the memory reuse distance seen by each reference. Characterizing memory

access behavior in this way for programs has two important advantages. First, data

reuse distance is independent of cache configuration or architecture details. Second,

reuse distance is a scalable measure of data reuse which is the main determinant in

cache performance.

For a fully-associative cache, one can predict if a memory access is a hit or a

miss by comparing its reuse distance with the cache size (see Figure 4.2). Beyls

and D’Hollander [8] show that reuse distance predicts the number of cache misses

accurately even for caches with a low associativity level or direct mapped caches.

However, reuse distance alone cannot predict conflict misses. In Section 5.3.2 we

present an algorithm for approximating the number of conflict misses for a given

cache architecture, using a probabilistic model.

Reuse Distance

L2 HitsL1 Hits

L1 size L2 size

Number of
References

Figure 4.2: Example of reuse distance histogram. All references with reuse distance less
than the cache size are hits.

We collect reuse distance information separately for each reference in the pro-
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gram3. Before each memory reference we invoke a library routine that updates a

histogram of reuse distance values (see Figure 4.2) for the reference. In addition to

the address of the reference, the event handler needs to know the memory location

that is referenced and the number of bytes touched by this instruction.

Our implementation of the event handler collects a complete histogram of the reuse

distances seen by each memory reference. To compress the volume of output data,

we coalesce each reference’s histogram bins with similar distances before the data is

written out. Our compression scheme has no noticeable effect upon the precision of

our reuse distance models, but the reduction in space is often significant.

The event handler routine increments a logical clock by one each time a memory

instruction is executed. A three level hierarchical block table is used to associate the

logical time of last access with every memory block referenced by the program. The

timestamp enables us to determine the reuse distance between a pair of accesses to the

same datum. Alone, this data structure is only sufficient to count how many memory

operations were executed since the last access to the same datum. To determine

the number of distinct memory locations accessed between consecutive accesses to a

particular datum, we use a balanced binary tree with a node for each memory block

referenced by the program. The sorting key for each node in the tree is the logical

time of the last access to the memory location represented by the node.

By using a unit size memory block, we can collect pure temporal reuse distance

information. However, using this approach, we fail to observe spatial reuse in cache

3In section 5.2.2, we explain that we actually collect histograms for reference groups to improve
modeling accuracy. Until that point, for simplicity we describe the process here as if each reference
is handled separately.
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lines. By using a non-unit memory block size, we can also measure spatial reuse

because we collect the reuse distance of data blocks rather than data elements. To

correctly account for spatial locality, we need to use a memory block size equal to the

size of the cache line on the target architecture. Currently, to predict the performance

of an application on arbitrary systems, we need to collect reuse distance data for all

cache line sizes present on those architectures. The most common cache line sizes in

use today are 32, 64 and 128 bytes. Because of the reuse distance data’s dependence

on cache line size, our characterizations of application behavior are not completely

architecture independent. The size of the memory block used by our runtime library is

defined by an environment variable; therefore collecting data for different cache line

sizes does not require re-instrumenting the code or re-compiling the event handler

routine.

On each memory access, our event handler executes the following pseudo-code,

where instk identifies the current memory instruction and addri is the accessed mem-

ory location that maps to memory block bi:

step 1 Set a logical timestamp tnew
i equal to the value of the global timestamp counter

and increment the counter.

step 2 Find the entry into the hierarchical block table that corresponds to the mem-

ory block bi (complexity O(1)). If bi’s entry has no assigned timestamp, then

this is the first access to block bi; increment the number of cold misses seen

by instk, and record the tnew
i timestamp value into the block’s table entry (all

operations O(1)), and go to step 5.
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step 3 bi’s table entry has a timestamp associated with it, and this access is a reuse

of block bi. Let timestamp tlast
i correspond to the previous access to bi. Update

the table entry for block bi with the current timestamp tnew
i .

step 4 Delete the node with key tlast
i from the binary search tree. While searching

for the node with key tlast
i , we count the number of nodes, D, with a key greater

than tlast
i . Each node with key greater than tlast

i represents one distinct memory

block that has been referenced since the previous access to bi. Each node of

the tree maintains a field size representing the number of nodes in the sub-tree

rooted at it. For a binary search tree with larger keys to the right, D is a sum

of terms (nodej.size − nodej .leftChild.size), for every nodej with key greater

than tlast
i that is encountered on the path from the root of the tree to the node

to be deleted. If the node with key tlast
i has a child to the right, we also add

the value of its right child’s size field to D. The delete and count operations

have an aggregate O(log N) time complexity, where N is the size of the tree and

represents the number of distinct memory blocks touched by the application.

Record that instk performed an access with reuse distance D.

step 5 Insert a node with key tnew
i into the binary tree. This step has complexity

O(logN).

The time complexity for computing the reuse distance seen by one memory access

is O(logN). Overall, the overhead of collecting memory reuse distance information

for the entire execution is O(M log N), where M is the number of memory accesses

the program executes, and the space required by the data structures for monitoring
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reuse distance is O(N). Time and space complexities are both significant even with

these optimized data structures.

The instrumentation infrastructure that we developed for collecting data about

program behavior is quite flexible and can be easily adapted to collect other informa-

tion or to perform different types of online analysis.
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Chapter 5

Building Scalable Models

Measuring the dynamic characteristics of complex applications for large problem

sizes can be expensive. To address this problem, for regular1 scientific applications

we collect dynamic data for small data inputs and we construct scalable models of

the measured dynamic application characteristics. These models, parameterized by

problem size or other input parameters, enable us to predict application behavior and

performance for data sizes that would be too expensive to analyze at scale.

To build scalable models of dynamic application characteristics, we must collect

data from multiple runs using different and determinable input parameters. To con-

struct models parameterized by an input parameter, we use data from multiple runs

in which that parameter is modified and other parameters are held constant.

1Applications whose algorithms are not adaptive based on the value of the input parameters,
only the number of trips through loops and routines changes.
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5.1 Models of Execution Frequency

To build scalable models for the basic block execution frequencies, we use quadratic

programming [43] to model the execution frequency of associated counts of control

flow graph edges using data collected from multiple runs with different input param-

eters. We use a modeling strategy implemented in Matlab to derive approximation

functions written as a linear combination of a set of basis functions. The modeling

program uses either a default monomial base or a set of user-provided bases in sym-

bolic form. This approach enables logarithmic or other unusual terms to be considered

when building the model.

The modeling program computes a set of coefficients to represent the linear com-

bination of the basis functions that most closely approximates the collected data.

Before it can compute the coefficients of the best fit function, the modeling program

has to determine what basis functions are included in each model. We desire the mini-

mum degree model that closely approximates the collected data. For this, we consider

the basis functions sorted by degree, and the modeling program iteratively attempts

to construct models of increasing degree, starting with a model of degree zero. At

each step it computes an error of the fit. When there is no significant improvement

in the accuracy of the fit by going to a higher degree, the iterative search stops, and

the modeling program returns the model of the lowest degree that approximates the

data well. We include restrictions to reduce or remove oscillations of the resulting

fit and to ensure that the computed function is either convex or concave, depending

upon the program characteristic that we are modeling.
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Our approach works best with scientific codes that have predictable execution

patterns, namely, ones that do not use adaptive algorithms. For such applications,

we have computed accurate models of multiple parameters, although the process

at this point is somewhat cumbersome [40, pages 46–53] and multiple parameter

models could be computed more directly. For adaptive algorithms, we can produce

an approximate model with reasonable accuracy in one parameter.

Execution frequency measurements recorded by our toolkit are first processed by

a filter program that can be configured to either output counter frequencies or the

number of executed instructions. Command line arguments control the output in each

case. For example, counters can be sorted either by location (grouped by routines)

or by frequency with the most executed ones first. Optionally, the output can be

pruned relative to a significance threshold. Instructions are classified by type and can

be aggregated at any level in the scope-tree of the program. We defined a set of generic

RISC instruction classes and a module for translating native SPARC instructions into

generic RISC instructions. The filter computes the number of executed instructions

for each generic class and each basic block in the program. Using static analysis of an

executable, the filter builds a scope-tree that reflects the program structure. There

are three possible scope types that can be used to describe the program structure:

• Program scope - the root of the tree; its children are routines;

• Routine scope - the second level in the tree; its children are loops;

• Loop scope - can include any other number of loops.

If the binary contains source line mapping information, the routine and loop scopes
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are annotated with source file information, including the name of the source file and

the range of line numbers corresponding to that scope in the source file. When

loops have overlapping ranges of line numbers and the same parent in the scope-

tree, the filter performs a normalization step that folds together information for the

loops. Overlapping ranges are the result of compiler optimizations such as loop fission,

software pipelining, loop-invariant code motion, loop peeling, or tiling. A model of

dynamic instruction count can be accumulated at program level, routine level or

individual loop level.

5.2 Models of Memory Access Behavior

To predict an application’s memory access behavior for a different problem size,

we must model how each reference’s reuse distance scales as a function of problem

size. For this, we must first collect MRD data from multiple runs, with different and

preferably small data sets.

Modeling memory access behavior is difficult. A single reference in the program

may see cold misses and many distinct reuse distances. The simplest possible model of

a memory reference’s reuse distance would predict its average value for each problem

size. However, such a model is almost always useless. Consider a reference performing

stride one loads. Its first access to a cache line yields a long reuse distance; accesses to

subsequent words yield short reuse distances. An average distance model can predict

either all hits or all misses; neither prediction is accurate.

We need to model the behavior using histograms. A reuse distance histogram for
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a reference contains a separate bin for each distinct distance encountered. We must

model the structure and scaling of these histograms to understand the distribution

of reuse distances as a function of problem size. Building meaningful models for his-

tograms of reuse distance from executions with different problem sizes is challenging.

Executions using different problem sizes result in histograms that each have a dif-

ferent number of bins and frequency counts; the varying number of bins complicates

modeling.

One possible modeling approach is to divide each histogram for any reference or

problem size into an identical number of bins using a fixed strategy regardless of the

distribution of the data. How many bins to consider has an important impact on the

size and accuracy of the models. A small number of bins will yield a compact model,

but the model may lack precision. A large number of bins will improve model accu-

racy, but will add unnecessary complexity and cost to modeling for many references

that use only a few different reuse distances. To avoid this problem, we examine a ref-

erence’s collected data and pick an appropriate number of bins and their boundaries

to adequately represent its histogram data across the range of problem sizes.

5.2.1 Modeling MRD Histograms

We sort the bins in each reference’s MRD histogram by increasing distance. The

first bin in a reference’s histogram holds the smallest reuse distance for the refer-

ence. Figure 5.1(a) shows MRD histograms collected by our tool for different problem

sizes for one of the most frequently executed memory accesses in the ASCI Sweep3D

benchmark [19]. To illustrate our modeling algorithm, we plotted our models of MRD
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histograms in 3D Cartesian coordinates for each step of the algorithm. The x axis

represents the problem size (from 20 to 50 in this case); the y axis represents the

additive normalized execution frequency of the bins for each problem size, such that

the total execution frequency of each histogram is one; and the z axis represents the

reuse distance.

We begin our analysis by examining the leading bins of a reference’s histograms for

each problem size. If the leading bins have the same reuse distance across all problem

sizes, it means they contain the fraction of accesses that have experienced reuse within

the same or a fixed number of iterations of the innermost loop enclosing that reference.

In general, this behavior is observed with strided memory accesses when we experience

spatial reuse on consecutive iterations. The values of the constants depend upon the

shape of the code in each particular loop, namely, how many accesses to other data

structures are executed between two accesses to the same data structure during one

iteration. These small distances are constant across all problem sizes because the

shape of the code is invariant across problem sizes.

If a reference’s histograms have such leading bins with a small constant distance,

we model them separately (see Figure 5.1(b)), and remaining data is lumped together

into one bin represented in the figure by a model of its average distance. Since the

reuse distance of the leading bins is constant, we need to model only the execution

frequency of these bins. The fraction of accesses that experience a fixed reuse distance

is usually not constant across all problem sizes. The explanation for this is that for

strided memory accesses, the regular reuse pattern across a fixed number of iterations

d which produces the constant reuse distances, does not apply to the first or last d
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(a) MRD data collected for one reference in Sweep3D
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(b) Model constant distance first, and lump remaining data into one bin

Figure 5.1: Modeling MRD histograms
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(c) First split of the non-constant data
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(d) Final model for the data in (a)

Figure 5.1: Modeling MRD histograms (con’t)
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iterations. This includes spatial reuse to mesh like data structures, where the inner

dimension does not cover an integer number of cache lines. Therefore, accesses to

these incomplete lines experience less spatial reuse than accesses to cache lines that

are completely filled. As problem size increases, the significance of the regular pattern

increases asymptotically towards a constant limit which is a function of each particular

code shape, and we are able to capture this behavior with our technique.

The remaining bins and their parameters are determined using a recursive algo-

rithm. We start by computing an average distance for all references that were not

modeled in the first step, and we build a model for their average distance as seen in

Figure 5.1(b). Next, we recursively split the set of accesses in two and compute a

model for each subset. The recursion stops when the models of the two resulting sub-

sets are sufficiently close. We apply this algorithm to determine a partitioning of the

data into an appropriate number of bins by considering the data for all problem sizes

at once. At each step, we use a heuristic to determine how to partition the accesses.

Its decisions influence the convergence speed, the accuracy, and the stability of the

final model.

In our experiments, the partitioning heuristic that yielded the most stable and

accurate results was one that selects partition boundaries such that the ratio between

the number of accesses in the two partitions resulting from a split is the same across

all problem sizes. With such an approach we need to model only the average reuse

distance of each bin; execution frequency is easily computed by dividing the frequency

of the parent bin proportionally with the splitting ratio. To compute the splitting

ratio of a bin, we apply the following algorithm:
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• Determine midpoint of the reuse distance range for each problem size, and

compute the ratio between the number of accesses with reuse distance less than

and greater than the midpoint value for each problem size. Using the reuse

distance midpoint speeds up model convergence by favoring creation of narrow

bins where reuse distance vary abruptly along the y axis, and wide bins where

large fractions of accesses have similar reuse distances, with a minimal recursion

depth.

• Select median ratio across all problem sizes, and use this median value as the

splitting ratio for all problem sizes. We opted to use the median ratio to in-

crease modeling stability in case the midpoint ratios for some problem sizes are

significantly different.

Figure 5.1(c) presents a snapshot of the model after the first splitting step. If we

look at the reuse distance histogram for problem size 50 in Figure 5.1(a), we see that

the largest observed reuse distance is around 6 × 104. Then, we can approximate

the midpoint reuse distance for this problem size at around 3× 104. We notice that

many more accesses have reuse distance under the midpoint value than above it. As

a result, the two bins produced by the first split contain very different fractions of

accesses, but they cover approximately equal ranges of reuse distance.

After partitioning, we perform a (rarely needed) coalescing step that examines ad-

jacent bins and aggregates them together if they have similar polynomials describing

their reuse distance. Our approach produces a minimal number of bins with almost

no loss in accuracy. If a large fraction of accesses have comparable reuse distances
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across all problem sizes, all those accesses go into one bin. However, if part of a

reference’s histogram is composed of many small fractions of accesses with different

reuse distances, our approach produces a large number of bins for that part of the

histogram and successfully captures the instruction’s complex behavior. Figure 5.1(d)

presents the final model computed for the data in Figure 5.1(a).

We notice that the reference depicted in Figure 5.1 has a complex behavior, with

many fractions of accesses having very different reuse distances. Not all references

have such complex behavior. Figure 5.2 presents the data collected and the model

computed for another frequently executed reference from the Sweep3D benchmark.

We can observe that its behavior can be captured using only two bins.

As with the models of execution frequency, our MRD histograms modeling strat-

egy is currently implemented in Matlab using quadratic programming.

5.2.2 Considerations When Modeling MRD at Reference Level

Previously, we explained that we collect and model memory reuse data at ref-

erence level. Such an approach not only enables detailed predictions at instruction

or loop level, but also enables more accurate models than if we collected aggregate

reuse information for the entire program. However, modeling reuse distance data at

instruction level is prone to errors due to the alignment of data in memory when

the reuse information is collected for larger than unit size memory blocks. As we

described in Section 4.2, to account for spatial reuse in cache lines, we collect reuse

information of memory blocks, where the block size is equal to the line size of the

target cache. Because spatial reuse distance uses a non-unit memory block size, it is
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(a) Collected data
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(b) Constructed model

Figure 5.2: Another example of MRD modeling
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sensitive to data alignment and array dimensions. While the total number of cache

misses at the loop level does not depend on the alignment of data, the spatial reuse

distance for individual references is affected differently for distinct problem sizes and

is a source of errors in the modeling step as we explain below.

Let us consider the matrix multiply example from Figure 3.1 where the inner

loop is unrolled once, and let us assume that array A is always aligned to the start

of a cache line. Because the size of a cache line is a power of two, an even number

of array elements will fit into a cache line. In our case, for an even value of N , the

reference corresponding to A[i, k + 1] will always see a small reuse distance due to

spatial reuse, because A[i, k] will always perform the first access to a new cache line.

However, for an odd value of N , A[i, k + 1] will access a new cache line first for odd

rows of A, while A[i, k] will access a new cache line first for even rows.

A[i,k+1] hit
A[i,k+1] miss

A[i,k] miss
A[i,k] hit

cache  line  boundary

N = 8 N = 9

Figure 5.3: The distribution of first accesses to a new cache line for the two references to
matrix A from the matrix multiply code presented in Figure 3.1, for an even problem size
(N=8) and an odd problem size (N=9), assuming an architecture with a cache line that
holds four double elements.

Figure 5.3 presents graphically this behavior for matrix sizes 8 and 9, assuming

an architecture where the cache line size is four times the size of an array element. In
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both cases, the total number of misses is approximately equal to one quarter of the

number of memory accesses because only one miss occurs per four-element cache line.

However, the distribution of reuse distances between the two references is different

for each problem size, as seen in Figure 5.4. This problem is even more pronounced

when the unrolling factor is greater and a larger number of references are affected.

20
25

30
35

40
45

50

0
0.2

0.4
0.6

0.8
1
0

50

100

150

200

250

300

350

400

450

500

Problem sizeNormalized frequency

M
em

o
ry

 r
eu

se
 d

is
ta

n
ce

(a)

20
25

30
35

40
45

50

0

0.2

0.4

0.6

0.8

1
0

50

100

150

200

250

300

350

400

Problem sizeNormalized frequency

M
em

o
ry

 r
eu

se
 d

is
ta

n
ce

(b)

Figure 5.4: Memory reuse distance collected for (a) A[i, k] and (b) A[i, k + 1], from the
matrix multiply code presented in Figure 3.1.

Such inconsistencies between the reuse patterns at different problem sizes can

cause large modeling errors for the affected references. However, if we consider A[i, k]

and A[i, k + 1] together, the union of their reuse distance data is consistent and

predictable for every problem size, as seen in Figure 5.5.

A similar problem occurs in codes working on arrays of records when the cache

line size is not a multiple of the record size. In such a case, depending on the record

index, different fields can occupy the first position of a cache line. As a result, different

references encounter a long reuse distance during the dynamic analysis depending on

the record index. For this reason, at instrumentation time we find the sets of references
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Figure 5.5: Aggregated memory reuse distance histograms of references to array A.

that have similar access patterns and insert code that collects a single reuse distance

histogram for every such set.

We use the accessed data names recovered for each reference as in Section 3.2 and

the symbolic formulas described in Section 3.1, to determine if two memory references

are related and their data must be aggregated. Two references are aggregated only if

they have similar access patterns and they both access data with the same name.

We say two references rs, rt located in the same loop have similar access patterns, if

they have equal stride formulas relative to each loop containing them. In other words

Stride(rs, L
k) = Stride(rt, L

k) for every level k loop Lk containing them, k ≥ 1.

For our matrix multiply example presented in Figure 3.1(b), references A[i, k] and

A[i, k + 1], as well as references B[k, j] and B[k + 1, j] have equal strides at each
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loop level, and therefore they have similar access patterns. This is no surprise for

somebody looking at the source code, but extracting such information from binaries

requires the detailed static analysis we described.

After reuse distance histograms are collected, we perform additional static anal-

ysis to identify object code loops that have their origin in the same source code

loop, and we perform additional aggregation between reference groups from these

loops that have similar access patterns and access data with the same name. We

extend the definition presented before to say that two references rs, rt located in

different loops have similar access patterns, if they have equal stride formulas rel-

ative to each loop containing both of them, and their stride formulas relative to

distinct, same level loops containing them have an integer ratio. In other words:

Stride(rs, L
k
st) = Stride(rt, L

k
st) for every level k loop Lk

st containing both references,

and Stride(rs, L
k
s)/Stride(rt, L

k
t ) = m/n for every pair of distinct level k loops Lk

s

and Lk
t containing references rs and rt respectively, where m and n are integers and

either m = 1 or n = 1.

Loop optimizations such as software pipelining and loop unrolling, split a source

loop into multiple object loops: a main loop and a prolog or an epilog loop, which

executes the remainder iterations. Compilers use loop unrolling aggressively. In ad-

dition, stencil computations found in scientific applications access multiple elements

of an array with the same stride. As a result, there are many opportunities to aggre-

gate references into larger sets, both inside the same loop and across adjacent loops.

Figure 5.6 presents the distribution of the sizes of the memory reference groups derived

for the NAS 3.0 BT benchmark. On the y axis we have the number of instructions
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Figure 5.6: Distribution of the sizes of the instruction groups derived for benchmark NAS
BT 3.0 when: (1) we perform no aggregation, (2) only references with similar patterns from
the same loop are grouped together, (3) we aggregate across adjacent object code loops.

in a group, and on the x axis we see how many groups of that size were produced

by aggregation. If we perform no aggregation, there are more than six thousand dif-

ferent groups, each with only one reference. During the instrumentation step only

references with similar access patterns from the same loop are aggregated, and the

number of distinct instruction groups reduces to 447. In the post-processing phase,

after additional aggregation is performed across loops, only 329 groups remain.

5.3 Evaluation of MRD Models

The problem of determining the ratio of hits and misses for a given cache size C

is equivalent to determining the intersection of the model with the plane defined by
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z = C. Similarly, the problem of computing the expected behavior for one instruction

at a given problem size P is equivalent to determining the intersection of the surface

and the plane defined by x = P. We can also determine the minimum cache size

such that the hit-ratio is H. The solution to this problem is the intersection of the

model and the plane defined by y = H. Any two of these three problems can be

combined and the solution is the intersection of the surface with the corresponding

two orthogonal planes.

5.3.1 Predictions for Fully-Associative Caches

For a fully-associative cache, we can use this approach to predict the ratio of

misses for a given problem size and cache size. Figure 5.7(a) presents the expected

behavior of the instruction modeled in Figure 5.1(d) at problem size 70. Assume that

we want to predict the hit ratios for an architecture with two fully-associative levels

of cache, where level one has 2048 blocks and level two has 24576 blocks. For this we

must determine the number of accesses that have a reuse distance less than the spec-

ified cache sizes. Because the maximum reuse distance predicted for this reference is

three orders of magnitude larger than the size of the target L1 cache, Figure 5.7(b)

presents the predicted MRD histogram for problem size 70 on a logarithmic y-axis.

The hit ratio is determined by the intersection of the predicted curve with the cuts

corresponding to the sizes of the two cache levels. For this instruction and the con-

sidered target architecture, the model predicts a hit ratio of 95.4% for the L1 cache

and 98.4% for the L2 cache.
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Figure 5.7: (a) Evaluate model in Figure 5.1(d) at problem size 70; (b) Model evaluation
at problem size 70 on a logarithmic y axis, and predictions for a 2048 blocks level 1 and
24576 blocks level 2 cache.
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5.3.2 Predictions for Set-Associative Caches

In section 4.2 we defined memory reuse distance as the number of distinct memory

blocks referenced between two consecutive accesses to the same memory block. If an

access has reuse distance n, it means that we referenced n distinct other blocks since

the previous access to the block currently accessed. For a fully-associative cache,

any memory block can map to any cache block. Therefore, if the cache uses LRU

replacement policy and has less than or equal to n blocks, we know that current access

will be a miss because the n distinct blocks accessed since the previous access to this

block have caused it to be evicted from the cache. Similarly, if the cache has more

than n blocks, the current access is a hit because the accessed block was not evicted

yet.

For a set-associative cache with s sets and associativity level k, a memory block can

map only to one of the k blocks of a single set, where the set is uniquely determined

by the block’s location in memory. As a result, an access with reuse distance n is a

hit if less than k out of the n accessed blocks map to this same set. The mapping

of memory blocks to cache sets depends upon how data structures are laid out in

memory. However, we do not collect information about the location of accessed blocks.

As Hill and Smith noted in [23], we can estimate set-associative LRU distance from

fully-associative LRU distance using a statistical model. This model is based on the

simplifying assumption that accessed blocks are uniformly distributed in memory.

In other words, the probability that two blocks map to the same set is 1/s and

independent of where other blocks map.

72



With this assumption, we first compute the probability that exactly i blocks out

of n distinct blocks map to a given set. We first notice that for i > n, the probability

is zero because we cannot have more than n blocks map to a single set when there

are n blocks overall. The mapping probability can be written as:

Pmapping(s, n, i) =











(

1
s

)i ( s−1
s

)n−i (n

i

)

if i ≤ n

0 if i > n

The probability formula for i ≤ n has three terms:

•

(

1
s

)i
because i blocks must map onto a specific set (the set of the currently

accessed block)

•

(

s−1
s

)n−i
because the other n− i blocks must map onto the other s− 1 sets.

•

(

n

i

)

because any combination of i blocks out of the total number of n blocks can

map onto our set.

The probability that an access with reuse distance n hits in a set-associative cache

with s sets and associativity k can be written as:

Phit(s, k, n) =

min(k−1,n)
∑

i=0

(

1

s

)i (
s− 1

s

)n−i (
n

i

)

and the probability of that access being a cache miss is 1 minus the previous formula:

Pmiss(s, k, n) = 1−

min(k−1,n)
∑

i=0

(

1

s

)i (
s− 1

s

)n−i (
n

i

)
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This model fits very well with our MRD model, because we do not predict just an

average distance for a reference, but a histogram of how many times each distance is

encountered. For each bin of a reference’s histogram we compute a miss probability

as a function of the bin’s reuse distance. The resulting probability represents the

fraction of accesses in that bin that should be expected as cache misses.

In the case of a fully-associative cache we have only one set (s = 1) and k represents

the number of blocks in the cache. If n > k−1, probability to hit in the cache is zero

because
(

s−1
s

)n−i
= 0 for any i ≤ k − 1 < n. If n ≤ k − 1, probability to hit in the

cache is one because the sum reduces to a single term,
(

n

i

)

, where i = n ≤ k−1. Thus,

the formula is valid also in the special case of a fully-associative cache, although it

is more efficient to use the direct method presented in Section 5.3.1 to compute the

number of cache misses for fully-associative caches. However, we observe that while

for a fully-associative cache each bin counts as either all hits or all misses, in the case

of a set-associative cache a bin can have a dual behavior.

We can approximate the number of misses for a set-associative cache from the

histogram of reuse distances predicted by our MRD model, with the following formula:

Nummisses(Hist, s, k) =
∑

bini∈Hist

(Pmiss(s, k, Dbini
)Fbini

)

where Dbini
and Fbini

are the average MRD of bini and the execution frequency of

bini respectively.

In the next section we are going to use this approach to predict cache miss counts

for several cache configurations.
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5.4 MRD Modeling Results

To validate our approach, in this section we compute cache and TLB miss pre-

dictions at the loop level for the ASCI Sweep3D benchmark and several of the NPB

2.3-serial and NPB 3.0 benchmarks, for mesh sizes ranging from 103 to 2003. We

compare our predictions against measurements using hardware performance counters

on two different platform: an Itanium2 based machine and an Origin 2000 system

based on the MIPS R12000 processor. The memory hierarchy characteristics for the

two testbed machines are presented in table 5.1. On the Itanium, floating point loads

Level # blocks/associativity/block size
Itanium2 R12000

L1D 256/4-way/64 B 1024/2-way/32 B
L2 2048/8-way/128 B 65536/2-way/128 B
L3 12288/6-way/128 B –
L1 TLB2 32/fully/16 KB 64/fully/32 KB3

L2 TLB2 128/fully/16 KB –

Table 5.1: Memory hierarchy characteristics for the testbed machines.

and stores bypass the small L1D cache and its associated L1 TLB. Because the bench-

marks used in this test suite are all floating point intensive, the L1D cache and the

L1 TLB of the Itanium2 machine have very little impact on their performance, and

we do not present predictions for these two memory levels.

We build separate memory reuse distance models for each cache line size, all

models being parameterized by one of the application’s input parameters as described

in the introduction of Section 5. To compute predictions of cache miss counts, we use

2A TLB behaves exactly like an LRU cache with a number of blocks equal to the number of
entries in the TLB, and the size of each block equal to the size of the memory mapped by each entry.

3On the R12000, each TLB entry maps two consecutive pages, therefore the size of the memory
mapped by an entry is 32 KB.
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the size and associativity level of the target cache during evaluation as explained in

Section 5.3. Nowhere in this process we make use of information such as the CPU’s

frequency or its number of execution units. Our cache miss predictions have nothing

to do with the architecture of the CPU core. Therefore, while we consider only two

platforms, we present predictions for six different cache configurations (two cache

levels and one TLB level on each platform). From table 5.1 we see that the testbed

machines cover a diverse set of cache configurations, including capacity, block size

and associativity.

To compute the predictions, we compiled the benchmarks on a Sun UltraSPARC-

II system using the Sun WorkShop 6 update 2 FORTRAN 77 5.3 compiler, and

the optimizations: -xarch=v8plus -xO4 -depend -dalign -xtypemap=real:64. Measure-

ments on the Itanium2 machine were performed on binaries compiled with the Intel

Fortran Itanium Compiler 8.0, and the optimization flags: -O2 -tpp2 -fno-alias. On

the Origin 2000 system we compiled the binaries with the SGI Fortran compiler ver-

sion 7.3.1.3m and the optimization flags: -O3 -r10000 -64 -LNO:opt=0. We used the

highest optimization level but we disabled high-level loop optimizations, because the

sets of loop nest transformations implemented in the Sun, Intel and SGI compilers

are different. Loop nest transformations change the execution order of the iterations

of a loop nest, effectively altering an application’s memory access patterns.

We computed predictions for the ASCI Sweep3D benchmark, a 3D Cartesian

geometry neutron transport code, and several computational fluid dynamic codes,

including BT, SP and LU from the NAS parallel benchmarks NPB 2.3 serial and

NPB 3.0. The complete results at routine and program level of all these codes are
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presented in Appendix B for the Itanium2 machine, and in Appendix C for the MIPS

R12K system. In the following sections we are going to analyze the results of just a

single benchmark on each of the systems, including results at loop level.

The NAS benchmarks use statically allocated data structures, with the maximum

size of the working mesh specified at compile time. The benchmarks can be compiled

in several standard classes named A, B and C, which have a maximum mesh size of

64, 102 and 162 respectively. We created an extra class L with a maximum mesh size

of 200. We used static and dynamic analysis of the class A binaries to construct the

models. The measurements on the Itanium2 and R12000 machines were performed

on the binary of minimum class that accommodates that particular size.

To compute the predictions, we collected MRD data for block sizes 32, 128, 16

KB and 32 KB, for a set of problem sizes randomly selected between 20 and 50. We

collected data on relatively small input problems to limit the cost of executing the

instrumented binaries. Next, we built models of MRD parameterized by problem size

for each of the applications, as described in section 5.2.1. Finally, to predict the cache

and TLB miss counts, we evaluated the models at each problem size of interest. For

each memory hierarchy level on each of the two machines, we predict a miss count

for a fully-associative cache of the same size as the actual cache on the machine using

only the MRD models, and a miss count that takes associativity into account using

the probabilistic model described in section 5.3.2.
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5.4.1 Predictions for Itanium2

Figure 5.8 presents the results for the hyper-plane 2D implementation of LU from

NPB 3.0 on an Itanium2 machine. The graph on the top row presents the measure-

ments and the predictions aggregated at the entire program level for this applica-

tion. For the L2 and L3 caches we present both fully-associative and set-associative

predictions as explained above. Because the TLB is fully associative, there are no

set-associative predictions for it. For all graphs, the x axis represents the mesh size

and the y axis represents the number of misses per cell, and per time step, where the

number of cells is equal to mesh size3. This normalized view of the data enables us

to understand how the application’s characteristics scale with the amount of useful

work, and at the same time makes the graphs more readable by bringing the counts

for all mesh sizes to comparable levels. We measured reuse distance histograms for a

range of problem sizes between 20 and 50, also indicated on each graph by two vertical

lines. Using this data, we built scalable models of reuse distance and we predicted

the cache miss counts for mesh sizes from 10× 10× 10 to 200× 200× 200.

While predictions are in general accurate, we notice that we under-predict the

number of L2 misses for the LU benchmark at large problem sizes. The second

row in figure 5.8 presents the predictions for two routines of the LU application,

and Appendix B includes results for all routines that contribute at least 3% of the

application’s L2 cache misses. Looking at the routine level predictions, we notice that

the entire L2 prediction error comes from routine rhs. Moreover, we have noticed that

our models under predict the number of L2 misses for all implementations of the LU
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Figure 5.8: Predictions of L2, L3 and TLB misses for the LU HP 2D benchmark from
NPB 3.0, on an Itanium2 based machine with a 256KB 8-way set-associative L2 cache,
1.5MB 6-way set-associative L3 cache, and 128 entries fully-associative L2 TLB. We present
predictions for two of its routines and two level 3 loops.

benchmark in NPB 3.0 and in NPB 2.3, and in all cases the error was manifesting

itself in routine rhs. In all these cases, we noticed a correlation between the higher
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number of measured L2 misses and a high rate of TLB misses. As you can see from

the graph for routine rhs in figure 5.8, almost all TLB misses measured for the LU

application are produced by this routine.

On a TLB miss, the OS needs to find the entry for the offending page in the virtual

page table which is stored in memory. On the Itanium, the page table is accessed

through the L2 cache. This has the advantage that on a TLB miss, in addition to

the offending entry being brought into the TLB, an entire cache line of page entries

is brought into the L2 cache. Thus, successive TLB misses to neighboring pages

are serviced much faster from the L2 cache instead of going all the way to memory.

However, if an application accesses memory with a large stride, larger than the size

of a memory page times the number of page entries that fit into a cache line, each

TLB miss will have to go to L3 or to memory causing an L2 cache miss. This is what

happens in routine rhs of the LU benchmark. We cannot predict these cache misses

because they are not produced by the application explicitly, but are the result of an

interaction between the architectural design and the application’s access stride.

On the bottom row of figure 5.8, we present the predictions and the measurements

for two level 3 loops from routine rhs. For these loops, we notice that the number of

L2 misses predicted by the model is zero for all problem sizes, but the measurements

on the Itanium2 show the code experiences L2 misses once it starts missing in the

TLB.
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5.4.2 Predictions for MIPS R12000

Figure 5.9 presents the results for the SP benchmark from NPB 3.0 on an Origin

2000 system. As with the Itanium results, each graph presents the normalized counts

of cache and TLB misses. All L2 and TLB miss counts are scaled by a factor of 5 to

bring them into the same range with the L1 miss counts and make the graphs easier

to read. We present both the fully-associative and the set-associative predictions for

the two cache levels, and only fully-associative predictions for TLB. While for the

Itanium machine the difference between the fully-associative and the set-associative

predictions is quite small due to the high associativity level of its L2 and L3 caches,

on the R12000 with its 2-way set-associative caches we can notice a significant dif-

ference. Although based on the simplifying assumption that accessed memory blocks

are uniformly distributed across sets, the set-associative predictions approximate well

the measured counts. We cannot estimate precisely the conflict misses at each prob-

lem size (see the graph for Sweep3D in figure C.1), but the set-associative predictions

capture the actual trend. Results for more applications at routine level are presented

in Appendix C.

We’ll analyze in more detail the SP benchmark from NPB 3.0. We selected this

benchmark on the R12000 because of the large difference between its fully-associative

and set-associative L1 predictions. Second row in figure 5.9 presents the results for two

routines from benchmark SP 3.0. We selected routines that show different memory

utilization profiles, to demonstrate the accuracy of the models with various memory

access patterns. We notice that most of the SP’s L2 miss prediction error is produced
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Figure 5.9: Predictions of L1, L2 and TLB misses for the SP benchmark from NPB 3.0,
on a MIPS R12000 based machine with a 32KB 2-way set-associative L1 cache, 8MB 2-way
set-associative L2 cache, and 64 double entries fully-associative TLB. We present predictions
for two of its routines and two level 3 loops.

by routine compute rhs, seen in figure C.9, and that almost all its TLB misses are

produced by routine z solve. If the 256 KB L2 cache on the Itanium seems too small
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for caching page table entries in the presence of large stride accesses, on the R12000

with its large 8 MB L2 cache we did not notice an increase in the number of L2

misses due to a high rate of TLB misses. Last row in figure 5.9 shows two level 3

loops from routine z solve. The L1 set-associative predictions approximate well the

measured values for all problem sizes, and we can see the number of capacity and

conflict misses at each problem size. The accuracy of the set-associative predictions

validate in turn the accuracy of our MRD models which predict the fully-associative

distances used by the probabilistic model.
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Chapter 6

Cross-Architecture Predictions of Execution Time

To understand how an application performs on a target architecture, we combine

information gathered from static analysis and dynamic measurements of execution

behavior. Next, we map this information onto a model of the target architecture

using a modulo instruction scheduler. The scheduler is logically organized into two

modules: a front-end module that implements functionality dependent on the native

binary, and a back-end module that works on an intermediate representation of the

code to isolate the scheduler implementation from the underlying native architecture.

At a high level, the scheduler can also be seen as a four step process.

1. Recover the executed paths through each routine. We reconstruct the

control flow graph (CFG) of each routine using static analysis. The CFG is annotated

with edge and basic block execution frequencies obtained either from direct dynamic

measurements at scale or from evaluations of parameterized scalable models described

in Chapter 5. From this representation we identify paths in the CFG and compute

their associated frequencies. These paths serve as input for the other steps.

2. Translate native instructions into generic RISC instructions and com-

pute an intermediate representation (IR) of the code. We defined a set of
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generic RISC instruction classes and a module that translates machine instructions

from the native binary into a representation based on generic RISC instructions. In

addition, a dependence graph is constructed for each executed path. A dependence

graph in which nodes correspond to generic instructions and edges represent depen-

dences between instructions, is the intermediate representation of the native code

used by the back-end module.

3. Model target architecture. We designed a machine description language

(MDL) that we use to describe the resources available on the target architecture and

the resources needed by each generic instruction during execution.

4. Schedule executed paths on the target architecture. We implemented a

configurable modulo instruction scheduler that is instantiated with a description of

the target architecture. The scheduler enables us to explore how an application would

performs on different target architectures and to understand where execution cost is

incurred.

Steps 1 and 2 work on the native binary and therefore are part of the scheduler’s

front-end module. Step 4 works with an architecture-independent representation

of the code, implementing the bulk of the scheduling logic. The following sections

describe these steps in more detail as follows. Section 6.1 describes the scheduler’s

front-end module. Section 6.2 illustrates the most important MDL constructs with

snippets from our description of the Itanium2 architecture [28]. Appendix D presents

the complete grammar of our MDL. Section 6.3 describes the implementation of the

scheduler’s back-end module. Section 6.4 provides an empirical analysis of the cost
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of the scheduling algorithm. Section 6.5 presents cross-architecture prediction results

for the ASCI Sweep3D code and several NPB 2.3 and NPB 3.0 benchmarks.

6.1 Scheduler Front End

The front-end module analyzes an application’s binary and constructs an inter-

mediate representation of the code to be used by the back-end module. To do this,

it first recovers the executed paths through each routine converting the native ma-

chine instructions into generic RISC instructions, and constructs a dependence graph

for each executed path where nodes represent generic RISC instructions and edges

correspond to dependences between instructions.

To recover executed paths in loop nests, we work from inside out. A loop is

replaced by a special InnerLoop instruction in its parent scope. As a result, no basic

block is considered at more than one loop level. Once a loop is scheduled, we also

compute information about registers that are live across its boundaries. We classify

these registers as either input or output registers, depending on the loop boundary

crossed by their live range. Input registers are those registers that are used before

being defined inside the loop. Output registers are registers defined inside the loop

that are live on the loop exit. We record the number of clock cycles from the start

of the schedule to the first use of an input register and the number of clock cycles

from the definition of an output register to the end of the schedule. Such information

is used to compute register dependences between a loop and the instructions in its

parent scope. In addition, inner loops and function calls act as fence instructions in
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our schedules; they prevent instruction reordering across them.

As seen in Figure 1.1, the scheduler works on an intermediate representation (IR)

of the code. An appropriate format for the IR is a dependence graph, in which nodes

represent generic instructions and edges represent dependences between instructions.

Figure 6.1(b) shows the dependence graph for the innermost loop of routine compute

shown in Figure 6.1(a).1 Using such an intermediate representation has two main

benefits. First, it isolates the scheduler from the binary analysis library underneath,

making it portable to a different run-time system. We need to provide only a front

end that translates machine code into the IR by identifying all schedule dependences

among instructions. Second, it makes the scheduler more generic by separating it

from the type of operations that need to be scheduled. Currently, the front-end an-

alyzes RISC binaries and thus the scheduler and its predictions are targeted to a

generic RISC instruction set. However, the scheduler is largely independent of the

type of operations that must be scheduled. The scheduler can be used to analyze code

sequences that include higher-level operations (i.e. FFT or dot product operations).

The generic instruction set that is used affects mostly the target machine description

and the front-end module. The machine description must specify execution units

which can execute such operations and the architecture description model must de-

fine execution templates for each generic instruction type, while the front-end must

recognize such operations and include them as nodes into the IR.

In our implementation, we defined a set of generic RISC instruction classes and

1To reduce clutter, the graph does not include the loop control arithmetic and the loop branch
instruction.

87



void

compute(int size, double* A, double c1){
int i, j;

for (j=0 ; j<size ; ++j)

for (i=0 ; i<size-1 ; i+=1){
A[(i+1)*size+j] =

A[(i+1)*size+j] +

c1 * A[(i)*size+j];

}
}
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E10

10::IntAdd: r13 r4 -> r13

D(1,1)
E19

D(1,1)
E22

D(1,1)
E23

(b)

4::LoadFp: r13 -> f6

13::FpMultAdd: f0 f2 f6 -> f8

D(1,0),L=6
E37

6::IntAdd: r5 r4 -> r5

11::LoadFp: r5 -> f2

D(1,0),L=1
E11

9::StoreFp: r13 f8 ->

D(1,0),L=1
E10

10::IntAdd: r13 r4 -> r13

D(1,0),L=1
E19

D(1,0),L=1
E22

D(1,0),L=4
E38

D(1,1),L=6
E36

(c)

Figure 6.1: (a) Sample source code; (b) IR for the inner most loop; (c) IR after replacement
rules and edge latencies are computed.

our front-end translates SPARC machine instructions into the intermediate repre-

sentation. The translation table for SPARC binaries is presented in Table 6.1. In

addition to the generic RISC instructions presented in Table 6.1, our generic RISC

instruction set includes a few more classes which do not have a direct mapping to the

SPARC ISA, but are used to describe the instruction set of other architectures.
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Native SPARC Instruction Generic RISC
Class

SETHI, ADD[X][cc], TADDcc[TV], SUB[X][cc], IB int add
TSUBcc[TV], SAVE, RESTORE
BIcc, BPcc, FBfcc, FBPfcc IB br CC
BPr IB branch
CALL, JMPL, RETT IB jump
AND[N][cc], OR[N][cc], X[N]OR[cc] IB logical
SLL, SRL, SRA IB shift
MULScc, UMUL[cc], SMUL[cc] IB int mult32
MULX IB int mult64
UDIV[cc], SDIV[cc] IB int div32
UDIVX, SDIVX IB int div64
TICC IB trap
MOVR, MOVcc, RDCCR, RDASR, RDPSR, RDWIM, IB int move
RDTBR, RDY, WRCCR, WRASR, WRPSR, WRWIM,
WRTBR, WRY
FADD{s,d,q}, FSUB{s,d,q}, FCMP[E]{s,d,q} IB fp add
FDIVs IB fp div32
FDIV{d,q} IB fp div64
FMUL{s,d,q}, FdMULq, FsMULd IB fp mult
FMOV{s,d,q}, FABS{s,d,q}, FNEG{s,d,q} IB fp move
FMOVR{s,d,q}, FMOVcc{s,d,q}
FSQRTs IB fp sqrt32
FSQRT{d,q} IB fp sqrt64
F{s,d,q,i,x}TO{s,d,q,i,x} IB fp cvt
LDSB, LDSH, LDUB, LDUH, LD, LDD, LDSBA, LDSHA IB load gp
LDUBA, LDUHA, LDA, LDDA, LDX, LDFSR, LDCSR
LDF, LDDF, LDC, LDDC IB load fp
LDSTUB, LDSTUBA, SWAP, SWAPA IB load atomic
STB, STBA, STH, STHA, ST, STA, STD, STDA, IB store gp
STX, STFSR, STCSR
STF, STDF, STDFQ, STC, STDC, STDCQ IB store fp
PREFETCH, PREFETCHA IB prefetch

Table 6.1: Classification of SPARC native instructions into generic RISC classes.
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6.2 Machine Description Language

This section presents the main language constructs of the Machine Description

Language that we use to describe the characteristics of a target architecture. Ap-

pendix D presents the full language grammar using railroad diagrams. At a minimum,

the machine description language must specify the resources available on the target

architecture and list the resources needed by each instruction type during execution.

The following sections describe each of the language constructs in turn.

6.2.1 Execution Units

Figure 6.2 presents the language construct for defining the list of execution units

(top) and an optional construct for defining special restrictions between units (bot-

tom). When defining the available execution units, an optional multiplicity factor for

each unit class can be included if there are multiple units of the same type. Duplicate

units can also be distinctively enumerated using multiple names instead of using the

optional multiplicity operator. However, in this case alternative instruction execution

templates must be defined for each instance of the unit. Using the multiplicity oper-

ator simplifies the declaration of both the list of available units and the instruction

execution templates. In addition, it provides a single point of control when playing

with alternative machine designs that have different number of units of a given type.

The number and type of units defined is at the discretion of the machine designer.

The only restriction is that each unit class must have a different name. Additional

units can be declared just to simplify the definition of restrictions between different

90



List of execution units (EU):

CpuUnits = U_Alu*6, U_Int*2, U_IShift,

U_Mem*4, U_PAlu*6, U_PSMU*2,

U_PMult, U_PopCnt, U_FMAC*2,

U_FMisc*2, U_Br*3,

I_M*4, I_I*2, I_F*2, I_B*3;

Special restrictions between EUs:

Maximum 1 from U_PMult, U_PopCnt;

Maximum 6 from I_M, I_I, I_F, I_B;

Figure 6.2: MDL constructs for defining the execution units and restrictions between
units.

instruction execution templates within the constraints of the language. Notice in

Figure 6.2 that for the Itanium2 model we included also a list of issue ports (names

starting will letter I) in addition to the execution units (whose names start with

letter U). Using the convention that each instruction template must make use of one

issue port of the proper type in addition to one or more execution units when the

instruction is issued, we can restrict the number and type of instructions that can be

issued in the same cycle. For example, to model the six issue width of the Itanium2

processor, the second restriction rule in Figure 6.2 specifies that at most six issue

ports can be used in any given cycle.

6.2.2 Instruction Execution Templates

Figure 6.3 presents examples of instruction execution templates. An instruction

template defines the latency of an instruction, and the type and number of execution

units used in each clock cycle. The first instruction template in Figure 6.3 represents

the most common format of template declaration, thus the shortest. It applies to
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Instruction execution templates:

Instruction LoadFp template =

I_M + U_Mem, NOTHING*5;

Instruction LoadGp template =

U_Mem[0:1](1)+I_M[0:1](1);

Instruction StoreFp template =

U_Mem[2:3](1)+I_M[2:3](1);

Instruction StoreGp template =

U_Mem[2:3](1)+I_M[2:3](1);

Figure 6.3: MDL constructs for declaring instruction execution templates.

instructions that execute on fully pipelined symmetric execution units. On Itanium2,

floating-point loads can be issued to any of the four memory units, and have a min-

imum latency of six cycles when data is found in the L2 cache. Thus, one LoadFp

instruction is declared to need one issue port of type I M and one execution unit of

type U Mem in the first clock cycle, plus five additional clock cycles in which it does

not conflict with the issue of any instruction. NOTHING is a keyword which specifies

that no execution unit is used. Instruction templates can make use of the multiplicity

operator to specify consecutive clock cycles that require the same type and number

of resources.

The other templates in Figure 6.3 show the extended form of declaring an execu-

tion template which is needed in case of asymmetric execution units. While floating-

point loads can execute on any of the four memory type units, fix-point loads can

be issued only to one of the first two memory units, and stores can execute only on

the last two units. Thus, these templates use an optional range operator in square

brackets to specify a subset of units of a given type, and the count operator between

round parentheses to specify how many units of that type are needed.
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The latency of a fix-point load instruction from the L1D cache is only one cycle,

thus the LoadGp template has length one. Both store instruction types are declared

with unit length templates because the units are fully pipelined and these instructions

do not produce any value; thus, their latency is irrelevant because they cannot be

sources of data flow dependences. Latency of memory and control dependences can be

specified using bypass rules that we will present later. Instructions can have associated

multiple execution templates, possibly with different lengths. For example, on the

Itanium, many fixed-point operations can issue on either the I I or the I M ports,

and they can execute on either the U Alu or the U Int units.

6.2.3 Instruction Replacement Rules

Instruction replacement rules, shown in Figure 6.4, are an important type of lan-

guage construct used to translate sequences of instructions from the instruction set of

the input architecture, into functionally equivalent sequences of instructions found on

the target architecture. We introduced the replacement construct to account for slight

variations in the instruction set of different architectures. For example, the SPARC

architecture does not have a multiply-add instruction while Itanium2 does. Moving

data between general-purpose and floating-point registers is accomplished on SPARC

by a save followed by a load from the same stack location using registers of different

types. Itanium2 provides two instructions for transferring the content of a floating-

point register to a general-purpose register and vice-versa. In addition, the IA-64

instruction set does not include the following type of instructions: integer multiply,

integer divide, floating-point divide, and floating-point square root. Floating-point
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Instruction replacement rules:

Replace FpMult $fX, $fY -> $fZ +

FpAdd $fZ, $fT -> $fD with

FpMultAdd $fX, $fY, $fT -> $fD;

Replace StoreFp $fX -> [$rY] +

LoadGp [$rY] -> $rZ with

GetF $fX -> $rZ;

Replace IntMult32 $rX, $rY -> $rZ with

SetF $rX -> $f1 +

SetF $rY -> $f2 +

FpMultAdd $f1, $f2 -> $f3 +

GetF $f3 -> $rZ;

Figure 6.4: MDL constructs for declaring instruction replacement rules.

divide and square root operations are executed in software using a sequence of fully-

pipelined instructions. The integer multiply and divide operations are executed by

translating the operands to floating-point format, executing the equivalent floating-

point operations, and finally transferring the result back into a fixed-point register.

Our Itanium2 architecture description provides replacement rules for all these types

of instructions.

A replacement rule consists of an input instruction pattern and an output in-

struction pattern. When the machine description file is parsed, all input replacement

patterns are converted to our intermediate representation, a dependence graph. Reg-

isters in the input pattern that are used before being defined are classified as input

parameters. Registers that are defined and then used in a later instruction create

data flow dependences. The syntax allows for both register and memory type depen-

dences. Control dependences are not supported as part of the replacement patterns.
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Registers that are defined but not used by a following instruction are considered out-

put parameters. Applying pattern matching on the intermediate representation of

the code ensures that sequences of non-consecutive instructions can be matched by

the input pattern if they are connected with the correct type of dependences. The

replacement algorithm executes four main steps:

1. Search the IR code for a subgraph that matches an input pattern. If no match

is found then we are done. Otherwise go to step 2.

2. If a match is found, associate actual nodes from the code with each node of the

input pattern and identify incoming and outgoing dependences that correspond

to the input and output parameters of the input pattern.

3. Convert the output pattern to our intermediate representation and insert the

necessary nodes and edges into our code’s IR. Connect these new nodes to

the original code by creating dependences for the identified input and output

parameters.

4. Remove the original nodes matched by the input pattern, unless any non-final

node has additional outgoing edges not covered by the input pattern. Repeat

from step 1 until no more matches are found.

To simplify the search algorithm and because we did not find the need for generalized

pattern matching, currently we restrict input patterns to list-like graphs, while the

output patterns can be arbitrary graphs. Figure 6.1(c) presents the dependence graph

for loop i of the code shown in Figure 6.1(a) after the replacement rules were applied.
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Bypass rules:

Bypass latency 1 for ANY_INSTRUCTION

-> [control] InnerLoop;

Bypass latency 0 for ANY_INSTRUCTION

-> [control] CondBranch |

UncondBranch |

Jump;

Figure 6.5: Example of MDL constructs for defining bypass latency rules.

One multiply instruction and one add instruction were replaced with a single multiply-

add.

6.2.4 Bypass Latencies

Bypass latency rules, shown in Figure 6.5, are used to specify different latencies

than what would normally result from the instruction execution templates for certain

combinations of source instruction type, dependence type, and sink instruction type.

Some combinations can be covered by more than one bypass rule. The first matching

rule is always used by the scheduler. Therefore, one should write the exception rules

first, and the more general rules last. However, all bypass rules have precedence

over the instruction execution templates when computing dependence latencies. As

a result, bypass rules and instruction execution templates can be interleaved in any

order. The two bypass rules shown in Figure 6.5 refer to control dependences. For

example, the first rule specifies that instructions within an inner loop and instructions

within the parent scope that precede the inner loop cannot issue in the same clock

cycle. The second rule specifies that a branch or function call instruction can be

issued in the same cycle as an instruction that precedes it if there are no other types
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List the Memory Hierarchy Levels (MHL):

MemoryHierarchy =

L1D [256, 64, 4, 32, L2D, 4],

L2D [2048, 128, 8, 32, L3D, 8],

L3D [12288, 128, 6, 6, DRAM, 110],

DRAM [*, 16384, *, 0.04, DISK, 10000],

TLB [128, 8, *, 8, L2D, 25];

Figure 6.6: Example of MDL constructs for describing the memory hierarchy levels.

of dependences between them, even if the source instruction normally has a long

latency.

6.2.5 Memory Hierarchy Characteristics

The MDL construct in Figure 6.6 defines the characteristics of the memory hierar-

chy. For each memory level, the parameters are: number of blocks, block size (bytes),

associativity, bandwidth from a lower level on a miss at this level (bytes/clock), mem-

ory level accessed on a miss at this level, penalty in cycles for going to that level. The

value of some attributes can be omitted and then a default value is used, depending

upon the attribute type. Not all memory hierarchy information is used by the sched-

uler at this time. The number of misses at each level of the memory hierarchy are

computed by an external program from models of memory reuse distance and these

values are passed as input to the scheduler. The scheduler uses the miss counts and

the latency information for each memory level to estimate the contribution of memory

accesses to the application’s execution time. In addition, the scheduler uses the block

size information and the number of cache misses to infer the program’s bandwidth

requirements.
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6.3 Scheduler Implementation

We implemented an architecture generic, critical-path driven, bidirectional mod-

ulo scheduler. It is close in concept to Huff’s bidirectional scheduler [26], although we

do not consider register pressure among the scheduling priorities at this time. The

scheduler starts by pruning the dependence graph of edges that create trivial self-

cycles, and edges that are determined to be redundant once the transitive property

of dependences is taken into account. Next, the graph is transformed by applying

the replacement operations specified in the machine description file, and all edges of

the new graph are assigned a latency value based on the bypass latency rules and

the instruction execution templates. Once the latencies are computed, the graph is

pruned one more time, using the latency information to identify and remove trivial

edges.

Once all dependences between instructions and their associated latencies are com-

puted, the scheduler proceeds to compute the instruction schedule based on the fol-

lowing steps:

1. Identify opportunities for simplifying the dependence graph. Dependence

graphs for large outer loops may contain a very large number of recurrences that

differ in only a few edges. Computing all distinct recurrences, a mandatory step of

the scheduling algorithm that we use, can be very expensive for such large loops. We

look for opportunities to lower the complexity of dependence graphs by identifying

super-structures, sub-graphs with unique entry and exit nodes. A super-structure can

be logically replaced by an edge between its entry and exit nodes.
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2. Compute minimum initiation interval (MII). Schedule length is bounded

below by two factors, resource contention and dependence cycles. We compute the

minimum schedule length that is theoretically achievable by considering each factor

in isolation. The minimum initiation interval is given by the maximum of the two

lower bounds.

3. Compute actual schedule length. In practice, most loops can be scheduled

with a schedule length equal to the MII. In some cases, accommodating both depen-

dences and resource constraints may yield a schedule length greater than the MII. We

use an iterative algorithm to compute the feasible schedule length, k. We start with

a schedule length of k = MII . We attempt to schedule all instructions from one loop

iteration in k clock cycles, incrementing k each time the scheduling algorithm fails.

We describe each of these steps in more detail in the following sections. Sec-

tions 6.3.1 and 6.3.2 describe the process of computing the lower bounds due to

resource contention and recurrences, respectively. Section 6.3.3 describes some pre-

liminary priority metrics that are used during the scheduling step to determine the

order in which nodes are selected for scheduling. Section 6.3.4 provides motivation

for implementing a hybrid iterative-recursive scheduling algorithm. Section 6.3.5 de-

scribes the order in which nodes are selected for scheduling. Section 6.3.6 lists the

properties of super-structures and proves a new set of dominance-based properties for

nodes that belong to super-structures. Section 6.3.7 describes an algorithm that uses

dominance information to find all super-structures in an arbitrary dependence graph.
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6.3.1 Minimum Schedule Length Due to Resource Contention

An execution unit can be in use by at most one instruction in any given clock cycle.

The lower bound due to resource contention, LBRes, is determined by how tightly we

can map all instructions from one loop iteration onto the machine execution units if we

assume no dependences between instructions. The machine description may specify

asymmetric execution units with multiplicity larger than one. To distinguish between

different instances of asymmetric execution units, all units are explicitly represented

in the scheduler’s data-structures.

The machine description language described in Section 6.2 enables alternative

instruction execution templates of possibly different lengths for the same instruction

class. Therefore, we use a greedy algorithm to compute the lower bound due to

resource contention. We first sort the loop’s instructions in ascending order by the

number of distinct execution templates associated with them. Then, we map each

instruction onto available resources. When multiple choices are possible we select

the execution template that makes use of the least utilized resources. At each step

we consider the optional unit restriction rules when determining the execution units

with the lowest utilization factor. After all instructions are mapped, the minimum

schedule length due to resource contention is equal to the utilization factor of the

resource in most demand.

LBRes = max
u∈U

(uses(u)),

where U is the set of available execution units and uses(u) represents the number of

clock cycles unit u is busy serving instructions from one loop iteration.
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6.3.2 Minimum Schedule Length Due to Recurrences

Separately, we compute a lower bound due to recurrences, LBDep. For this, we

assume a machine with unlimited number of resources and the bound is determined

by the longest dependence cycle in the code. All graph edges have associated length

and distance information. The length is given by the latency computed in a previous

step. The distance is computed by the scheduler’s front-end as part of its dependency

analysis phase. Dependences can be either loop independent or loop carried [2]. Loop-

independent dependences have both their ends in the same iteration and their distance

is said to be zero, D = 0. For loop-carried dependences, the sink instruction depends

on an instance of the source instruction from d > 0 iterations earlier, and the distance

in this case is said to be d, D = d. For the example in Figure 6.1(c), edge E36 from the

LoadFp instruction to the FpMultAdd instruction is the only loop-carried dependence

and has a distance of 1. All the other dependences in that graph are loop independent.

For each dependence cycle c, we compute the sum of latencies L(c) and the sum of

distances T (c) over all its edges. Every recurrence must contain at least one carried

dependence. As a result T (c) is guaranteed to be strictly positive. If an instruction is

part of a recurrence with total length L(c) and total distance T (c), then it can start

executing no earlier than L(c) clock cycles after its instance from T (c) iterations

earlier executed. Thus, each recurrence creates a lower bound on schedule length

equal to ⌈L(c)/T (c)⌉, and the lower bound due to application dependences is:

LBDep = max
c∈C

⌈

L(c)

T (c)

⌉

,
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where C is the set of dependence cycles.

The minimum initiation interval becomes MII = max (LBRes, LBDep). In practice,

most loops can be scheduled with a length equal to this lower bound. However, for

some loops, accommodating both dependences and resource constraints increases the

feasible schedule length. To find the schedule that can be achieved, we start with

a schedule length k equal to MII and increase it until we can successfully map all

instructions onto the available resources in k clock cycles.

6.3.3 Preliminary Priority Metrics

Because our scheduler works on a dependence graph in which a node stands for

an instruction and an edge represents a dependency between instructions, I use in-

terchangeably the terms node and instruction, as well as edge and dependency in the

description of the scheduling algorithm.

Once the minimum initiation interval is computed, we compute additional met-

rics for each graph node and edge, information that is used to compute scheduling

priorities. For each node in the graph we compute the longest path from a root node

and the longest path to a leaf node. For this, we perform two DFS traversals of the

dependence graph, starting from the root nodes and from the leaf nodes respectively.

This step has complexity O(N + E).

Each node receives also a resource contention score. For this, we use the contention

information derived for each execution unit while computing LBRes (see Section 6.3.1).

The resource contention score of an instruction is computed as a dot product between

the contention score of each unit and the square of the weighted average utilization
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of each unit across all execution templates associated with this instruction. Note

that the weighted utilization factor of each unit depends on the instruction type

and is a value between 0 and 1. An unit with an utilization factor of 1 means that

it is required in each execution template associated with an instruction. This unit

utilization score is independent of the instruction mix inside a loop. Therefore, this

information is associated with the machine state and it is computed only once for

each instruction type, independent of how many paths we analyze. The resource

contention score associated with each unit depends upon the mix of instructions in

the code and it must be computed separately for each path. This process is explained

in Section 6.3.1 and has complexity O((N + I) × (T + E)), where N is the number

of instructions in the path, I represents the number of generic instruction types, T is

the maximum number of templates associated with an instruction, and E represents

the number of execution units on the target architecture. Except for N , all factors

are machine-dependent constants. Thus, the complexity of this step is O(N).

For nodes and edges that are part of recurrences, we determine also the longest

dependence cycle of which they are a part, and the list of distinct cycles to which

they belong. This information is collected at the time we compute the dependence

cycles. Many program loops have none, or just a few recurrences. Thus the overhead

of tracking all cycles associated with one node or edge is fairly small. However,

for some loops, particularly outer loops that contain many other inner loops and

function calls, the number of different cycles can be extremely large. We mentioned

before that function calls and inner loops act as fence instructions, which prevent

reordering of instructions across them. This behavior is implemented by creating
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control dependences from prior instructions to the fence instruction, and from the

fence instruction to the instructions after it. The effect is that all dependence paths

join at these fence instructions, producing nodes with large fan-in and fan-out values.

As a result, the number of cycles can grow exponentially with the number of fence

instructions in the graph.

To reduce the overhead, we make the realistic assumption that no dependency

between two regular instructions can have a latency greater than the execution cost

of an inner loop or of a function call. We can make this simplification because we

use the resulting instruction schedule to evaluate performance, and thus, we do not

have to be as conservative as an actual compiler. Based on this assumption, we do

not create any dependences that cross a fence instruction. All dependence paths pass

through the fence instructions instead. This assumption enables us to schedule the

code between two fence instructions independently of the other instructions in the

code. In other words, a loop that contains two or more inner loops and function calls,

can be seen as a series of segments for scheduling purposes. A segment is a subgraph

bounded by two fence nodes. Because segments have only one entry node and one

exit node2, they can be replaced in the original graph by super edges of length equal

to the segments’ schedule length.

We generalized the idea of segments to any subgraph that has a single input node

and a single output node, not necessarily barrier nodes. We call such subgraphs

super-structures and we can have hierarchical super-structures. Figure 6.7 presents a

2There are no dependences between instructions within a segment and instructions outside the
segment, because such dependences would have to bypass a fence instruction.
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32::CondBranch: ->

36::CondBranch: r32 ->

33::IntAdd: r17 -> r17

35::IntCmp: r17 r24 -> r32

34::IntAdd: r19 -> r19
Struct 9

SE84,L=3,D=0
30::StoreGp: r20 r25 r18 ->31::IntAdd: r18 -> r18

Struct 8
SE83,L=1,D=0

28::LoadGp: r10 -> r8

29::Jump: -> r15

22::CondBranch: r32 ->

27::CondBranch: r32 ->

Struct 4
SE87,L=5,D=0

23::LoadGp: r25 r18 -> r9

24::LoadGp: r9 -> r8

25::IntCmp: r8 -> r32

26::IntAdd: -> r10
Struct 7

SE85,L=4,D=0
19::LoadGp: r30 -> r11

20::IntCmp: r11 -> r32

21::LogicalOp: r25 -> r8
Struct 3

SE86,L=3,D=0

5::LoadGp: r21 -> r28

6::IntCmp: r28 -> r327::IntCmp: r28 -> r32

3::IntCmp: r21 -> r32

4::CondBranch: r32 ->

18::Jump: -> r15

17::LogicalOp: r19 -> r9

11::IntCmp: r26 -> r32

15::CondBranch: r32 ->12::CondBranch: r32 ->8::CondBranch: r32 ->

9::LoadGp: r21 -> r27

10::IntCmp: r27 -> r32

16::LogicalOp: r21 -> r8
Struct 1

SE90,L=4,D=1

Struct 6
SE88,L=2,D=0

13::StoreGp: r30 -> 14::IntAdd: r30 -> r10
Struct 5

SE89,L=1,D=1

Figure 6.7: Sample dependence graph with hierarchical super-structures.

sample dependence graph and the super-structures present in the graph are marked

with rectangles. Each rectangle includes the inner nodes of a super-structure and

hierarchical structures are readily apparent. We developed an efficient algorithm

to find all subgraphs that have single input and output nodes. This algorithm is

presented in section 6.3.7.

Once super-structures are computed, we think of each super-structure as a single

edge of length equal to the longest path through the super-structure for the purpose

of computing longest paths from root nodes and to leaf nodes, and for computing

dependence cycles, as explained in the first part of this section. With these changes,

we maintain information about all distinct paths through each super-structure in

addition to information about all distinct dependence cycle.
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N u m b e r o f d e p e n d e n c e c y c l e s i n G T C
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Figure 6.8: Distribution of the number of dependence cycles in GTC, using super-

structures on the x axis, and without super-structures on the y axis (logarithmic scale).

To understand how much more efficient the scheduling algorithm is when using

the super-structure information, Figure 6.16(a) presents a scatter plot of the number

of distinct dependence cycles across all program scopes in the Gyrokinetic Toroidal

Code (GTC) [34], with and without super-structures. The y axis presents on a log-

arithmic scale the number of distinct recurrences in the original dependence graphs.

The x axis presents the number of distinct recurrences plus the number of distinct

paths through super-structures of the same dependence graphs when we compute and

use super-structure information. The figure includes data for all executed program

scopes in GTC, with the exception of two outliers with coordinates (12205, 46719)

and (8410, 1.71E + 08), which if included would reduce the available resolution for
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the other points on the x axis.

We notice that without the super-structure information, the number of distinct

cycles can be as high as 1062 for a single scope. While these numbers may seem

extremely high when compared with results reported in [57, 26], we must note that

previous studies have focused only on inner loops of limited size and with no function

calls. On the other hand, we use the modulo scheduling algorithm to compute schedule

latencies for all program scopes, where inner loops and function calls are considered

fence instructions, but we can still reorder instructions that are after the last fence

instruction with instructions from the next iteration that are executed before the first

fence instruction. In fact, the data points that have very large numbers of distinct

dependence cycles when not using super-structures, correspond to scopes that contain

multiple inner loops and function calls.

For each program scope, we compute separate schedules for each path taken

through the control flow graph. For loops, we should have at least two distinct

paths. One corresponds to the path that takes the loop back-edge, and the other

corresponds to the exit path. We schedule the exit path separately because we try

to model the effects of the wind-up and wind-down code segments usually associated

with software pipelining. Thus, for the exit path, even though we use the exact same

scheduling algorithm, we prevent software pipelining by adding control dependences

from the loop control branch instruction to all root nodes of the dependence graph.

This has the effect of producing a schedule with no overlap between instructions from

different iterations. The dependence graph displayed in Figure 6.7 corresponds to

such an exit path.
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6.3.4 A Hybrid Iterative-Recursive Scheduling Algorithm

We map instructions one by one in an order determined by a dynamic priority

function that tracks how much of each recurrence is still not scheduled. We use limited

backtracking and unscheduling of operations already scheduled when the algorithm

cannot continue.

To implement limited backtracking and at the same time preserve the higher

efficiency of an iterative algorithm, we implemented a dual mode algorithm that

can function either iteratively, recursively, or a mix of the two. Most instructions

are scheduled in an iterative fashion. When the scheduler reaches a state that is

determined to have a high chance of producing suboptimal code, a recursive call

inside a try / catch C++ control structure is used to invoke the scheduler which then

resumes its iterative behavior. Before each recursive call, the scheduler saves its state

into the current stack frame. The state information is sufficient to understand the

condition that led to the decision to go recursive, and it also includes the value of a

global logical time clock at the time of the recursive call. The scheduler maintains

a logical timer that is incremented on each scheduled instruction. Each scheduled

instruction gets assigned the time stamp at the time it was scheduled. The time

stamps enable us to keep track of the order in which the instructions were scheduled,

and to roll back the scheduler to any previous state without using additional memory.

When the scheduler reaches a situation in which it cannot find any suitable issue

slot for an instruction, it first attempts to unschedule some nodes upstream or down-

stream of current node based on an heuristic that takes into account the lengths of
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chains of instructions scheduled in each direction, and then it searches for an issue

slot again. If it still cannot find any issue slot, it tries to backtrack from one of the

previously saved states. For this, it throws an exception which encapsulates infor-

mation about the failure and the minimum time stamp among the already scheduled

instructions that restrict the placement of the current instruction.

We limit the amount of backtracking both globally and at each recursive call

level. The try / catch mechanism of the most recent recursive call will always catch

the exception. The scheduler first checks if it exceeded the number of global retries. If

yes, it will re-throw the exception after it sets the time stamp inside the exception to

zero. Otherwise, it checks if it exceeds the number of local retries, and it re-throws the

unmodified exception if it does. Finally, if the exception doesn’t exceed any of retry

limits, it checks that the time stamp associated with the recursive call is greater or

equal than the time stamp specified in the exception, and that the failure information

is compatible with the condition that caused the scheduler to go recursive. If any of

these tests fails, the scheduler re-throws the exception.

If the exception can be processed at this level, the scheduler unschedules all in-

structions that were scheduled subsequent to this recursive call, as well as certain

priorly scheduled instructions depending on the failure condition. It then tries to

reschedule the node that caused the recursive call using a different issue slot, after

which it resumes the normal scheduling process.
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6.3.5 Selecting the Next Node to Be Scheduled

In the process of computing recurrences, we determine the strongly connected

components (SCC) in the graph and we build a forest of directed DAGs of all SCCs,

where an edge represents the presence of a dependence path from one SCC to another.

Note that we cannot have cycles in the SCC DAGs. Otherwise the SCCs involved in

the cycle would form a single strongly connected component.

Each node has associated multiple metrics, including the length of the longest cycle

to which it belongs, the longest distance to the root and leaf nodes, and a resource

utilization score as explained in section 6.3.3. The order in which these metrics are

considered depends on the loop being resource or dependence constrained. Thus, if

the loop has recurrences, the longest cycle metric is the most significant. Otherwise,

the resource utilization metric is the first sorting criterion.

Assuming a dependence graph with multiple strongly connected components, we

select first the node with the highest priority which must belong to the longest recur-

rence, and then assign it to an issue slot. We determine the SCC to which it belongs

and we mark that SCC as constrained. Once we schedule one node of an SCC, the

freedom of where to issue all the other nodes in that SCC is limited by the chain of

dependences to the already scheduled node. Working on the DAG of SCCs, we also

mark as constrained all the SCCs upstream and downstream of the current SCC if

we follow only incoming or only outgoing edges respectively. Figure 6.9 presents a

sample DAG and the constraining effect of scheduling a node part of scc2, or a node

part of scc1.
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(a)
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scc2 scc5

scc3 scc4
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(b)

scc2

scc3 scc4

scc5

scc1 scc6

(c)

Figure 6.9: (a) Sample DAG of SCCs; (b) constrained SCCs when a node in scc2 is
scheduled; (c) constrained SCCs when a node in scc1 is scheduled.

As long as there are unconstrained SCCs, we keep selecting and scheduling the

highest priority node belonging to one of the unconstrained SCCs and we determine

the new set of constrained SCCs at each step. Once there are no more unconstrained

SCCs, the first phase of the scheduling process is completed. If the dependence graph

did not contain any recurrences in the first place, then in the first phase we schedule

only the highest priority node.

For all nodes already scheduled, we keep a priority queue of incident edges which

we use in the second phase of the algorithm. An edge can be part of a cycle, or part

of a dependence path connecting two SCCs, or just a simple edge. All edges contain

a metric specifying how much is left to schedule which is computed as follows: for

edges part of cycles this metric is computed as the maximum over all cycles to which

it belongs, of the amount still not scheduled from each cycle; edges part of a path

between two SCCs have associated pre-computed metrics which represent how far
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away are the cycles upstream and downstream; finally, edges that are part of neither

a cycle, nor a path between cycles, have associated pre-computed values specifying

the longest distances to a root node and to a leaf node. Edges part of cycles have

higher priority than edges that are part of paths between SCCs, which in turn have

higher priority than simple edges.

In the second phase of the algorithm, we select edges based on the priorities de-

scribed above. Once an edge is selected, we use modulo arithmetic to compute lower

and upper bounds on the clock cycles in which the not yet scheduled end of the edge

can be issued. We look only at a node’s incoming and outgoing dependences to com-

pute these bounds, we do not consider further neighbors. Thus, the time complexity

of this step over all nodes is O(E) because we look at each edge at most twice, not

taking into account the backtracking which causes some nodes to be scheduled more

than once, but which is rather an exceptional phenomenon.

Once a node is scheduled, we must insert all its incident edges whose other ends

are still not scheduled, into the edges priority queue. However, before we can include

an edge into the priority queue, we must compute the metric specifying how much

remains to be scheduled, based on the edge type. For simple edges and for edges part

of paths between SCCs this is a straightforward process; we use the pre-computed

metrics described in Section 6.3.3 that specify the longest distances to root/leaf nodes

or to upstream/downstream cycles, respectively. The choice between root and leaf

nodes, or between upstream and downstream cycles is made based on which end of

an edge has not yet been scheduled.

For edges that belong to recurrences we must traverse all cycles to which they
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belong and update the amount left to be scheduled from each cycle, selecting the

maximum value over all cycles. Each cycle is processed in O(1); however, an edge

may be part of many cycles. Computing the amount left to be scheduled for edges part

of cycles is potentially the most expensive part of the algorithm. Its time complexity

is O(E cpe), where cpe is the average number of cycles per edge. The average number

of cycles per edge is a function of both the number of cycles in the graph and their

length. Some cycles may contain only two edges. At the same time, other cycles may

be much longer. However, the maximum number of edges in a cycle is N because a

node can be included at most once in each cycle. We will consider the length of a cycle

to be a function of N. It is probable that a large graph contains longer cycles than a

smaller graph. With these considerations, cpe = C N/E, where C is the number of

distinct cycles in the graph, and the time complexity of this step becomes O(C N).

It is difficult if not impossible to derive the number of distinct dependence cycles in

a graph analytically and the worst case scenario is total overkill. In Section 6.4 we

analyze empirically the number of distinct recurrences and the observed complexity

of the scheduling step, using measurements from three full applications.

The described scheduling policy has the following effects. First, a number of nodes

with the highest priority are selected and scheduled until all strongly connected com-

ponents are potentially constrained. Next, we schedule nodes bidirectionally along

recurrences, where the priority function represents how much is left to schedule from

each recurrence. Once all starting SCCs are scheduled, we start scheduling nodes

along the paths that lead to other SCCs if there are still recurrences that are not

completely scheduled. The fact that we schedule some nodes that are not part of
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cycles before nodes that belong to recurrences can be seen as priority inversion. That

is why we consider the cases where we reach a new recurrence following a path of

edges that are not part of any cycles as states that have a high potential of producing

suboptimal code. We invoke the scheduling algorithm recursively in these situations.

When we have to backtrack from such a point, we rollback the scheduler to the saved

state, but we also unschedule all nodes that are not part of cycles. Unscheduling all

nodes that are not part of recurrences makes it more likely for the newly reached

recurrence to be successfully scheduled. Once all recurrences are scheduled, the rest

of the paths that do not lead to any new cycles are laid out in a similar fashion.

6.3.6 Properties of Super-Structures

While finding recurrences in general dependence graphs for large outer loops, we

realized the number of distinct recurrences can grow exponentially with the number of

inner loops and function calls. This is due to the large number of control dependences

added to prevent reordering across fence instructions such as inner-loops and function

calls. However, by disallowing any dependences to bypass the fence instructions, we

can see the dependence graphs as a series of disjoint subgraphs connected by the fence

instructions. This observation greatly reduces the complexity of the scheduling for

outer loops that have at least two inner loops and/or function calls.

We encountered cases, however, where large dependence graphs with a single fence

instruction contained a very large number of distinct recurrences. In one such case, the

dependence graph of an outer loop from a weather modeling code contained almost

5 million distinct recurrences with just a single fence instruction. We noticed the
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Figure 6.10: Example of diamond-like structures.

presence of many diamond like structures like the one in Figure 6.10, which produced

recurrences that differ in only a few edges. As a result, we decided to generalize the

idea that we used for fence instructions to arbitrary instructions. For this, we need an

efficient and systematic algorithm to find all subgraphs S of a graph G(N, E), that

have a single input node r and a single output node s. We say r is the entry node or

the root node of S, s is the exit node or the sink node of S, and Ŝ = S \ {r, s} 6= ∅

is the set of internal nodes of S. The nodes of a super-structure have the following
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properties:

∀v∈Ŝ , (u, v)∈E =⇒ u≡r ∨ u∈Ŝ

∀v∈Ŝ , (v, u)∈E =⇒ u≡s ∨ u∈Ŝ

∀v∈Ŝ , ∃u0, . . . , un such that r=u0 ∧ un =v ∧ (ui, ui+1)∈E for i = 0, . . . , n−1

∀v∈Ŝ , ∃u0, . . . , un such that v=u0 ∧ un =s ∧ (ui, ui+1)∈E for i = 0, . . . , n−1

The first rule specifies that any predecessor in G of an internal node of a super-

structure, is either an internal node of S as well, or it is the entry node of S. The

second rule is symmetric to the first one and specifies that all successor nodes of

an internal node are either internal nodes or the exit node of S. In other words,

except for the entry and exit nodes, all nodes in S have all their input and output

dependences in S as well. The last two properties specify that any internal node v is

reachable from r following edges in G, and that the exit node is reachable from any

of the internal nodes.

We want to find all nonempty sets of nodes that have the above properties, and

their unique entry and exit nodes. Figure 6.10 presents such a subgraph for which the

entry node is marked with “in” and the exit node is marked with “out.” We notice

that the entry and exit nodes can have any number of additional edges which are

not part of S. However, internal nodes cannot have any other dependences to nodes

outside of S.

We start by listing a few properties of the nodes that are part of a super-structure

with entry node r and exit node s.
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LEMMA 6.1 All nodes on a path from r to an internal node v ∈ Ŝ are also in S.

Second, all nodes on a path from an internal node v to the exit node s are also in S.

PROOF. Let r = u0, . . . , un = v be a path from the entry node to the internal node

v. By the first property, any predecessor of an internal node is either an internal node

as well, or it is the entry node. By applying the first rule recursively, it results that

un−1, . . . , u1 are all internal nodes of S. Similarly, we can prove that all nodes on a

path from an internal node to the exit node are also part of S.

LEMMA 6.2 Any internal node v ∈ Ŝ is dominated by r and post-dominated by s.

PROOF. The notion of dominance was introduced by Prosser in [55]. We assume

the reader is familiar with the concept of dominators. More detail about dominators

and algorithms for computing them can be found elsewhere [15, 35].

The proof for this lemma follows directly from the properties of a super-structure.

Let v be an internal node of S. We want to show that all paths from a root node

of G to v pass through r. Assume there is a path u0, . . . , un = v such that u0 is a

root node of G and r /∈ {u0, . . . , un}. If u0 ∈ S, it means u0 6= r and thus u0 is an

internal node of S. However, by the third property of super-structures, u0 must be

reachable from r and thus u0 cannot be a root node of G. Else, u0 /∈ S. There must

be a node ui, i = 0, . . . , n−1, such that ui /∈ S and ui+1 ∈ Ŝ. By the first property,

all predecessors of an internal node of S are also in S. Thus, ui is either an internal

node as well, or it is the entry node of S. We have shown by contradiction that all

paths from a root node of G to v must pass through r. As a result, r is a dominator

of v. Similarly, we can prove that s is a post-dominator of v.
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LEMMA 6.3 For any internal node v ∈ Ŝ, all nodes on the path from r to v in the

dominator tree, are also part of S. In addition, all nodes on the path from s to v in

the post-dominator tree, are also part of S.

PROOF. The proof for this lemma follows from the previous two lemmas. If r is

not an immediate dominator for v, then any node u on the path from r to v in the

dominator tree, is also on any path from r to v in the directed graph G. By the first

lemma, u ∈ S. Similarly, we can prove that all nodes on the path from s to v in the

post-dominator tree, are also members of S.

Based on these lemmas, we can derive the following properties for the subgraphs

of interest:

• All nodes of the subgraph have a common dominator r called the entry node of

the subgraph; r may not be the immediate dominator of all nodes.

• All nodes of the subgraph have a common post-dominator s called the exit node

of the subgraph; s may not be the immediate post-dominator of all nodes.

• All nodes on the dominator tree path from a node v of the subgraph to the

common dominator node r, are also part of the subgraph.

• All nodes on the post-dominator tree path from a node v of the subgraph to

the common post-dominator node s, are also part of the subgraph.

6.3.7 An Algorithm for Computing Super-Structures

Based on the properties derived in the previous section, we can design an algo-

rithm that uses the dominator and post-dominator trees to find all super-structures

118



3::IntCmp: r21 -> r32

4::CondBranch: r32 ->

36::CondBranch: r32 ->

5::LoadGp: r21 -> r28

9::LoadGp: r21 -> r27

12::CondBranch: r32 ->

11::IntCmp: r26 -> r32

13::StoreGp: r30 ->

15::CondBranch: r32 ->

14::IntAdd: r30 -> r10

16::LogicalOp: r21 -> r8

17::LogicalOp: r19 -> r9

6::IntCmp: r28 -> r32

8::CondBranch: r32 ->

7::IntCmp: r28 -> r32

10::IntCmp: r27 -> r32

18::Jump: -> r15

19::LoadGp: r30 -> r11

28::LoadGp: r10 -> r8

22::CondBranch: r32 ->

21::LogicalOp: r25 -> r8

23::LoadGp: r25 r18 -> r9

27::CondBranch: r32 ->

26::IntAdd: -> r10

29::Jump: -> r15

20::IntCmp: r11 -> r32

24::LoadGp: r9 -> r8

25::IntCmp: r8 -> r32

30::StoreGp: r20 r25 r18 ->

32::CondBranch: ->

31::IntAdd: r18 -> r18

33::IntAdd: r17 -> r17

34::IntAdd: r19 -> r19

35::IntCmp: r17 r24 -> r32

Figure 6.11: Dominator tree of the dependence graph presented in Figure 6.7.

in an arbitrary dependence graph. While dependence graphs can be arbitrarily com-

plex, dominator trees are much more structured and easier to analyze. We use the

sophisticated version of the Lengauer-Tarjan algorithm [35] to compute dominator

and post-dominator trees. This algorithm has complexity O(E α(E, N)) where E is

the number of edges in the input graph, N is the number of nodes, and α(E, N) is a

functional inverse of Ackermann’s function.

Dependence graphs are in general complex and not well structured. For example,

there may be graphs with no true root nodes, i.e., nodes with no predecessor. If

all nodes are part of recurrences or depend on nodes part of recurrences, we need
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3::IntCmp: r21 -> r32

4::CondBranch: r32 ->

18::Jump: -> r15

8::CondBranch: r32 ->

12::CondBranch: r32 ->

11::IntCmp: r26 -> r32

15::CondBranch: r32 ->

16::LogicalOp: r21 -> r8

17::LogicalOp: r19 -> r9

36::CondBranch: r32 ->

5::LoadGp: r21 -> r28

6::IntCmp: r28 -> r32

7::IntCmp: r28 -> r32

9::LoadGp: r21 -> r2710::IntCmp: r27 -> r32

13::StoreGp: r30 ->

14::IntAdd: r30 -> r10

19::LoadGp: r30 -> r1120::IntCmp: r11 -> r3228::LoadGp: r10 -> r8

29::Jump: -> r15

22::CondBranch: r32 ->

27::CondBranch: r32 ->

21::LogicalOp: r25 -> r8

23::LoadGp: r25 r18 -> r924::LoadGp: r9 -> r825::IntCmp: r8 -> r32

26::IntAdd: -> r1032::CondBranch: ->

35::IntCmp: r17 r24 -> r32

34::IntAdd: r19 -> r19

30::StoreGp: r20 r25 r18 ->

31::IntAdd: r18 -> r18

33::IntAdd: r17 -> r17

Figure 6.12: Post-dominator tree of the dependence graph presented in Figure 6.7.

to break some dependence cycles by dropping some edges, to create root nodes. All

nodes in the graph must be reachable from at least one root node. When we do have

multiple graph root node, the dominator tree will be a forest. The root nodes do

not have any dominators; as a result, they cannot be part of any super-structure.

Because the choice of edges to be dropped is not unique, the set of root nodes is not

unique in cases when we have to break dependence cycles. The algorithm for finding

super-structures is dependent upon which nodes are selected as root nodes, because

the dominator algorithm depends on this information. It is preferable to select root

nodes that give us a minimum section through the graph. Therefore, if we have any

fence instructions, we select the first fence node as our unique root node, because all

graph nodes are part of recurrences that include all the fence nodes.

Similar things can be said about the leaf nodes and the post-dominator tree. If

we have any fence instructions, we select the root of our post-dominator tree to be

the same fence instruction that we used as root for the dominator tree. Such a
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selection maximizes the number of super-structures that are found. If we have no

fence instructions and we need to break some recurrences, the leaf nodes are selected

to be consistent with our selection of root nodes, i.e., using the same set of dropped

edges. Figures 6.11 and 6.12 show the dominator and the post-dominator trees of the

dependence graph presented in Figure 6.7. Because that dependence graph contains

several fence instructions, we selected the first one as the root of our both dominator

and post-dominator trees.

The algorithm for computing super-structures starts with an educated guess about

the entry and exit nodes of the super-structures containing each graph node. Over

several steps this information is refined until when, in the end, we have the correct

entry and exit information for all nodes. In a final step, we traverse all nodes and

group together those nodes that have the same entry and exit nodes, and we remove

the trivial super-structures that contain only a single path.

In the initialization phase, lines 1–5 of Algorithm 1, we assign a minEntry node and

a minExit node to each graph node v. The minEntry [v ] and minExit [v ] information

represents an initial guess of the entry and exit nodes of the super-structure containing

v. Based on Lemma 6.2, we initialize minEntry [v ] with the immediate dominator of

v. If v is a graph root node, and thus does not have an immediate dominator,

minEntry [v] receives a special value ∅. Similarly, minExit [v ] is initialized with the

immediate post-dominator of v, or with ∅ if v is a leaf node.

The main step of the algorithm, shown in Algorithm 1 on page 123, iterates over

all graph nodes. For each node v it builds a set of neighboring nodes that should

be part of the same super-structure as v. Then, it attempts to find their entry and
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exit nodes using an iterative approach. Line 7 of Algorithm 1 computes the initial

set of nodes that are identified as belonging to the same super-structure as v. The

pseudo-code for this sub-step is shown in Algorithm 2 on page 124. To understand if

two nodes are part of the same super-structure, we use the property that all neighbors

of an internal node of a super-structure are either internal nodes as well, or are one

of its entry/exit nodes. Algorithm 2 iterates over all successors u of v and includes

them in the initial set of nodes, unless u is the current exit node for v, or v is the

current entry node for u. Separately, the program tests if v is an exit node for its

entry node r, or an entry node for its exit node s. If v is an exit node for its entry

node r, it means v post-dominates r while r dominates v. As a result v cannot belong

to a super-structure whose entry node is r. Moreover, v and r are guaranteed to be

part of the same super-structure and we include r into the set of nodes that are part

of the same super-structure as v. Similarly we include v’s exit node s into this initial

set if v is an entry node for s.

Lines 8–18 of the main step execute an iterative algorithm that computes a clo-

sure of nodes that have common dominator and post-dominator nodes. We start by

identifying the least common dominator and post-dominator of the nodes in the ini-

tial set. According to Lemma 6.3, all nodes on the paths to the common dominator

and post-dominator nodes in the dominator and post-dominator trees respectively,

are also part of the super-structure. Thus, in the process of computing the common

dominator and post-dominator, we add new nodes to the set of nodes for which we

try to find a common ancestor in the dominator trees. The problem reduces to a

fixed point algorithm of finding the least common ancestor (LCA) of a set of nodes

122



Algorithm 1: Main step of computing super-structures.

input : The dependence graph G
input : The dominator and post-dominator trees predom and postdom

output: Disjoint-set data-structures preDS and postDS of size n
output: The minEntry and minExit arrays of nodes of length n

// Initialize the temporary and output data-structures

preDS← DisjointSet(n)1

postDS← DisjointSet(n)2

foreach node v ∈ G do3

minEntry[v]← predom.IDom[v]4

minExit[v]← postdom.IDom[v]5

// Iterate over all nodes

foreach node v ∈ G do6

compute domset and pdomset, the initial sets of nodes that belong to the7

same super-structure as v; initialize r and s as the entry and exit nodes of v
if domset .notEmpty() OR r 6= ∅ OR s 6= ∅ then8

first ← true9

repeat10

if domset.notEmpty() OR first then11

predom.FindLCA(v,domset ,pdomset,preDS,postDS,minEntry)12

domset .Clear()13

if pdomset.notEmpty() OR first then14

postdom.FindLCA(v,pdomset ,domset,postDS,preDS,minExit)15

pdomset .Clear()16

first ← false17

until domset .notEmpty() // pdomset has just been cleared18

in both the dominator and post-dominator trees, at each step the set of nodes being

expanded with all the nodes that we traverse on the paths to the two LCAs. The

least common ancestor of a set of nodes is computed by procedure FindLCA shown

on page 125. The last four arguments to FindLCA are input/output parameters.

We use two disjoint-set data-structures [16], preDS and postDS , to union the

nodes that are part of the same super-structures. We make use of two such data-

structures to enable us to work independently on the dominator and post-dominator
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Algorithm 2: Initialize domset and pdomset for node v.

domset ← ∅, pdomset ← ∅; // temporary sets of nodes1

vPreId ← preDS.Find(v)2

vPostId ← postDS.Find(v)3

r ← minEntry[vPreId ]4

if r 6= ∅ then5

rPostId ← postDS.Find(r)6

if rPostId 6= vPostId AND minExit[rPostId ] ≡ v then7

domset.Insert(r)8

pdomset.Insert(r)9

s← minExit[vPostId ]10

if s 6= ∅ then11

sPreId ← preDS.Find(s)12

if sPreId 6= vPreId AND minEntry[sPreId ] ≡ v then13

domset.Insert(s)14

pdomset.Insert(s)15

foreach successor node u of v do16

uPreId ← preDS.Find(u)17

if uPreId 6= vPreId AND minEntry[uPreId ] 6= v AND s 6= u then18

domset.Insert(u)19

pdomset.Insert(u)20

trees. The two disjoint-set data structures are used by procedure FindLCA to union

v with both the initial set of nodes identified as belonging to the same super-structure

and the additional nodes encountered on the paths towards the common dominator

and post-dominator nodes. We implemented routine FindLCA as a method of the

Dominator class. Thus, it has access to all data structures that were initialized in

the process of computing the dominance information, including the DFS indices of

all nodes and a vertex array which performs the translation from a DFS index to the

corresponding node. The FindLCA routine receives as input arguments the node

v and a set of nodes, thisset , for which we want to find the least common ancestor
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Procedure FindLCA(v,thisset,otherset,thisDS,otherDS,minLCA)

input : Array dfsIndex contains the DFS index of each node
input : Array vertex translates from DFS index to node
input : Array numKids specifies the number of children of each node
output: Array minLCA stores the updated dominance information

vId ← thisDS.Find(v)1

pv ← minLCA [vId ]2

if pv 6= ∅ then idx1← dfsIndex[pv]3

else idx1← 04

foreach node u ∈ thisset do5

tempset← ∅ // temporary set to store the traversed nodes6

tempset.Insert(u) // insert u into tempset7

uId ← thisDS.Find(u)8

pu← minLCA [uId ]9

if pu 6= ∅ then idx2← dfsIndex[pu]10

else idx2← 011

while idx1 6= idx2 do12

if idx1 < idx2 then13

newIdx← idx214

firstIdx← false15

else16

newIdx← idx117

firstIdx← true18

t← vertex[newIdx]19

tempset.Insert(t)20

pu← minLCA[thisDS.Find(t)]21

if pu 6= ∅ then newIdx← dfsIndex[pu]22

else newIdx← 023

if firstIdx then idx1← newIdx24

else idx2← newIdx25

otherset.Insert(t) // add t to otherset as well26

// LCA found; union v with all the nodes in tempset
foreach node t ∈ tempset do27

tId ← thisDS.Find(t)28

if vId 6= tId then29

thisDS.Union(vId , tId)30

vId ← thisDS.Find(v)31

minLCA [vId ] ← vertex [idx1 ]32
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Procedure FindLCA(v,thisset,otherset,thisDS,otherDS,minLCA) (con’t)

/* idx1 is the DFS index of the found LCA. We want to make sure

the LCA has at least two immediate children, which indicate it

has more than one outgoing dependences. Keep traversing the

dominator tree upwards, and union all the traversed nodes */

while idx1 6= 0 AND numKids[idx1] < 2 do33

t← vertex[idx1]34

otherset.Insert(t) // add t to otherset as well tId ← thisDS.Find(t)35

pt← minLCA[t]36

if pt 6= ∅ then idx1← dfsIndex[pt]37

else idx1← 038

thisDS.Union(vId , tId)39

vId ← thisDS.Find(v)40

minLCA [vId ] ← pt41

(LCA). On lines 12–26 we compute the LCA of two nodes at a time using the DFS

indexing information to accomplish this task efficiently. After each intermediate LCA

is computed, on lines 27–31 we union v with the nodes that were encountered on the

path to the intermediate LCA. Unioning the nodes has the effect of path compression

on the dominator tree. In each successive step, we compute the ancestor of the

previously found LCA and of a new node from thisset. We also add all intermediary

nodes traversed on the paths to the LCA into a separate set of nodes, otherset, as

seen on line 26. The set of nodes otherset will be used as input for finding the LCA

in the other dominator tree.

Once the LCA is identified, FindLCA performs a final step, shown on lines 33–

41, in which it ensures that the found LCA has more than one child in the dominator

tree. If the LCA has only one child, we keep going up in the dominator tree until

we find a dominator with at least two children. We perform this additional step to

eliminate trivial super-structures that have only one distinct path through them. To
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get the number of children of a node in the dominator tree, we use the array numKids

that is computed when building the dominator tree.

We use the union by rank with path compression implementation of the disjoint-

set data-structure, whose time complexity is O(p α(p, q)) for p disjoint-set operations

on q elements [16]. At each step, we union the nodes that are determined to be part

of the same super-structure, and we use path compression on the dominator and post-

dominator trees. As a result, each dominator tree edge is traversed at most two times

when processing the nodes. Since the number of edges in the dominator tree/forest

is at most n − 1, the asymptotic complexity of the main step of the algorithm is

O(E α(E, N)), where N is the number of nodes and E is the number of edges in

the dependence graph. At the end of this step, minEntry and minExit contain the

updated entry and exit information for each node.

After the main step we use a refinement step, presented in Algorithm 5, which

traverses each super-structure S, and tests the dominance relationship between its

entry and exit nodes. Because a super-structure has one entry node and one exit

node, at a high level it can be thought of as there being an edge from its entry node

r to its exit node s. However, this connectivity might not be considered in the main

step of the algorithm if all paths from r to s are part of super-structures. When we

test all successors u of a node v in the sub-step presented in Algorithm 2, we do not

include u in the initial set of nodes to be unioned with v if u is an exit node for v,

or if v is an entry node for u. The purpose of this refinement step is to account for

this connectivity in the graph where all super-structures were replaced by super-edges

from the entry nodes to their corresponding exit nodes. Thus, if r dominates s and
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Algorithm 5: The refinement step of computing super-structures.

// Iterate over all structures

foreach super-structure S do1

r ← entry(S)2

s← exit(S)3

rDomS ← predom.Dominates(r,s)4

sPdomR ← postdom.Dominates(s,r)5

if (rDomS AND sPdomR) OR (NOT rDomS AND NOT sPdomR)6

then
domset.Insert(s)7

pdomset.Insert(s)8

repeat9

if domset.notEmpty() then10

predom.FindLCA(r,domset ,pdomset,preDS,postDS,minEntry)11

domset .Clear()12

if pdomset.notEmpty() then13

postdom.FindLCA(r,pdomset ,domset,postDS,preDS,minExit)14

pdomset .Clear()15

until domset .notEmpty() // pdomset has just been cleared16

s post-dominates r, or if neither of the dominance relationships holds, then r and

s must be part of the same super-structure and we union them using an iterative

process similar to the one in the main step. However, if only r dominates s but s

does not post-dominate r, or vice-versa, then r can be an entry node for s or s can

be an exit node for r respectively, and we do not union them.

Note that the iterative step of the refinement algorithm is executed more than once

only if additional nodes are unioned with r and s in the last call to the FindLCA

routine. However, the total number of union operations possible in the main step and

the refinement step combined is bounded above by the number of nodes in the graph.

The asymptotic complexity of the conditional step at lines 4–6, is more difficult to

compute. Note that the dominance relationship of two nodes can be computed in
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S0 {0} (0)

S2 {1} (B18,B18):
 B29 B36

S1 {7} (B36,B18):
 B3 B4 B5 B8 B9 B10 B12 B11 B15 B16 B17

S3 {2} (B5,B8):
 B6 B7

S4 {2} (B36,B15):
 B13 B14

S6 {3} (B18,B29):
 B28 B22 B27

S9 {3} (B29,B36):
 B32 B33 B34 B35

S5 {2} (B18,B22):
 B19 B20 B21

S7 {2} (B18,B27):
 B23 B24 B25 B26

S8 {2} (B29,B32):
 B30 B31

Figure 6.13: Hierarchy of super-structures for the dependence graph in Figure 6.7.

O(h) where h is the height of the dominator tree. In the worst case, when the graph

degenerates to a list, h is equal to N − 1. However, we cannot have any super-

structures in that case. Remember that the final step in FindLCA ensures that only

nodes that dominate multiple nodes directly can be entry nodes, and only nodes that

post-dominate multiple nodes directly can be exit nodes. In general the dominator

trees are very shallow and the cost of this step is very small; therefore, a loose upper

bound for this step is O(|S|N).

At this point we have our super-structures. However, some of them can be trivial,

that is they contain only one path, even if the entry node dominates multiple nodes.

Figure 6.13 presents the tree of super-structures computed for our sample dependence

graph presented in Figure 6.7. Each node represents a super-structure where the first

line specifies the entry and the exit nodes, and the number of top edges (edges from

the entry node to an internal node). The second line of each rectangle specifies the

internal nodes of the super-structure. The super-structures are organized as a tree in

which edges represent the enclosing relationship and the root of the tree represents an

imaginary super-structure that encompasses the entire graph. A final step is needed
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S0 {0} (0)

S1 {7} (B36,B18):
 B3 B4 B5 B8 B9 B10 B12 B11 B15 B16 B17

S6 {3} (B18,B29):
 B28 B22 B27

S9 {3} (B29,B36):
 B32 B33 B34 B35

S3 {2} (B5,B8):
 B6 B7

S4 {2} (B36,B15):
 B13 B14

S5 {2} (B18,B22):
 B19 B20 B21

S7 {2} (B18,B27):
 B23 B24 B25 B26

S8 {2} (B29,B32):
 B30 B31

Figure 6.14: Final hierarchy of super-structures for the dependence graph in Figure 6.7.

to merge the trivial super-structures within their closest enclosing super-structures

that have more than one path. This step has complexity O(E) since all edges of

the graph are traversed to test if they are top edges for a super-structure and the

merging step is O(N). Figure 6.14 presents the final hierarchy of super-structures for

our sample dependence graph.

6.4 Empirical Analysis of the Scheduling Cost

Previous sections provided some asymptotic bounds on the execution cost of the

various steps of our instruction scheduler. In this section we present measured statis-

tics from analyzing three full applications: the ASCI Sweep3D benchmark, the Gy-

rokinetic Toroidal Code (GTC), and Nogaps, a weather modeling code. We collected

data about the number of nodes and edges in the dependence graphs corresponding

to all executed program paths of the three applications, the number of dependence

cycles in each of the graphs, and the execution cost of the various steps involved in

computing cross-architecture predictions.

Figure 6.15 presents a scatter plot of the number of edges vs. the number of nodes

for all program paths in the three applications. The left graph presents the data on
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Figure 6.15: The number of edges as a function of the number of nodes for all executed
paths in Sweep3D, GTC and Nogaps; (a) linear scale; (b) logarithmic scale
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Figure 6.16: The number of recurrences as a function of the number of nodes for all
executed paths in Sweep3D, GTC and Nogaps; (a) linear scale; (b) logarithmic scale

a linear scale, while the right graph uses a logarithmic scale for both axes. The data

shows a strong correlation between the number of nodes and the number of edges in

the dependence graphs for these applications, with about 1.47 edges for each node.

Figure 6.16(a) shows the number of recurrences as a function of the number of

nodes, on both a linear scale (left) and a logarithmic scale (right). The data points

are more spread-out than in the graphs presenting the number of edges. However, we
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Figure 6.17: Scatter plot of scheduling cost vs. (a) the number of nodes; and (b) the
number of nodes times the number of recurrences. Subfigures (c) and (d) show the same
data on a logarithmic scale.

notice a concentration of points with a strong correlation between the number of nodes

and the number of recurrences+super-structure paths. For these three applications

there are roughly 0.63 dependence cycles + super-structure paths for every node.

Note also that most of the analyzed program scopes have less than 500 instructions.

The data points with a large number of nodes/edges/cycles correspond to outer level

loops containing multiple inner loops and function calls.
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Figure 6.17(a) presents the cost of instruction scheduling as a function of the num-

ber of nodes. This cost includes the execution of all steps from applying replacement

rules on the input graph (see section 6.2.3), pruning the graph, computing the lower

bounds on the schedule length, to finding the super-structures in the graph, comput-

ing the dependence cycles and computing the actual instruction schedule and schedule

length. We notice that the schedule cost is super-linear. In a previous section we men-

tioned that the step of computing priority metrics for edges that are inserted into the

edges priority queue is the most expensive operation, with an asymptotic complexity

of O(N C), where N is the number of nodes and C is the number of recurrences. For

this reason, we also plotted the schedule time vs. N × C (see Figure 6.17(b)). This

plot confirms our theoretical result, showing that the schedule time is O(N C). Since

C is a linear function of N , at least for these three applications, we could also say

that empirically, the scheduling cost is O(N2).

Figures 6.17(c) and 6.17(d) present the same data on a logarithmic scale, such that

the values corresponding to the smaller dependence graphs are easier to see. The time

plateaus seen at the bottom of these two graphs are an artifact of the relatively large

granularity timer used for these measurements.
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6.5 Cross-Architecture Prediction Results

In this section, we apply our methodology to predict the cross-architecture in-

struction schedule time and the overall execution time for several programs. We use

six benchmarks in this study, including: the ASCI Sweep3D benchmark [19], BT and

SP from NPB 2.3-serial [4] , and BT, LU and SP from NPB 3.0.

We compare our predictions against measurements performed using hardware per-

formance counters on an Origin 2000 system and an Itanium2 based machine. The

Itanium2 system used for validation measurements has a 900MHz CPU, a 16KB level

1 data cache (L1D), a 256KB 8-way set-associative unified level 2 cache and a 1.5MB

6-way set-associative unified level 3 cache. The level 1 cache has a line size of 64

bytes, while both level 2 and 3 caches have a line size of 128 bytes. The Origin 2000

system used for validation measurements is a NUMA machine with 16 R12000 CPUs

at 300MHz and 10GB of RAM. Each CPU has a 2-way set-associative 32KB L1 data

cache, and a TLB with 64 entries, where each TLB entry maps two consecutive 16KB

pages. Each pair of CPUs shares a large 8MB 2-way set-associative unified L2 cache.

The L1 cache uses a line size of 32 bytes, and the L2 cache has a line size of 128 bytes.

To compute the predictions, we compiled the benchmark applications on a Sun

UltraSPARC-II system using the Sun WorkShop 6 update 2 FORTRAN 77 5.3 com-

piler, and the optimization flags: -xarch=v8plus -xO4 -depend -dalign -xtypemap=real:64.

Measurements on the Origin 2000 system were performed on binaries compiled with

the SGI Fortran compiler Version 7.3.1.3m and the optimization flags: -O3 -r10000

-64 -LNO:opt=0, while on the Itanium2 system we compiled the binaries using the
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Intel Fortran Itanium Compiler 8.0, and the optimization flags: -O2 -tpp2 -fno-alias.

We used the highest optimization level but we disabled the high level loop nest op-

timizations because the sets of loop nest transformations implemented in the Sun,

SGI and Intel compilers are different. Loop nest optimizations are tailored to each

target architecture and they interfere with our ability to make cross-architecture and

cross-compiler predictions.

To estimate execution time for an application on a target architecture, we must

consider both the cost of computation and the exposed memory hierarchy latency for

the application on the specified machine. How well the instruction-level parallelism

in the most frequently executed loops of an application matches the number and the

type of execution units available on a target architecture determines the compactness

of the instruction schedule and thus the computation cost.

To characterize the execution frequency of basic blocks and loops in a program for

arbitrary problem sizes, we construct models of basic block execution frequency. For

each of the six applications considered in this study, we used our tool to collect edge

counter execution histograms for a range of problem sizes between 20 and 50. Next,

we derived models of the execution frequency for each edge counter and evaluated

the models at each problem size of interest.

6.5.1 Predictions for Itanium2

We used our scheduler, initialized with a description of the Itanium2 architecture,

to estimate execution time for each application when all memory references hit in

the appropriate cache closest to the CPU. For the Itanium2 system, we considered
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Figure 6.18: Itanium2 execution time predictions for 5 NAS benchmarks and Sweep3D.
Each graph presents: (1) the measured time, (2) the instruction execution time predicted
by the scheduler when all memory accesses are cache hits, (3) the predicted L2 miss penalty,
(4) the predicted L3 miss penalty, (5) the predicted TLB penalty, and (6) the predicted
execution time which includes both the instruction execution cost and the exposed memory
hierarchy latency.

that all integer references hit in L1 cache and all floating point loads and stores

hit in L2 cache. On Itanium, floating-point values bypass the L1D cache. The
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“Scheduler latency” curves in Figure 6.18 represent the predicted execution times

when all memory accesses are cache hits. All graphs present the execution time per

time step normalized to the number of mesh cells. The x axis represents the mesh

size, and the y axis represents the number of CPU cycles per cell.

How to translate the cache miss counts implied by our models of memory reuse

distance into an expected latency for each memory reference, on an arbitrary architec-

ture, is still an open problem. On an out-of-order superscalar machine, the processor

can execute instructions in an order different than that specified by the compiler. On

such machines, the hardware logic can hide some of the cache miss penalty; its ability

to do so is limited by the size of the instruction window and by the number of instruc-

tions without unresolved dependences available in the window at any given time. On

an in-order or VLIW machine3, the processor always executes the instructions in the

order determined by the compiler. In the case of a cache miss, the hardware continues

to issue instructions until it reaches an instruction with unresolved dependences, such

as an instruction that needs the data returned by a reference that missed in cache.

At this point, the execution pipeline stalls until the dependences are resolved.

It is the compiler’s job to order instructions in a way that minimizes execution

time. Compilers can rearrange the instructions in a loop to group together loads to

data that cannot be in the same cache line such that if more than one access misses

in the cache, the latency of fetching the data from memory for every cache miss after

the first one, is partially hidden by the latency associated with the first miss [56].

3Most modern machines have non-blocking caches, therefore we consider only such cases. Pre-
dictions for machines with blocking caches are much easier.

137



Such an optimization is limited by the number of parallel, large-stride loads available

in a loop and by the maximum number of outstanding memory references allowed in

the system. On Itanium2, 6 writes to memory and 16 loads to L3 or memory can be

outstanding at any given time. With such a large parallelism in the architecture, the

instruction schedule in the most frequently executed loops is typically the factor that

determines the memory system parallelism realized.

We define the memory hierarchy penalty for an application as the sum of the

penalties incurred by each cache miss reference. The Itanium2 machine used to

validate the predictions has the following memory access latencies for a floating point

reference: minimum access time to L2 cache is 6 cycles, minimum access time to L3

is 14 cycles, and the access time to main memory is about 116 cycles. Therefore, the

penalty for each L2 cache miss is 8 cycles, and the penalty for each L3 cache miss is

102 cycles. For TLB misses we used a penalty of 23 cycles.

We compiled the six applications under study with prefetching disabled and we

determined empirically that there was very little overlap between memory accesses

for these applications. As a result, to compute our predictions we assumed the full

penalty of an L3 miss and 50% of the penalty of an L2 miss are exposed. This

empirical level of memory parallelism is an approximative value we use to predict the

memory hierarchy penalty from cache miss data for all the applications in this study.

The actual exposed memory penalty must be determined for each loop of a program

using static analysis.

In addition to the instruction execution cost computed by the scheduler, Fig-

ure 6.18 presents the actual execution time measured with hardware counters, the
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predicted penalty time due to L2, L3 and TLB misses, and the end-to-end predicted

execution time which includes both the time computed by the scheduler and the pre-

dicted memory hierarchy penalty. We notice that BT 3.0, which was optimized to

improve cache reuse since version 2.3, is the only application whose execution time

is dominated by the instruction scheduling cost. For the other applications, the L3

miss penalty is the dominant factor. The predictions of L3 cache misses, shown in

Appendix B, are fairly accurate, hence the profiles for the curves of measured and

predicted execution time are very similar. The errors observed for some of the appli-

cations are due to either a less accurate prediction of L3 miss counts (application SP

2.3), or our assumption that the full L3 penalty is exposed (application BT 2.3).

6.5.2 Predictions for MIPS R12000

Similarly, we used our scheduler to estimate the execution time of each application

on a MIPS R12000 processor. On the R12000 we used the latency of the L1 cache

for all memory references. Figure 6.19 presents the predicted instruction execution

time when all memory accesses are cache hits, the memory penalty at each memory

level, and the total execution time predicted by combining the schedule latency and

the L1, L2 and TLB penalties. For validation, all graphs include the actual execution

time measured using hardware performance counters. As before, all graphs present

values normalized to the number of cells and time steps.

For the R12000-based Origin system, we used the following memory access la-

tencies for a floating point reference: minimum access time to L1 cache is 3 cycles,

minimum access time to L2 is 11 cycles, the access time to main memory ranges from
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Figure 6.19: MIPS R12000 execution time predictions for 5 NAS benchmarks and
Sweep3D. Each graph presents: (1) the measured time, (2) the instruction execution time
predicted by the scheduler when all memory accesses are cache hits, (3) the predicted L1
miss penalty, (4) the predicted L2 miss penalty, (5) the predicted TLB penalty, and (6)
the predicted execution time which includes both the instruction execution cost and the
exposed memory hierarchy latency.

92 cycles (restart latency) to 116 cycles (back-to-back latency) [25, 54], and the TLB

miss penalty is 78 cycles.
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We used the same assumptions about the fraction of the memory penalty exposed

to the applications as we did for our Itanium2 predictions. The figures show that

with these assumptions, the execution time predictions match well the measured

values for four of the applications. The exceptions are BT 2.3 and Sweep3D for

which we underpredict by about 20%. The spikes in measured execution time that

can be observed for some problem sizes, are a result of competing with other running

jobs for access to memory.

For Sweep3D, part of the execution time prediction error is due to the variation

in the number of L2 conflict misses predicted by our probabilistic model and the ac-

tual number of misses on the R12000 (see Appendix C). Figure 6.20 presents the L2

miss penalty and the predicted execution time (the A curves in Figure 6.20) when

we consider the measured number of L2 misses instead of the predicted counts in our

execution time formula. With the measured number of L2 misses, the predicted and

measured execution time curves have a similar shape, but we underpredict the execu-

tion cost. The fact that the gap between the predicted and the measured execution

time increases with problem size, combined with the observation that the scheduler

latency, L1 and TLB penalties are constant or slightly decreasing when problem size

grows (see Figure 6.19(e)), suggests that the difference is due to a larger memory

penalty incurred by L2 misses, the only component of the predicted execution time

that increases with problem size.

Curves B in Figure 6.20 represent the L2 miss penalty and the predicted execution

time when we use a 135 cycle memory latency in our formula for predicted execution

time, while all the other parameters are left unchanged. The restart memory latency
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Figure 6.20: L2 miss penalty and predicted execution time using (A) the measured L2
miss counts, plus (B) assuming a 135 cycle memory latency.

of 92 cycles presented at the beginning of this section is micro-benchmarked for read

operations when all cache lines are clean. In a real application, some of the cache

lines will be dirty. If a cache miss causes a dirty line to be replaced, the dirty line

must be written back to memory before the new line can be fetched; this may result

in a higher memory latency.

We acknowledge that the formula for predicted execution time is ad-hoc, and that

we have to understand better how to automatically translate our accurate predictions

of cache miss counts into an expected memory hierarchy delay. Empirically, we could

determine a more accurate value for the fraction of the memory penalty that is exposed

to each application using an approach similar to the one presented in [38]. However,

we presented this last step to validate the ideas that are at the base of our performance

prediction method. The accurate predictions accross a large set of problem sizes on

both an Itanium2 machine and an Origin 2000 system validate our general approach

for computing cross-architecture predictions.
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Chapter 7

Understanding Performance Bottlenecks

Over the past two decades, advances in semiconductor technologies and micro-

architecture design have produced a dramatic increase in the peak performance of

microprocessors. This speed increase has come at the cost of a substantial increase

in architecture complexity. As a result, it has become increasingly difficult for ap-

plications to sustain significant fractions of peak performance. This is due in part

to compilers and application developers not being able to harness the potential of

the architectures and in part due to an imbalance between the resources offered by

super-scalar architectures and the actual needs of applications.

In this chapter, we describe extensions to our toolkit’s analysis capabilities to

leverage its detailed insight into performance of applications in order to pinpoint per-

formance bottlenecks and determine the potential for improvement from correcting

them. We focus on performance bottlenecks due to insufficient instruction-level par-

allelism, inefficiencies due to a mismatch between the number and type of resources

provided on the target machine vs. the type of resources required by the most fre-

quently executed application loops, or inefficiencies due to poor data locality.
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7.1 Understanding Instruction Schedule Inefficiencies

In chapter 6, we have described the steps of a fairly standard modulo-scheduling

algorithm. Our implementation has its strengths and weaknesses. A strength of

the scheduler is its configurability. The instruction types and the target machine

model are both user definable. A weakness of the scheduler is that it ignores some

architectural details, such as register pressure or branch miss prediction. It is adequate

for our purposes because our goals are to predict a lower bound (though not too loose)

on achievable performance and to understand what sections of code may benefit from

transformations or from additional execution units. A modulo-scheduler offers us this

insight because we can attribute each clock cycle of the predicted schedule time to a

particular cause.

When we compute the lower bounds on schedule length (see sections 6.3.1 and

6.3.2), if the lower bound due to recurrences, LBDep, is greater or equal than the lower

bound due to resource contention, LBRes, we consider that LBDep clock cycles of each

loop iteration are due to application dependences. If, on the other hand, the bound

due to resource contention is greater, we know also which unit was determined to have

the highest contention factor1. In case multiple units have the same contention factor,

the tie is resolved by the order in which units are defined in the machine description

file. In such cases we say LBRes clock cycles of each iteration are due to a resource

bottleneck, and we refine this cost further by the type of unit that is causing the most

contention.

1Because the machine model may contain optional restriction rules between units, if one of the
rules is determined to cause the most contention, then the cost is associated with that rule.
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In the next step of the scheduling algorithm, we try to find an actual feasible

schedule length that takes into account both instruction dependences and resource

contention. Every time we increase the schedule length, we determine what resource

type, either execution unit or restriction rule, prevented the scheduler from contin-

uing. The way this scheduling step is implemented, the algorithm does not try to

schedule an instruction in a clock cycle that breaks dependences. Therefore, the

scheduler fails when there is no execution template that does not conflict with re-

sources already allocated or with one of the optional restriction rules for any of the

valid issue clock cycles. This additional scheduling cost for each iteration is counted

separately as scheduling extra cost. Again, we refine this cost further by the unit type

that was the source of contention. As is the case with LBRes, there may be multiple

execution units that conflict with an instruction’s execution template(s), more so as

multiple clock cycles and multiple templates may be involved. The unit that is se-

lected is the first unit found to conflict with the last probed execution template, in

the last valid issue cycle.

Optionally, the scheduler can be invoked with cache miss count predictions at

loop level, predicted from memory reuse distance models (see section 5.2), for each

level of the memory hierarchy. If miss count predictions are available, the scheduler

computes also a memory penalty time for each level of the memory hierarchy, as

the product between the number of accesses that miss into a memory level and the

penalty of a miss taken from the machine description file. This memory penalty time

does not account for possible overlap between memory accesses and computation, or

between multiple outstanding memory requests. We found that in practice there is
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little memory parallelism when applications are not compiled with prefetching and

our estimates are quite accurate (see section 6.5), but this is definitely not true when

prefetching is used.

Using miss count predictions and the computation time predicted by the sched-

uler, we compute the bandwidth consumed at each memory level assuming ideal

prefetching (no miss penalty time). This metric provides an estimate for the mini-

mum bandwidth needed to avoid starving the execution units if good data prefetching

can be achieved. Alternatively, this metric can be used to determine if an application

runs inefficiently because of lack of bandwidth. This metric is similar to the loop

balance metric introduced in [12], except we consider the balance between memory

bandwidth and the actual instruction schedule cost of a loop, not just the floating-

point peak performance. We can compare this value directly with either the peak

or the sustainable bandwidth of a machine to determine if bandwidth is a limiting

factor.

We compute the execution costs in a bottom-up fashion, from the innermost loops

to routines and to the entire program, aggregating costs for each of the categories

described above. At the end of this process, we have not only a prediction of instruc-

tion schedule time for the entire program, each routine and each loop, but also the

attribution of execution cost to the factors that contribute to that cost:
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Performance monitoring hardware on most modern architectures can provide in-

sight into resource utilization on current platforms. Our performance tool can provide

such insight for future architectures, at a much lower cost than cycle accurate simula-

tors. However, we realized that what is lacking in current performance tools, is a way

to point the application developer, or an automatic tuning system for that matter,

to those sections of code that can benefit the most from program transformations

or from additional machine resources. Just because a loop accounts for a significant

fraction of execution time, it may not be wasting any issue slots. It may actually

have good instruction and memory balance with respect to the target architecture

with little room for improvement. We need to focus on loops that are frequently

executed but also use resources inefficiently.

7.1.1 Assessing the Potential for Improving the Instruction Schedule

One of the steps in the scheduling algorithm is the computation of the minimum

initiation interval. For this, two lower bounds on the schedule length are computed.
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LBRes represents the lower bound due to resource contention, and is computed assum-

ing there are no schedule dependences between instruction. Let C be the computation

cost computed by the scheduler when both instruction dependences and resource con-

tention are considered. We define the metric maximum gain achievable from increased

ILP as MaxGainILP = C −LBRes. This metric represents exactly what its name im-

plies. If total computation cost is C, and the cost achievable using the same set

of machine resources if we removed all data dependences in loops is LBRes, then

the maximum we can expect to gain from transforming the code to increase ILP, is

C − LBRes. If the code performance is limited by the number and type of machine

resources, that is if C = LBRes, there is nothing that can be gained from transforming

the code, unless we rewrite the code using different instructions that require different

resources.

LBDep represents the lower bound due to dependence cycles, and is computed

assuming an unlimited number of machine resources. We define the metric maximum

gain achievable from additional resources as MaxGainRes = C − LBDep. The name

of this metric is self explanatory. No matter how many execution units we add to a

machine, the execution cost of the code cannot be lower than LBDep unless we also

apply code transformations. For loops without recurrences, LBDep of N iterations is

equal to the execution cost of one iteration from start to finish, independent of N .

With an unlimited number of machine resources, and with no carried dependences,

all iterations can be executed in parallel in the time taken by a single iteration.

However, we do not apply the same idea to outer loops or loops with function calls.

As we explained at the start of chapter 6, inner loops and function calls act as fence

148



instructions, therefore they create at least a recurrence on themselves.

Each of these two metrics provides an estimate of the performance increase possible

by modifying only one variable of the equation in isolation. At an extreme, if we

removed all dependences and we assumed an infinite number of resources, we could

execute a program in one cycle. However, we consider such a metric too unrealistic to

be of any use in practice. As with other performance data we compute, we aggregate

these two metrics in a bottom-up fashion up to the entire program level.

7.2 Understanding the Unfulfilled Memory Reuse Potential

In the previous section, we focused on understanding execution inefficiencies due

to instruction schedule dependences, contention on execution units, or inadequate

memory bandwidth relative to the machine issue width. The potential for improving

the performance of data-intensive scientific programs by enhancing data reuse in cache

is even more substantial because CPUs are significantly faster than memory. For data

intensive applications, it is widely accepted that memory latency and bandwidth are

the factors that most limit node performance on microprocessor-based systems.

Traditional performance tools typically collect or simulate cache miss counts and

rates and attribute them at the function level. While such information identifies the

program scopes that suffer from poor data locality, it is often insufficient to diagnose

the causes for poor data locality and identify what program transformations would

improve memory hierarchy utilization.

To understand why a particular loop experiences a large number of cache misses, it

149



helps to think of a non-compulsory cache miss as reuse of data that has been accessed

too far in the past to still be in cache. This is in fact the idea behind memory reuse

distance. It is an architecture independent metric that tells us the number of distinct

memory blocks accessed by a program between pairs of accesses to the same block.

To understand if a memory access is a hit or miss in a fully-associative cache using

LRU replacement, one can simply compare the distance to its previous use with the

size of the cache. For set-associative caches, we have described in section 5.3.2 a reuse

distance based probabilistic model that yields accurate predictions in practice [42].

However, up to this point we used only part of the information that we can obtain

through memory reuse simulation. In particular, each data reuse can be thought of as

an arc from one access to a block of data to the next access to that block. Associating

reuse distance data with only one end of a reuse arc fails to capture the correlation

between references that access the same data.

7.2.1 Identifying Reuse Patterns With Poor Data Locality

We already need to store some bits of information about each memory block that

is accessed when we collect the memory reuse distance data (see section 4.2). By

extending the information for a block to include also the identity of the most recent

access, we can associate a reuse distance with a (source, destination) pair of scopes

where the two endpoints of the reuse arc reside.

This approach enables us to collect reuse distance histograms separately for each

pair of scopes that reuse the same data. Once reuse distance histograms are translated

into cache miss predictions for a target cache architecture, this approach enables us
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DO I = 1, N

DO J = 1, M

A(I,J) = A(I,J) + B(I,J)

ENDDO

ENDDO

DO J = 1, M

DO I = 1, N

A(I,J) = A(I,J) + B(I,J)

ENDDO

ENDDO
(a) (b)

Figure 7.1: (a) Example of data reuse carried by an outer loop; (b) transformed example
using loop interchange.

to understand not only where we experience a large fraction of cache misses, but also

where that data has been previously accessed before it was evicted from cache. If we

can transform the program to bring the two accesses closer, for example by fusing

their source and destination loops, we may be able to shorten the reuse distance so

that the data can be reused before it is evicted from cache.

We found that in many cases a single scope was both the source and the destination

of a reuse arc. While this provides the insight that data is accessed repeatedly in

the same loop without being touched in a different program scope, we found such

information insufficient to understand how to correct the problem. What was missing,

was a way to tell which outer loop was carrying the reuse, or in other words, which

loop was causing the program to access the same data again on different iterations. If

we know which loop is causing the reuse and if the distance of that reuse is too large

for our cache size, then it may be possible to shorten the reuse distance by either

interchanging the loop carrying the reuse inwards, or by blocking the loop inside it

and moving the resulting loop that iterates over blocks, outside the loop carrying the

reuse.

Loop interchange and blocking are well studied compiler transformations. A more
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thorough discussion of these transformations can be found in [2]. Figure 7.1(a)

presents a simple loop nest written in Fortran. Although Fortran stores arrays in

column major order, the inner loop here iterates over rows. There is no reuse carried

by the J loop, since each element of a row is in a different cache line. However, for

non-unit size cache lines, there is spatial reuse carried by the outer I loop. By in-

terchanging the loops as shown in Figure 7.1(b), we move the loop carrying spatial

reuse inwards, which reduces the reuse distance for the accesses.

While it is reasonably easy to understand reuse patterns for simple loop nests,

for complex applications understanding reuse is a daunting task. To capture the

carrying scope of a reuse automatically, we extended our reuse distance data collection

infrastructure, which was described in section 4.2, in several ways.

• We add instrumentation to monitor entry and exit of routines and loops. For

loops, we instrument only loop entry and exit edges in the control flow so that

instrumentation code is not executed on every iteration.

• We maintain a logical access clock that is incremented at each memory access.

• We maintain a dynamic stack of scopes in the shared library. When a scope is

entered, we push a record containing the scope id and the value of the access

clock onto the stack. On exit, we pop the entry off the scope stack. The stack

stores the active routines and loops, in the order in which they were entered.

• On a memory access, in addition to the steps presented in section 4.2, we

traverse the dynamic stack of scopes starting from the top, looking for S—the
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shallowest entry whose access clock is less than the access clock value associated

with the previous access to current memory block. Because the access clock is

incremented on each memory access, S is the most recent active scope that

was entered before our previous access to current memory block. S is the least

common ancestor in the dynamic scope stack for both ends of the reuse arc and

we say it is the carrying scope of the reuse.

• For a reference, we collect separate histograms of reuse distances for each combi-

nation of (source scope, carrying scope) of the reuse arcs for which the reference

is the sink.

• The dynamic scope stack enables us to collect footprint information as well. On

a scope exit event, we use the logical time stamp stored in the scope’s stack

entry and the balanced binary tree of memory blocks, to compute the number

of distinct memory blocks accessed since we entered that scope. For each scope

we collect a histogram of distinct footprint values observed at run-time.

These extensions increase the resolution at which we collect memory reuse dis-

tance data. For one reference, or group of related references, we store multiple reuse

histograms, one for each distinct combination of source scope and carrying scope of

the reuse arcs. While this may seem to cause a large increase in the amount of data

collected, in practice, the space increase is reasonable and completely worth it for the

additional insight it provides. First, during execution applications access data in some

well defined patterns. A load or store instruction is associated with a program variable

that is accessed in a finite number of scopes that are executed in a pre-determined
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order. Thus, there is not an explosion in the number of histograms collected for each

reference. Second, reuse distances seen by an instruction at run-time vary depending

on the source and carrying scopes of the reuse arcs. The effect is that while in our

initial implementation we had fewer histograms, they had a greater number of bins to

capture the different distance values encountered. In the new version, we have more

but smaller histograms.

The new data is still completely reuse distance based. It differs just by the gran-

ularity at which it is collected. Therefore, the MRD modeling algorithm described in

section 5.2 can be directly applied to model the scaling of individual reuse patterns,

and predict their behavior for different inputs. In addition, the fact that the different

patterns are collected and modeled separately, has the secondary positive effect of in-

creasing the accuracy of the scalable models, especially for regular applications. For

irregular or adaptive applications, aggregating the data may result in more accurate

models in some cases.

Our new data enables us to compute cache miss predictions for an architecture

separately for each reuse pattern. Thus, when we investigate performance bottlenecks

due to poor data locality, we can highlight the principal memory reuse patterns that

contribute to cache misses and suggest a set of possible transformations that would

improve reuse. Not only does this information provide insight into the transformations

that might improve a particular reuse pattern, but it also can pinpoint cache misses

that are caused by reuse patterns intrinsic to an application, such as reuse of data

across different time steps of an algorithm or reuse across function calls, which would

require global code transformations to improve.
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We compute several metrics based on our memory reuse analysis. For each scope,

we compute traditional cache miss information; we use this to identify loops respon-

sible for a high fraction of cache misses. However, we also associate cache miss counts

with the scope that accessed data last before it was evicted, with the scope that is

carrying these long data reuses, and a combination of these two factors. To guide

tuning, we also compute the number of cache misses carried by each scope. We break

down carried miss counts by the source or/and destination scopes of the reuse. These

final metrics pinpoint opportunities for loop fusion and provide insight into reuse

patterns that are difficult or impossible to eliminate, such as reuse across time steps

or function calls. To focus tuning efforts effectively, it is important to know which

cache misses can be potentially eliminated and which cannot; this helps focus tuning

on cases that can provide a big payoff relative to the tuning effort. In section 8, we

describe how we use this information to guide the tuning of two scientific applications.

7.2.2 Understanding Fragmentation in Cache Lines

The previous section described techniques for identifying opportunities to improve

memory hierarchy utilization by shortening temporal and spatial distance. This sec-

tion describes a strategy for diagnosing poor spatial locality caused by data layout.

Caches are organized as blocks (lines) that typically contain multiple words. The

benefit of using non-unit size cache lines is that when any word of a block is accessed,

the whole block is loaded into the cache and further accesses to any word in the block

will hit in cache until the block is evicted. Once a block has been fetched into cache,

having accesses to other words in the block hit in cache is called spatial reuse. To
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DO I = 1, N, 4

DO J = 1, M

A(I+1,J,K) = A(I,J,K) + B(I,J) - B(I+1,J)

A(I+3,J,L) = A(I+2,J,L) + B(I+2,J) - B(I+3,J)

ENDDO

ENDDO

Figure 7.2: Cache line fragmentation example.

exploit spatial reuse, we need to pack data that is accessed together into the same

block.

We call the fraction of data in a memory block that is not accessed the fragmenta-

tion factor. We compute fragmentation factors for each array reference and each loop

nest in the program. To identify where fragmentation occurs, we use static analysis.

In section 5.2.2, we explain that we aggregate related references to improve the ac-

curacy of the modeling step. At instrumentation time, we group together references

of a loop that access data with the same name and the same symbolic stride, and we

call them related references. To analyze the fragmentation of cache lines, we work

on groups of related references and use the static symbolic formulas described in sec-

tion 3.1, to compute reuse groups and the fragmentation factor of each reuse group.

Computing the fragmentation factor for each group of references2, consists of a three

step process.

Step 1. Find the enclosing loop for which this group of references experiences the

smallest non-zero constant stride. When the reference group is enclosed in a loop nest,

traverse the loops from the inside out, and terminate the search if a loop is encountered

2Note that all references in a group have equal strides with respect to all enclosing loops. It
suffices to consider the strides of only one reference in the group during analysis.
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for which the references have an irregular stride. If a loop with a constant non-zero

stride is not present, then we do not compute any fragmentation factor for that group

of references. Otherwise, let s be the smallest constant stride that we find and go to

step 2.

For the Fortran loop shown in Figure 7.2, the arrays are in column-major order,

all four accesses to A are part of a single group of related references, and all four

accesses to B are part of a second group of related references. For both groups, the

loop with the smallest non-zero constant stride is the outer loop I, and the stride

is 32 if we assume that the elements of the two arrays are double precision floating

point values.

Step 2. Split a group of related references into reuse groups based on their first

location symbolic formulas. Let F1 and F2 be the formulas describing the first location

accessed by two references of a group. As computed in step 1, their smallest non-zero

constant stride is s. If the two first location formulas differ only by a constant value,

we compute how many iterations it would take for one formula to access a location

within s bytes of the first location accessed by the other formula. If the necessary

number of iterations is less than the average number of iterations executed by that

loop (identified using data from the dynamic analysis), then the two references are

part of the same reuse group. Otherwise, the two references are part of distinct reuse

groups.

For our example in Figure 7.2, the group of references to array A is split into two

reuse groups. One reuse group contains references A(I,J,K) and A(I+1,J,K), and
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the second reuse group contains references A(I+2,J,L) and A(I+3,J,L). The four

references have been separated into two reuse groups because they access memory

locations far apart, due to different indices in their third dimension. In contrast, all

four references to array B are part of a single reuse group.

Step 3. Compute the hot foot-print information for each reuse group derived from a

group of related references. For this, we use modular arithmetic to map the locations

accessed by all references of a reuse group to a block of memory of size s, effectively

computing the coverage of the block, i.e., the number of distinct bytes accessed in

the block. For a group of related references we select the maximum coverage, c, over

all its reuse groups, and the fragmentation factor is f = 1− c/s.

Returning to our example, both reuse groups corresponding to the set of references

to array A have a coverage of 16 bytes, and thus the fragmentation factor for array A

is 0.5. The single reuse group for the four references to array B has coverage 32, and

thus a fragmentation factor of 0.

While it is possible to have non unit stride accesses to arrays of simple data types,

the main culprits of data fragmentation are arrays of records, where only some of the

record fields are accessed in a particular loop. The problem can be solved by replacing

the array of records with a collection of arrays, one array for each individual record

field. A loop working with only a few fields of the original record needs to load into

cache only the arrays corresponding to those fields. If the original loop was incurring

cache misses, this transformation will reduce the number of misses, which will reduce

both the data bandwidth and memory delays for the loop. This transformation has
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the secondary effect of increasing the number of parallel data streams in loops that

work with multiple record fields. While additional streams can improve performance

by increasing memory parallelism [52], they can hurt performance on architectures

with small TLBs and architectures that use hardware prefetching but can handle only

a limited number of data streams (see section 8.3.2).

For our example in Figure 7.2, and based only on the code in that loop, array

A is better written as two separate arrays, each containing every other group of two

elements of its inner dimension.

Using the fragmentation factors derived for each group of related references, we

compute metrics which specify how many cache misses at each memory level are due

to fragmentation effects. The number of cache misses due to cache line fragmentation

is computed separately for each memory reuse pattern; we report this information at

the level of individual loops and data arrays. Similarly, we compute the number of

cache misses due to irregular reuse patterns. A reuse pattern is considered irregular

if its carrying scope produces an irregular or indirect symbolic stride, as explained in

section 3.1, for the references at its destination end.

7.3 Interpreting the Performance Data

To identify performance problems and opportunities for tuning, we output all

metrics described in the previous sections in XML format, and we use the hpcviewer

user interface [45] that is part of HPCToolkit [48] to explore the data. The viewer

enables us to sort the data by any metric and to associate metrics with the program
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source code. We output three databases which represent three different views of the

computed performance data. The main database presents the inclusive metrics aggre-

gated at all levels of a program scope tree. It can be browsed in a top-down fashion to

find regions of code that account for a significant fraction of any performance metric.

Not all metrics can be sensibly aggregated based on the static program scope

tree. For example, aggregating the number of misses carried by scopes based on their

static program hierarchy is meaningless. The carried number of misses is rather a

measure representative of the dynamic tree of scopes observed at run-time. This

information could be presented hierarchically along the edges of a calling context

tree [3] that includes also loop scopes. A reuse pattern already specifies the source, the

destination and the carrying scopes of a reuse arc; aggregating the number of misses

carried by scopes does not seem to provide any additional insight into reuse patterns.

While for some applications the distribution of reuse distances corresponding to a

reuse pattern may be different depending on the calling context, for most scientific

programs separating the data based on the calling context may dilute the significance

of some important reuse patterns. At this point we do not collect data about the

memory reuse patterns separately for each context tree node to avoid the additional

complexity and run-time overhead. If needed, the data collection infrastructure can

be extended to include calling context as well.

The second database presents the exclusive values of all metrics in a flat view, such

that all program scopes can be compared as equal peers. This is the recommended

view to identify program scopes that carry the highest number of long data reuses,

but it can be used to understand the most significant scopes with respect to other
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metrics as well.

The third database includes only data about the memory reuse patterns. Once

again, this is a flat database. However, its entries correspond not to individual scopes,

but to pairs of scopes that represent the source and destination scopes of reuse pat-

terns. Its purpose is to quickly identify the reuse patterns contributing the highest

number of cache misses at each memory level.

Identifying the performance bottlenecks is only part of the work, albeit a very

important part. We need to understand what code transformations work best in each

situation. In this section we provide suggestions of code transformations for the most

important inefficiencies identified by our toolkit.

For loop nests with recurrences in the inner most loops, the most important trans-

formations for increasing instruction-level parallelism are: loop interchange, unroll &

jam, recognition of reductions, loop skewing and loop fusion. These transformations

are described in great detail in [2]. Note that these transformations are not legal in all

cases and their profitability vary case by case. In general there is a tradeoff between

high ILP and short memory reuse distances. This is particularly true when trying

to optimize for register reuse, since the number of registers is generally small. When

optimizing for cache reuse, we have more leeway because caches are larger and we do

not incur a penalty until the data starts to be evicted from the cache.

For example, while loop interchange can significantly boost the amount of ILP

if we find an outer loop without recurrences that can be legally interchanged to the

innermost position, it also increases the reuse distances for the references that are

part of the recurrence. This may be desirable for vector machines that benefit the
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most from instruction-level parallelism if the compiler can hide the memory latency.

For super-scalar machines which have limited parallelism, we are better off taking the

middle ground. We can balance the amount of available ILP and the distances of data

reuses by strip-mining the loop without recurrences, moving the loop that iterates

over a stripe in the innermost position and then unrolling it. This transformation is

equivalent to the unroll & jam transformation which consists of unrolling an outer

loop a number of times, and then fusing the resulting inner loops. By controlling

the size of one stripe or the unrolling factor we can determine a balance between

ILP and memory locality. We do not get any additional benefit if we increase the

amount of available ILP beyond the width of the target machine. This is why these

transformations are in general machine dependent.

Scenario Transformations & comments
large number of fragmentation data transformation: split the
misses due to one array original array into multiple arrays
large number of irregular misses apply data or computation reordering
and S ≡ D
large number of misses and carrying scope iterates over the array’s
S ≡ D, C is an outer loop inner dimension; apply loop interchange or
of same loop nest dimension interchange on the affected array;

if multiple arrays with different dimension
orderings, loop blocking may work best

S 6≡ D, C is inside same fuse S and D
routine as S and D
as the previous case, but S or strip-mine S and D with the same stripe
D are in a different routine and promote the loops over stripes outside
invoked from C of C, fusing them in the process
C is a time step loop or a main apply time skewing if possible;
loop of the program alternatively, do not focus on these hard or

impossible to remove misses

Table 7.1: Recommended transformations for improving memory reuse.
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Table 7.1 summarizes recommended transformations for improving memory reuse,

based on the type of reuse pattern that is producing cache misses. We use S, D and

C to denote the source, the destination and the carrying scopes of a reuse pattern.

These recommendations are just that, general guidelines to use in each situation.

Determining whether a transformation is legal is left for the application developer.

In some instances, enabling transformations such as loop skewing or loop alignment

may be necessary before we can apply the transformations listed in table 7.1.
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Chapter 8

Case Studies

In this chapter, we briefly illustrate how to analyze and tune an application us-

ing the performance metrics described in section 7. We study three applications.

Sweep3D [19] is a 3D Cartesian geometry neutron transport code benchmark from

the DOE’s Accelerated Strategic Computing Initiative. As a procurement benchmark,

this code has been carefully tuned already. The Parallel Ocean Program (POP) [36] is

a climate modeling application developed at Los Alamos National Laboratory. This is

a more complex code with the execution cost spread over a large number of routines.

The Gyrokinetic Toroidal Code (GTC) [34] is a particle-in-cell code that simulates

turbulent transport of particles and energy in burning plasma. We compiled the three

codes on a Sun UltraSPARC-II system using the Sun WorkShop 6 update 2 FOR-

TRAN 77 5.3 compiler, and the optimizations: -xarch=v8plus -xO4 -depend -dalign

-xtypemap=real:64.

8.1 Analysis and Tuning of Sweep3D

Sweep3D performs a series of diagonal sweeps across a 3D Cartesian mesh, which

is distributed across the processors of a parallel job. Figure 8.1 presents a schematic
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diagram of the computational kernel of Sweep3D. The idiag loop is the main com-

putational loop on each node. It performs a sweep from one corner of the local mesh

to the opposing corner. In each iteration of the idiag loop, one diagonal plane of

cells is processed by the jkm loop. Before and after the idiag loop there is MPI

communication to exchange data with the neighboring processors. Finally, the outer

iq loop iterates over all octants, starting a sweep from each corner of the global mesh.

HHHj
idiag

	
jkm

iq loop

MPI communication

idiag loop

jkm loop

MPI communication

Figure 8.1: Main computation loops in Sweep3D.

For Sweep3D, we used our toolkit to collect edge frequency data and memory

reuse distance information for a cubic mesh size of 50 × 50 × 50 and 6 time steps

without fix-up code. We used the reuse distance data to compute the number of L2,

L3, and TLB misses for an Itanium2 processor with a 256KB 8-way set-associative L2

cache, 1.5MB 6-way set-associative L3 cache, and a 128-entry fully-associative TLB.

We processed all data using our modulo-scheduler instantiated with a description of

the Itanium2 architecture to generate the three XML databases with our performance

metrics.
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iq loop

idiag loop
jkm loop

Figure 8.2: Sweep3D: understanding potential for improvement from increased ILP.

8.1.1 Identifying Performance Inefficiencies Due to Insufficient ILP

Figure 8.2 shows a snapshot of the hpcviewer interface browsing the performance

database sorted by the MaxGainILP metric (in the bottom right pane). Due to

limited horizontal space in a paper, only two metrics are shown: i) maximum gain

expected from increased ILP, and ii) predicted computation time. We expanded six

levels of scopes that are shown to account for over 98% of the potential for improve-

ment according to this metric. While 98% of this potential is contained within the
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level five loop at lines [354–502] (the jkm loop), the I-line recursion loop without flux

fixup at lines [398–410] accounts for 56% of the entire potential and the next most

significant level six loop accounts for only 5.7% of this potential. It is clear that we

have to focus our attention on the I-line recursion loop. By expanding the scope of

this loop, we expose the performance data for the two paths through this loop. While

for loops we present metric totals, for paths we show metric values per iteration.

When we reconstruct the paths taken through a loop, we consider the paths that

follow the loop back-edge and the exit paths separately. Back-edge paths are sched-

uled using software pipelining, while for exit paths software pipelining is disabled.

For this loop, first path is the exit path and we notice the program enters this loop

720K times, and second path is the back-edge path which is executed over 35 mil-

lion times. Looking at predicted computation time if we had an infinite number of

execution units, metric not included in the figure, we notice that even if we had an

infinitely wide machine the time per iteration would still be 20 clock cycles, while if

we could remove the dependences, the time per iteration would drop by 40% to 12

clock cycles. This is the clear sign of a recurrence of 20 clock cycles in the code. We

spotted two short recurrences, but the longest recurrence is the one marked in the

source pane of Figure 8.2.

By manual inspection, we realized that loop jkm at lines [354–502] has no carried

dependencies. If we unroll the jkm loop and then fuse all instances of its inner loops,

we can execute multiple I-line recursions in parallel, effectively increasing the ILP.

We decided to unroll the jkm loop only once since we already fill 60% of the issue

cycles with one iteration. After transforming the code, we ran it again through our
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tool. The predicted overall computation time1 dropped by 20% from 1.46e09 down to

1.17e09, and the total potential for improvement from additional ILP has dropped by

more than a factor of four, from 5.60e08 down to 1.35e08. This potential, however, is

due only to loop exit paths and outer loops that cannot be effectively pipelined. For

the I-line recursion loop the value of this metric dropped by a factor of 25.

All numbers presented so far are predictions from our tool. To see if these predicted

improvements can be observed on a real Itanium2 machine as well, we compiled both

the original and the transformed Sweep3D codes on a machine with an Itanium2 CPU

running at 900MHz. We compiled the codes with the Intel Fortran Itanium Compiler

9.0, and the optimization flags: -O2 -tpp2 -fno-alias.2 Using hardware performance

counters we measured the execution time, the number of L2, L3 and TLB misses,

and the number of instructions and NOPs retired, for both binaries and for mesh

sizes from 10×10×10 to 200×200×200. Figure 8.3 presents the performance of the

transformed code relative to the performance of the original code for all input sizes.

We notice the transformed program is consistently faster by 13-18% with an average

reduction of the execution time of 15.6% across these input sizes. The number of

cache and TLB misses in the two versions of the code differ by only 2-3%, thus they

cannot account for the performance increase. The spikes for L3 and TLB misses at

small problem sizes are just an artifact of the very small miss rate at those input sizes.

For larger problem sizes the differences are negligible. However, we see the number of

retired instructions dropped by 16.3% and the number of retired NOPs dropped by

1This metric does not include memory penalty.
2We tried -O3 as well, but -O2 yielded higher performance.
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Figure 8.3: Performance of the transformed Sweep3D code relative to the original version
on an Itanium2 (lower is better).

30%, a sign that issue bundles are filled with more useful instructions. We observed

also an increase in memory parallelism in the transformed program, which lowers the

exposed memory penalty and may account for part of the observed speedup.

Similar recurrences are in the I-line recursion loop with flux fixup at lines [416–

469]. Which version of the loop is executed is controlled from the input file. The

transformed code improves the execution time of that loop by a similar factor, and

our measurements on Itanium2 confirmed this result.

We should mention that the performance increase obtained on Itanium2 might not

be observed on every architecture. The I-line recursion loop contains a floating point

divide operation (see Figure 8.2). If the throughput of the divider unit is low, or if the

machine issue width is much lower, combined with possibly increased contention on
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other units, then the loop might be resource limited even in the original form, or the

improvement could be only modest. However, our tool will predict correctly the lack

of potential gains if the machine model is accurate. Itanium2 has a large issue width

and floating point division is executed in software with a sequence of fully-pipelined

instructions. Thus, while the latency of one divide operation from start to finish may

be longer than what could be obtained in hardware, this approach is efficient when

many divide operations need to be executed.

Figure 8.4 presents the effect of issue width on the relative performance improve-

ment of Sweep3D. We used the Itanium2 machine model, and we varied the issue

width between 3 and 8, everything else being unchanged. The predicted performance

00 . 5 11 . 52
2 . 53

3 4 5 6 7 8I s s u e w i d t h
R el ati vepe rf o rmance E x e c u t i o n t i m e M a x G a i n R e s M a x G a i n I L P

Figure 8.4: Performance of the transformed code relative to the original version, for an
Itanium2 like machine with issue width from 3 to 8.

improvement is only 5% when issue width is cut to 3. For issue widths larger than 5,

the relative performance of the codes varies very little, with the transformed version

being between 17% and 20% faster. The transformed program is much more limited
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by issue width, running 40% slower at issue width 3 when compared to issue width

6. At the same time, the original program is less sensitive, running only 20% slower

when at most 3 instructions can be issued per cycle. For issue widths larger than

5, there is little improvement observed in both codes, other resources becoming the

limiting factor. As we expected, the potential gain from increased ILP is much lower

in the transformed code across all issue widths. The situation is reversed in the case

of the improvement potential from additional machine resources.

8.1.2 Identifying Opportunities for Improving Data Reuse

In this section we use our memory reuse based metrics to identify the reuse pat-

terns that account for the highest number of cache and TLB misses. Performance

improvement from better data reuse can be even more substantial than what we saw

in the previous section. Figure 8.5 shows a snapshot from our user interface of the

predicted number of carried misses for the L2 and L3 caches and for the TLB. We

notice that approximately 75% of all L2 cache misses and about 68% of all L3 cache

misses are carried by the idiag loop, while the iq loop carries 10.5% and 22% of the

L2 and L3 cache misses respectively. The situation is different with the TLB misses.

The jkm loop carries 79% and the idiag loop carries 20% of all the TLB misses.

idiag loop
iq loop
jkm loop

Figure 8.5: Number of carried misses in Sweep3D

We focus on the L2 and L3 cache misses. The fact that such a high fraction of
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all cache misses are carried by the idiag loop is a good thing from a tuning point

of view, because we can focus our attention on this loop. While the iq loop carries

the second most significant number of misses, it contains also calls to communication

functions. Thus, it may require more complex transformations to improve, in case

it is possible at all. Table 8.1 summarizes the main reuse patterns contributing the

Array In Reuse Carrying %
name scope source scope misses

ALL 26.7
src loop self idiag 20.4

384–391 iq 3.3
jkm 2.9
ALL 26.9

flux loop self idiag 20.4
474–482 iq 3.4

jkm 3.0
ALL 19.7

face loop self idiag 15.5
486–493 iq 2.4

jkm 1.9
sigt loop self
phikb 397–410 + ALL 18.4
phijb others

Table 8.1: Breakdown of L2 misses in Sweep3D.

highest number of L2 cache misses in Sweep3D. We notice that four loop nests inside

the jkm loop account for the majority of the L2 cache misses. For three of these loop

nests, only accesses to one data array in each of them result in cache misses. Since

the idiag loop carries the majority of these cache misses, we can focus our attention

on understanding how the array indices are computed with respect to this loop.

Figure 8.6 shows the Fortran source code for the first two loop nests that access

arrays src and flux respectively. We notice that both the src and the flux arrays
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384 do i = 1, it

385 phi(i) = src(i,j,k,1)

386 end do

387 do n = 2, nm

388 do i = 1, it

389 phi(i) = phi(i) + pn(m,n,iq)*src(i,j,k,n)

390 end do

391 end do

...
474 do i = 1, it

475 flux(i,j,k,1) = flux(i,j,k,1) + w(m)*phi(i)

476 end do

477 do n = 2, nm

478 do i = 1, it

479 flux(i,j,k,n) = flux(i,j,k,n)

480 & + pn(m,n,iq)*w(m)*phi(i)

481 end do

482 end do

Figure 8.6: Accesses to src and flux.

are four dimensional arrays and that both of them are accessed in a similar fashion.

In Fortran, arrays are stored in column-major order. Thus, the first index represents

the innermost dimension and the last index is the outer most one. We notice that for

both src and flux, the innermost loop matches the innermost dimension. However,

the next outer loop, n, accesses the arrays on their outermost dimension. We return

to this observation later. For now, we want to understand how the j and k indices

are computed.

We mentioned that in each iteration of the idiag loop, the jkm loop traverses one

diagonal plane of cells as seen in Figure 8.1. Each cell of the 3D mesh is defined by

unique coordinates j, k and mi, as seen in Figure 8.7. Notice that all cells of a 3D

diagonal plane have different j and k coordinates. Thus, there is no temporal reuse

of src and flux carried by the jkm loop. The small amount of reuse observed in
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Table 8.1 is spatial reuse due to the sharing of some cache lines between neighboring

cells. However, even this reuse is long enough that it results in cache misses, because

the cells in a plane are not necessarily accessed in the order in which they are stored.

?
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PPPq
j

k

m
i 	

jkm

Figure 8.7: Sweep3D: jkm iteration space

Consecutive idiag iterations access adjacent diagonal planes of cells. When we

project these 3D diagonal planes onto the (j,k) plane, we notice there is a great deal

of overlap between two consecutive iterations of the idiag loop. This explains the

observed reuse carried by the idiag loop. However, the reuse distance is too large

for the data to be still in cache on the next iteration of the idiag loop. Finally, the

reuse carried by the iq loop is explained by the fact that we traverse again all cells

of the mesh on a new sweep that starts from a different corner.

Notice that arrays src and flux (and face as well) are not indexed by the mi

coordinate of a cell. Thus, references to the three arrays corresponding to cells on

different diagonal planes that differ only in the mi coordinate, but with equal j and k

coordinates access identical memory locations. To improve data reuse for these arrays,

we need to process closer together mesh cells that differ only in the mi coordinate.

For this, we apply tiling to the jkm loop on the mi coordinate.The transformed

sweep iteration space is represented graphically in Figure 8.8, for a blocking factor of
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Figure 8.8: Diagram of Sweep3D after blocking on mi.

two. Note that mi is not a physical dimension of the 3D mesh; rather, it represents

different angles at which the neutron movements are simulated. The third physical

coordinate is i which is contained within each cell. Thus, by simulating multiple

angles at once, we achieve better data reuse. The number of angles specified in our

input file was six. Therefore, we measured the performance of the transformed code

on an Itanium2 system using blocking factors of one, two, three and six.

Figures 8.9(a),(b) and (c) present the number of L2, L3 and TLB misses for the

original code and for the transformed code with the four different blocking factors. All

figures present the performance metrics normalized to the number of cells and time

steps so that the results for different problem sizes can be easily shown on a single

graph. The figures show that the original code and the code with a blocking factor

of one have identical memory behavior. As the blocking factor increases, less and

less accesses miss in cache. The last curve in each figure represents the performance

of the transformed code with a blocking factor of six plus a dimensional interchange

for several arrays to better reflect the way in which they are traversed. For the

src and flux arrays we moved the n dimension into the second position. These

transformations reduce cache and TLB misses by integer factors.
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Figure 8.9: Performance of the original and improved Sweep3D codes on an Itanium2
system.

Figure 8.9(d) compares the normalized execution times of the original and trans-

formed codes. We present separate measurements for the execution times of the code

with only the unroll & jam transformation presented in section 8.1.1, the code mod-

ified for better data reuse, as well as the code containing both transformations. The

code with both increased ILP in the I-line recursion loop and improved data reuse

has a speedup of 3x and we can observe ideal scaling of the execution time between

mesh sizes 20 and 200 which represents a thousand-fold increase of the working set

size. Figure 8.9(d) shows also the non-stall execution times, measured with hardware

performance counters, of the codes with and without the unroll & jam transforma-
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tion. Notice that we eliminated a large fraction of the observed stall time with our

transformations. Note also that the non-stall times depicted in the figure are not the

absolute minimum times that can be achieved on the Itanium. They are just the

minimum times that can be achieved with the instruction schedule generated by the

Intel compiler. By applying unroll & jam on the jkm loop, we reduced Sweep3D’s

execution time, as well as its non-stall time, by improving the compactness of the

instruction schedule.

8.2 Analysis and Tuning of POP

We applied our modeling techniques to the Parallel Ocean Program (POP) [36], a

climate modeling application developed at the Los Alamos National Lab. In this sec-

tion we present our findings for this application. POP is a more complex application

than Sweep3D and it has no single routine that accounts for a significant percentage

of the running time. Table 8.2 presents performance data for the top eight routines

based on the potential for improvement from additional ILP. Values are predicted for

an execution of POP 2.0.1 with the default benchmark size input on an Itanium2 ma-

chine model. In addition to the MaxGainILP metric, Table 8.2 includes the predicted

computation time and the rank of each routine if data was sorted by computation

cost.

Unlike Sweep3D where effectively all execution time is spent in a single loop nest,

in POP the execution cost is spread over a large number of routines. A traditional

analysis looking for the most time consuming loops would not work well on this code
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Routine MaxGain
ILP

CpuTime Rnk
boundary 2d dbl 4.02e08 13.8% 6.99e08 6.2% 4
impvmixt 3.53e08 12.1% 6.17e08 5.5% 5
impvmixt correct 3.45e08 11.8% 5.85e08 5.2% 7
global sum dbl 2.44e08 8.4% 3.38e08 3.0% 15
diag global preup 1.51e08 5.2% 3.26e08 2.9% 17
impvmixu 1.51e08 5.2% 3.26e08 2.9% 18
advt centered 1.50e08 5.1% 3.85e08 3.4% 12
tracer update 1.43e08 4.9% 7.78e08 6.9% 2

Table 8.2: POP: top routines based on the improvement potential from additional ILP.

since there is not a single loop or routine that accounts for a significant percentage

of the running time. Sorting scopes by the MaxGainILP metric enables us to at

least limit our investigation to those scopes that show a non-negligible potential for

improvement. The routine with the highest predicted potential for improvement,

boundary 2d dbl, at closer inspection proved to contain some frequently executed

short loops which do not contain recurrences. The potential for improvement shown

for this routine is the result of frequently executed loop exit paths that are not software

pipelined. However, the following two routines, impvmixt and impvmixt correct,

contain loops with recurrences that account for most of the predicted improvement

potential of these routines. These loops perform a tridiagonal solve in the vertical

for every horizontal grid point and each tracer. Both these routines perform a very

similar computation, thus what we describe below applies to both of them.

By visually inspecting the code of routine impvmixt, we realized that neither of

the two outer loops carry any dependences, the computation for each horizontal grid

point being independent. This means we can apply unroll & jam again to increase

the ILP. However, the upper bound of the tridiagonal solve loop is a function of
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the ocean depth of each grid point. If we want to perform the tridiagonal solve for

two grid points at a time, we must either ensure that they have the same depth, or

compute the solve in parallel up to the minimum depth of a pair of points followed

by a reminder loop that computes the residual points for the deepest point. Because

the maximum depth specified in the benchmark input file is relatively small and

the depths are integer values, we decided to implement the first solution. For this,

we use a temporary array, of size equal to the maximum possible depth, to store

the coordinates of the most recently encountered horizontal grid point with a given

depth.

For each horizontal grid point the modified code performs these steps:

1. compute current point’s depth and check the corresponding entry in the tem-

porary array;

2. if the entry is empty, store the coordinates of current point and go to the next

horizontal grid point, otherwise go to step 3;

3. read the coordinates of the grid point of same depth from the temporary array

entry and perform the tridiagonal solve in parallel for the current point and the

point found in the temporary array. Reset the temporary array entry once we

used the point and go to the next horizontal grid point.

Once all points are visited we check every entry in the temporary array and perform

the tridiagonal solve individually for all odd points for which we did not find a pair

point of same depth in the main loop.
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Routines impvmixt and impvmixt correct are very similar. They have almost

identical code, including the tridiagonal solve loop. We transformed the code for

routine impvmixt correct using the same approach we used for the impvmixt routine.

The other routines shown in Table 8.2 have a smaller potential for improvement from

additional ILP. We found that with the exception of routine impvmixu which is similar

to the routines presented above, the other routines do not contain real recurrences, but

the potential for improvement is due to reduction operations that are not sufficiently

parallelized by the Sun compiler used to compile the analyzed binary. We expect the

Intel compiler will compute the reductions more efficiently given the fact it is targeted

to a wider-issue architecture. We decided not to transform the code corresponding to

routine impvmixu since this routine contributes less than 3% to the total computation

time, and this percentage is even smaller once the memory penalty is considered.

We measured the performance of the original and the transformed versions of the

code on our Itanium2 based machine. Since the two routines that were modified

together account for only around 10% of the computation time in the original code,

and since our transformations can in the best case scenario cut their computation

cost in half, we expect at most a 5% improvement for the overall program. Once we

consider the memory hierarchy delays that our transformations do not attempt to

improve, the overall improvement that can be achieved should be even less. Using

the default benchmark size input file, 192 × 128 horizontal grid points, we measured

an overall performance increase of 3.78% for the transformed version. Increasing the

number of grid points slightly to 208 × 144, the observed performance increase was

4.55%. While the overall improvement for this code is not substantial for reasons
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explained earlier, the transformation of the code was straightforward, and our per-

formance modeling tool led us to these loops and predicted accurately the potential

for improvement.

8.3 Analysis and Tuning of GTC

The Gyrokinetic Toroidal Code is a 3D particle-in-cell (PIC) code used for study-

ing the impact of fine-scale plasma turbulence on energy and particle confinement in

the core of tokamak fusion reactors [64]. The PIC algorithm consists of three main

sub-steps: 1) deposit the charge from particles onto the grid (routine chargei), 2)

compute and smooth the potential field (routines poisson and smooth), and 3) com-

pute the electric field and push particles using Newton’s laws of physics (routines

pushi and gcmotion). Compared to the Sweep3D benchmark, the GTC code is sig-

nificantly more complex with the computation kernel spread over several files and

routines.

For GTC, we collected edge frequency counts and reuse distance data for a problem

size consisting of a single poloidal plane with 64 radial grid points and 15 particles

per cell. From the reuse distance histograms collected for each reuse pattern, we

computed the number of cache misses, the number of misses due to fragmentation

in cache lines, the number of irregular misses, and the number of carried misses as

explained in section 7.2, for an Itanium2 cache architecture. All metrics are computed

at loop level as well as for individual data arrays.

Figure 8.10 presents a snapshot of our viewer showing the data arrays that account
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Figure 8.10: Data arrays contributing the largest number of fragmentation L3 misses.

for the highest number of L3 cache misses due to fragmentation of data in cache lines.

The first metric in the figure represents the total number of L3 cache misses incurred

by all accesses to these arrays in the entire program. Data arrays zion and its shadow

zion0 are global arrays storing information about each particle in the local tokamak

domain. They are defined as 2D Fortran arrays organized as arrays of records with

seven data fields for each particle. Array particle array is an alias for the zion

array, used inside a “C” routine gcmotion.

Notice that accesses to the two zion arrays, including the alias particle array,

account for 95% of all fragmentation misses to the L3 cache. This amounts to about

48% of all L3 cache misses incurred on the zion arrays, and about 13.7% of all L3

cache misses in the program. Most loops that work with the zion arrays reference

only a few of the seven fields associated with each particle. Using our viewer, we iden-

tified the loops with the highest contribution to the miss and fragmentation metrics.

We noticed two loops where only one out of the seven fields of the zion array was

referenced for each particle. To eliminate unnecessary cache misses due to fragmen-

tation, we transposed the two zion arrays, so that each of the seven fields is stored

separately in its own vector. This amounts to transforming the array of structures

into a structure of arrays.
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Figure 8.11: Program scopes carrying the most L3 cache misses.

Figure 8.11 presents the program scopes that carry more than 2% of all L3 cache

misses. The loop at main.F90:139-343 is the main loop of the algorithm iterating

over time steps and it carries about 11% of all L3 cache misses. Each time step of

the PIC algorithm executes a 2nd order Runge-Kutta predictor-corrector method,

represented by the second loop of the main routine, at lines 146-266. The two main

loops carry together about 40% of all L3 cache misses. These are cache misses due to

data reuse between the three sub-steps of the PIC algorithm, and across consecutive

time steps or the two phases of the predictor-corrector method in each time step.

Because each of the three sub-steps of the PIC algorithm requires the previous step

to be completed before it can start executing, these cache misses cannot be eliminated

by time skewing or pipelining of the three sub-steps. Thus, we focus our attention on

the other opportunities for improvement.

The poisson routine computes the potential field on each poloidal plane using an

iterative Poisson solver. Cache misses are carried by the iterative loop of the Poisson

solver (at lines 74-119), and unfortunately cannot be eliminated by loop interchange

or loop tiling because of a true recurrence in the solver. We did however notice
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that the highest number of cache misses in the poisson routine were incurred on two

three dimensional arrays, ring and indexp, even though they were accessed with unit

stride. At a closer inspection we found the upper bound of the innermost loop that was

iterating over the inner dimension of these two arrays, was not constant. Thus, only

some of the elements on a column were being accessed, resulting in partially utilized

cache blocks at the end of each column. Our cache fragmentation analysis cannot

detect such cases at this time, because the elements are accessed with stride one, and

the elements that are not accessed are contiguous at the end of each column. We

reorganized these arrays into contiguous linear arrays which improves spatial locality.

This transformation removes only a small fraction of the total number of cache misses

incurred on these arrays. There is unfulfilled temporal reuse carried by the iterative

loop of the Poisson solver, which cannot be improved.

However, the amount of work in the Poisson solver is proportional to the number of

cells in the poloidal plane. As we increase the number of particles that are simulated,

the cost of the charge deposition and particle pushing steps increases, while the cost

of the Poisson solver stays constant. Thus, the execution cost of the poisson routine

becomes relatively small in comparison to the cost of the entire algorithm as the

number of particles per cell increases.

We focus now on the chargei and the pushi routines. Our analysis identified

that about 11% of all L3 cache misses are due to reuse of data in two loops of the

chargei routine that iterate over all particles. The first loop was computing and

storing a series of intermediate values for each particle; the second loop was using

those values to compute the charge deposition onto the grid. However, by the time
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the second loop accessed the values computed in the first loop, they had been evicted

from cache. By fusing the two loops, we were able to improve data reuse in chargei,

and to eliminate these cache misses.

The pushi routine calculates the electrical field and updates the velocities of the

ion particles. It contains several loop nests that iterate over all the particles, and a

function call to a “C” routine, gcmotion. The gcmotion routine consists of a single

large loop that iterates over all the particles as well. Our analysis identified that for

the problem size that we used, pushi carries about 20% of all L3 cache misses between

the different loop nests and the gcmotion routine. This reuse pattern corresponds

to the fifth entry in Table 7.1, because the gcmotion routine is both a source and a

destination scope for some of the reuse arcs carried by pushi. While gcmotion consists

of just one large loop, we cannot inline it in pushi because these two routines are

written in different programing languages. Instead, we identified a set of loops that

we could fuse, strip-mined all of them, including the loop in gcmotion, with the same

stripe s, and promoted the loops over stripes in the pushi routine, fusing them. The

result is a large loop over stripes, inside of which are the original loop nests and the

function call to gcmotion. These transformed loop nests work over a single stripe of

particles, which is short enough to ensure that the data is reused in cache.

We also identified a loop nest in routine smooth that was contributing about 64%

of all TLB misses for the problem size that we used. The outer loop of the loop nest,

which was carrying all these TLB misses (see Figure 8.12), was iterating over the inner

dimension of a three dimensional array. We were able to apply loop interchange and

promote this loop in the innermost position, thus eliminating all these TLB misses.
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Figure 8.12: Program scopes carrying the most TLB misses.

Analyzing performance bottlenecks due to insufficient instruction-level parallelism,

we identified a recurrence in a prime factor transform routine spcpft. We increased

the amount of instruction-level parallelism by applying unroll & jam. We also identi-

fied a similar short recurrence in one loop nest of the Poisson solver where we applied

unroll & jam to increase fine-grain parallelism.

8.3.1 GTC Performance on the Itanium2

Figure 8.13 presents the single node performance of GTC on a 900MHz Itanium2.

The four graphs compare the number of L2, L3 and TLB misses, and the execution

time respectively, of the original and the improved GTC codes, as we vary the number

of particles per cell on the x axis. We applied the transformations in the order in

which they are presented in the graphs’ legends. Notice how the code performance

improved after each transformation. The large reduction in cache and TLB misses

observed after the transposition of the zion arrays is due in part to a reduction in

the number of unnecessary prefetches inserted by the Intel compiler, which was an

unexpected side-effect, as well as because of an increase in data locality for other
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Figure 8.13: GTC performance after each code transformation on an Itanium2 system.

arrays after the loops working on the zion array had to stream through much less

data because of the reduced fragmentation.

Performance improvements due to the transformations in smooth, spcpft and

poisson are significant only when the number of particles is relatively small, since

the amount of work in these routines is proportional to the number of cells in the

poloidal plane and it does not depend on the number of particles.

Notice also how the tiling/fusion in the pushi routine significantly reduced the

number of L2 and L3 cache misses, but these improvements did not translate into a

smaller execution time. When we tiled & fused the loop nests in pushi, we created
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a large loop over stripes that overflowed the small 16KB dedicated instruction cache

on Itanium. Thus, the improvement in data locality was mitigated by an increase

in the number of instruction cache misses. We expect this transformation to have a

bigger impact on other architectures that have a larger instruction cache, including

Montecito, the new member of the Itanium family of processors.

Overall, we reduced the number of cache misses by at least a factor of two, the

number of TLB misses was reduced by a large margin, and we observed a 33% reduc-

tion of the execution time, which amounts to a 1.5x speedup.

Figure 8.14: Program scopes carrying the most cache misses in the modified code at 100
particles/cell.

We used measurements from several execution where the number of particles per

cell was varied between 3 and 15, to build scalable models of edge execution fre-

quencies and reuse distance histograms at reuse pattern level. From these models we

predicted the performance of GTC for 100 particles/cell. Figure 8.14 presents the

number of carried misses predicted by our toolkit for the modified code at 100 parti-

cles/cell. We notice that the two main loops carry about 70% of all L3 cache misses

in the modified code. Routine pushi still carries around 7% of all L3 cache misses.

The next most significant number of L3 cache misses are carried by the fused loop in

chargei and those are due to irregular accesses to two arrays. Finally, the iterative
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loop of the Poisson solver carries around of 5% of the L3 cache misses. While there

are still some opportunities for improvement, the majority of the L3 cache misses are

carried by the two main loops now, and they are intrinsic to the algorithm.

8.3.2 GTC Performance on the Opteron

Even though we modeled, predicted and tuned the performance of GTC for an

Itanium2 architecture, we measured also the speedup of the transformed code on a

Cray XD1 system with a dual core Opteron 275 CPU at 2.2 GHz. Each core has a

2 way set-associative 64 KB L1 cache, a 16 way set-associative 1MB L2 cache, a 32

entries full-associative L1 TLB, and a 512 entries 4 way set-associative L2 TLB. We

compiled the codes using the PGI Fortran compiler 6.1-2 and the optimization flags

-r8 -gopt -fast -fastsse -Kieee.

Figure 8.15 compares the measured numbers of L1, L2, TLB1 and TLB2 misses,

as well as the measured wall clock times, of the original and the transformed GTC

codes on an Opteron 275 machine. The graphs show a different picture than on the

Itanium2 system. While we notice a halving of the L2 TLB misses, we notice a more

than doubling of the L1 TLB misses, and a very modest decrease of the L1 and L2

cache misses. In fact, the number of L2 cache misses is lower than in the original

program only after the tiling/fusion transformation in pushi. The transpose of the

zion arrays resulted in a substantial increase in the number of L2 cache misses. All

these numbers translate into a very modest reduction of the execution time after the

pushi transformation, while we can notice a slight performance degradation with the

other transformations.
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Figure 8.15: (a)-(e) Performance of the GTC code on an Opteron 275 machine; (f) per-
formance of the Opteron HW prefetcher.

We measured the performance of the GTC codes on the Itanium2 and the Opteron

using the same program inputs. Moreover, the two architectures have similar sized

lower caches. The L3 cache on our Itanium2 system is 1.5 MB with a line size of 128
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bytes. The L2 cache of each Opteron 275 core is 1 MB in size, and has a 64 bytes cache

line. Thus, it looks like the Itanium2 has a small advantage with its slightly larger

cache; also its larger cache line should translate into more spatial reuse. However, if

we compare the absolute values measured on the two architectures, we notice that

the number of L2 cache misses on the Opteron is lower in absolute terms than the

number of L3 cache misses on the Itanium2. This holds true for the transformed

codes, but especially for the original code.

The lower number of L2 cache misses measured on the Opteron is the result of

the hardware prefetcher on that architecture fetching a good chunk of the data before

it is needed by the application. The hardware prefetcher works by inspecting the

streams of accesses to memory. When the hardware prefetcher notices that cache

lines i and i+1 are accessed, it initiates the fetch of line i+3 into the L2 cache. The

hardware prefetcher can keep track of multiple streams of data and it resets a stream

when a page boundary is crossed. However, the hardware is provisioned for tracking

a finite number of different streams. If the number of streams grows over that limit,

the hardware prefetcher’s performance drops.

Figure 8.15(f) shows the results of a micro-benchmark that we wrote to test the

performance of the Opteron hardware prefetcher. The micro-benchmark executes

a fixed number of stride one accesses to memory using a user specified number of

parallel streams. We varied the number of streams from 1 to 128 and we used the

CPU’s hardware performance counters to measure the number of L2 cache misses

and the number of hardware prefetch attempts. The results are very clear. When

the number of streams grows over twenty, the efficiency of the hardware prefetcher
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plummets.

By transposing the two zion arrays, we increased the number of parallel data

streams in loops that were accessing more than one record field. Thus, while we

improved data locality by reducing fragmentation in cache lines, the observed number

of L2 cache misses on the Opteron is higher because a large number of memory accesses

that were being hidden by the hardware prefetcher originally, are now exposed to the

application. The effect is visible also when we look at the number of L1 TLB misses.

With only 32 entries, the L1 TLB experiences a higher number of misses due to the

increase in the number of parallel streams. Tuning for the Opteron requires not only

improving data reuse at the application level, but also making sure that the number

of parallel streams stays low to leverage the hardware prefetcher.

Because the hardware prefetcher tracks streams separately for each memory page,

and since the number of parallel streams it can handle is relatively close to the number

of entries in the L1 TLB cache, it means that optimizing for the hardware prefetcher

is equivalent with optimizing for the L1 TLB. We used the memory reuse distance

data to compute memory predictions for the Opteron cache architecture. Figure 8.16

shows the reuse pattern generating most L1 TLB misses on the Opteron. We notice

the only loop of the gcmotion routine generates 76.7% of all L1 TLB misses.

By looking at the miss counts at variable level for this reuse pattern, we determined

that in addition to the zion array, accessed through its alias particle array, many

other smaller arrays were being accessed in each iteration of this loop. Five of these

arrays, declared in routine pushi, were being passed as arguments to gcmotion by

the function call in routine pushi. The rest of them were arrays local to the “C”
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Figure 8.16: Reuse pattern generating most L1TLB misses on Opteron.

file containing routine gcmotion. We noticed that many of the small arrays were

being accessed in similar patterns throughout routine gcmotion, as well as through

the other routines of the “C” file.

We merged the five arrays in pushi into one array of structures. In the file

containing gcmotion, we reorganized 14 arrays organized as 3 groups of four and

one group of 2. Each group is linearized in a fashion that amounts to an array of

structures. The effect of these transformations is a significant reduction in the number

of parallel streams in all loops that are accessing them. The merging of the five arrays

in pushi had the effect of reducing the number of streams in some loop nests of the

pushi routine that were accessing them as well.

Figure 8.17 presents the performance of the GTC code on an Opteron 275 machine
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Figure 8.17: GTC performance on an Opteron 275 machine after additional data trans-
formations.

after these additional data transformations. The five graphs compare the number

of L1 cache, L2 cache, L1 TLB and L2 TLB misses, and the wall clock execution

times respectively, of five different version of the code. The five versions of the code
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include: 1) the original GTC code; 2) the code with all transformations targeted

to the Itanium; 3) the code at 2) plus the merging of the five arrays in routine

pushi; 4) reorganization of the 14 arrays in file containing gcmotion on top of all the

previous transformations; and 5) the code with all previous transformations but the

zion transpose.

As expected, the reorganization of data arrays in pushi and gcmotion has no

effect on the large L2 TLB of the Opteron. However, removing the zion transpose

optimization, increases slightly the number of L2 TLB misses due to the increase in

data fragmentation.

Reducing the number of parallel streams has a significant effect on the number of

L1 TLB and L2 cache misses, the latter ones being the result of increased effectiveness

of the hardware prefetcher on the Opteron. We notice also that without the zion

transpose transformation, the number of L1 TLB and L2 cache misses is even lower,

since the number of parallel streams is reduced in many loops and the hardware

prefetcher manages to hide most L2 cache misses produced by the increased data

fragmentation.

Reducing the number of streams has an effect also on the number of L1 cache

misses. We notice that merging the five arrays in the pushi routine has a minimal

effect, since the L1 cache has significantly more blocks than the number of entries in

the L1 TLB. However, the reorganization of the 14 arrays in gcmotion results in a

very significant reduction of the L1 cache misses in that routine.

Overall, these new data transformations together with the previous transforma-

tions reduce the number of cache and TLB misses by at least a factor of two at all
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levels of the Opteron’s memory hierarchy, and the single node execution time is re-

duced by 13.5%. While the number of L1 TLB and L2 cache misses is somewhat

smaller without the zion transpose, the number of L2 TLB misses is slightly larger

and the overall execution time is slightly higher without the zion transpose. More-

over, the zion transpose has much higher benefits on other platforms that do not rely

on a hardware prefetcher, plus it has the potential of increasing opportunities for

vectorization on architectures with a more complete set of vector instructions. On

the Opteron, telling the PGI compiler to use SSE instructions had no effect on the

running time of GTC.

8.3.3 Itanium2 vs. Opteron Running the GTC Code

Comparing the performance of GTC on the Itanium2 at 900 MHZ (see Figure 8.13)

and on the Opteron 275 at 2.2 GHz (see Figure 8.17), we notice that the number of

L2 cache misses on the Opteron is significantly lower than the number of L3 cache

misses on the Itanium2. This is due to the hardware prefetcher on the Opteron hiding

a large number of memory accesses. At the same time, 100 time steps of GTC with

100 particles/cell take 561 seconds on the Itanium2 at 900 MHz and 486 seconds on

the Opteron at 2.2 GHz. Clock for clock, the Itanium2 is 2.1 times more efficient

than the Opteron on this code.

Part of the difference in efficiency can be explained by the fact that memory

latencies measured in terms of CPU clock cycles, are going to be lower on CPUs that

run at a lower frequency. We noticed however that cutting the number of cache and

TLB misses by more than a factor of two, resulted in a reduction of the execution

196



time of only 13.5% on the Opteron. This suggests that the performance of GTC on

the Opteron is not as much memory bounded as it is computation and control flow

limited. The Itanium2 can issue up to six instructions every clock cycle, and floating-

point arithmetic operations, especially division and square root, are executed more

efficiently on the Itanium than on the Opteron. As a result, we observed a higher

speed-up on the Itanium2 when we reduced the number of cache and TLB misses by

similar factors.

Moreover, we expect the fusion/tiling transformation in routine pushi to have a

bigger impact on an Itanium CPU with a larger dedicated instruction cache, such as

Montecito. At the same time, we expect the new K10 Opterons to run the GTC code

more efficiently clock for clock, due to general improvements to the Opteron core and

the wider and faster SSE path.
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Chapter 9

Conclusions

At the beginning of this thesis we emphasized the importance of automatic per-

formance analysis and modeling tools for understanding scalability of applications,

identifying performance bottlenecks and opportunities for tuning, guiding mapping

of application components to heterogeneous resources, and providing insight into the

design of custom architectures. Over the course of several chapters, we presented

strategies for scalable and cross-architecture performance predictions, and we pre-

sented analysis techniques and new performance metrics that provide insight into

performance bottlenecks and guide application tuning.

This thesis tackles two important problems in the field of performance analysis:

(1) semi-automatic construction of application performance models that enable scal-

able and cross-architecture performance predictions; (2) automatic understanding and

classification of application performance bottlenecks and estimation of their impact

on the execution time.

This thesis describes an approach based on separating the contribution of applica-

tion characteristics from the contribution of the architecture characteristics to overall

application performance. We describe a methodology for constructing models of an
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application’s characteristics parameterized by problem size or other input parameters.

The benefits of this approach are twofold. First, modeling application specific factors

in isolation yields architecture-neutral models that can predict execution characteris-

tics on different platforms. Second, models that describe algorithmic and application

choices are typically monotonic polynomial functions; in general, models based on

measurements on a particular architecture are not. To predict how an application

performs on a different architecture, we map the application’s characteristics onto a

model of the target architecture represented by a description of the resources available

on the machine.

Based on this, the thesis describes performance analysis strategies for understand-

ing the mismatch between application and architecture characteristics, which enables

us to identify certain types of application performance bottlenecks and to estimate

the potential performance improvement from correcting them. The rest of this chap-

ter summarizes the contributions of the thesis, discusses the limitations of this work

and the remaining open issues.

9.1 Contributions

An algorithm for modeling memory reuse distance histograms

Section 5.2 describes an algorithm for modeling the structure and scaling of memory

reuse distance histograms as a function of problem size. Scalable models of memory

reuse distance histograms enable us to understand the distribution of reuse distances

for program inputs that we did not analyze directly. Other approaches described in
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the literature use a fixed strategy to divide the reuse distance data into bins across

all problem sizes, independent of how the reuse distance values are distributed. In

contrast, we automatically identify an appropriate number of bins and their bounds

to accurately represent the data for each reference across all problem sizes. In ad-

dition, we identified accuracy issues due to code optimizations such as loop peeling

and unrolling, when models are constructed at reference level from data collected

using non-unit block sizes. We describe a solution based on static-analysis-driven

aggregation of histograms corresponding to related references.

Cache miss predictions for set-associative caches

Memory reuse distance models translate directly into predictions of misses for fully-

associative caches with LRU-like replacement policies. In section 5.3.2 we describe a

probabilistic algorithm that uses memory reuse distance data to predict the number of

misses for caches with arbitrary associativity levels. Using this model, we accurately

predicted the number of cache and TLB misses for the ASCI Sweep3D code and several

NAS benchmarks, for a large range of problem sizes and several cache architectures.

Cross-architecture performance predictions

In Chapter 6 we introduce a machine description language (MDL) to model the main

architecture characteristics affecting instruction scheduling and instruction latencies.

Among other constructs, the MDL enables us to define replacement rules to account

for differences in the instruction sets of different architectures. Based on our ex-

perience, replacement rules are essential for producing accurate cross-architecture
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predictions. Next, we describe a generic modulo instruction scheduler that is ini-

tialized with a model of a target architecture. The scheduler enables us to compute

predictions of application execution costs for arbitrary target machines. We present

an algorithm for finding hierarchical super-structures in dependence graphs, where by

super-structure we mean a sub-graph with unique entry and exit nodes. These super-

structures can be logically reduced to a single edge, thus reducing the complexity of

large dependence graphs. This approach enables us to compute modulo instruction

schedules for loops that contain a large number of implicit recurrences, such as loops

with multiple inner loops and function calls.

Understanding performance bottlenecks

Computing meaningful cross-architecture performance predictions requires a good

understanding of an application’s characteristics, and of how these application char-

acteristics map onto the resources of a target machine. Chapter 7 describes analysis

strategies for identifying several types of application performance bottlenecks. Based

on this analysis, we compute performance metrics that guide tuning by highlighting

the factors that limit performance at various points in a program. Our instruction

scheduler decomposes an application’s execution cost into memory penalty time, ap-

plication dependence time, and resource contention time, based on insight gained

during the instruction scheduling process. We introduce two performance metrics

that quantify the potential for improvement from increased fine-grain parallelism in

an application, or from additional machine resources, respectively. Next, we describe

data locality analysis techniques based on collecting and modeling reuse distance
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data separately for each reuse pattern of a reference. This approach uncovers the

most significant reuse patterns contributing to an application’s cache miss counts,

and identifies program transformations that have the potential to improve memory

hierarchy utilization. We describe also a static analysis algorithm that identifies op-

portunities for improving spatial locality through data layout transformations.

Model guided application tuning

Chapter 8 describes the process of tuning three scientific applications based on the

performance metrics computed by our toolkit. For Sweep3D, we identified a loop with

high potential for improvement from increased fine-grain parallelism. Transforming

the loop increased overall application performance by 16% on an Itanium2 based

machine. Next, we identified a loop that carried 75% of all L2 cache misses and

68% of all L3 cache misses in the program. The insight gained from understanding

the reuse patterns contributing the largest number of cache misses in the program,

enabled us to transform the code to increase temporal data locality. The transformed

code incurs less than 25% of the cache misses observed with the original code. After

all code transformations the overall execution is faster by a factor of three.

For the Parallel Ocean Program (POP) from Los Alamos National Laboratory,

we identified routines with poor instruction-level parallelism (ILP), and correctly

predicted the potential for improving them. Transforming the code to increase ILP

yielded 4% better performance.

For the Gyokinetic Toroidal Code (GTC) from Princeton Plasma Physics Labora-

tory, our analysis identified two arrays of structures that were being accessed with a
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non-unit stride, which almost doubled number of cache misses to these arrays above

ideal. We also identified the main loops carrying cache and TLB misses. Reorganizing

the arrays of structures into structures of arrays, and transforming the code to shorten

the reuse distance of some of the significant reuse patterns, reduced cache misses by a

factor of two and execution time by 33% on an Itanium2 machine. When running the

transformed GTC code on an Opteron machine, we realized that our data transfor-

mations for reducing cache line fragmentation were increasing the number of parallel

data streams in some loop nests beyond the capabilities of the Opteron’s hardware

prefetcher. The result was that a large number of cache misses could not be hidden

by the hardware prefetcher. The additional cache misses exposed to the application

negated any improvements in data locality produced by our code transformations.

We found that on an Opteron, optimizing for the hardware prefetcher was important

for performance and we determined that optimizing for the hardware prefetcher was

equivalent to optimizing for the small L1 TLB. As a result, we identified a set of data

arrays experiencing a large number of L1 TLB misses; we reorganized these arrays

to reduce the number of parallel data streams in key loops. The end result of these

transformations was a reduction of cache and TLB misses by at least 50% and a

13.5% reduction in execution time on the Opteron.

9.2 Limitations and Open Issues

Predictions of memory penalty

Currently, when we compute predictions of execution time, we assume that the full
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latency penalty for cache misses is exposed. This assumption is not unreasonable in

cases when data prefetching is disabled (see section 6.5) because there is little memory

parallelism in many applications. However, some applications are optimized to overlap

their accesses to memory by clustering together memory reads that are likely to miss

in cache [52]. We have a partial implementation of an algorithm for understanding the

built-in memory parallelism in applications. Working on a loop’s dependence graph,

we compute maximal cliques of independent load instructions using the algorithm

presented in [10]. At the same time, we group references into reuse groups, where

two references are considered part of a reuse group if our analysis of symbolic access

formulas describing their access patterns determines that they access same cache lines.

For each reuse group we determine the leading reference as the reference to first access

a new memory block. Currently, we compute an intrinsic memory parallelism factor

at loop level, based on the computed cliques of independent loads, but assuming that

all references go to memory. To compute the observed memory parallelism factor, we

must consider cliques formed only by leading references of reuse groups and we must

take into account their predicted miss rate values. However, when miss rates are less

than 100%, an open issue is understanding how frequently independent references

miss in the same iteration of a loop.

Cross-compiler performance predictions

Accurate predictions of application execution costs for a target architecture on which

we did not perform any direct measurements is one of the most difficult tasks in the

area of performance analysis. We compute cross-architecture performance predic-
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tions by analyzing and modeling application characteristics that are independent of

the target architecture. However, code optimizations can greatly affect performance

as seen in Chapter 8. High level loop transformations restructure the code to improve

data locality or to increase the amount of instruction-level parallelism in inner loops.

By changing the execution order of a program, these transformations alter an appli-

cation’s memory access patterns and its instruction schedule dependences; this effec-

tively changes the application-centric factors that are modeled by our toolkit. When

trying to perform cross-architecture performance predictions and validate them using

different compilers on each platform, significant differences in compiler capabilities

make accurate predictions hard. Thus, our cross-architecture prediction results are

based on the assumption that the computation order and memory access patterns on

the target architecture are similar.

Predictions in the presence of special architectural or OS features

Special architectural features can also affect the accuracy of performance predictions.

For example, when we computed predictions of cache and TLB misses for the NAS

LU benchmark on an Itanium2 machine, we observed more L2 cache misses during

an actual run than the values predicted by our toolkit. We found that on the Itanium

running Linux, operating system’s page tables are cacheable in the L2 cache. The

effect is that a full cache line of page table entries is loaded in the L2 cache on a

TLB miss; this has the potential of lowering the average TLB miss penalty when

successive TLB misses to neighboring pages are serviced. However, if an application

accesses memory with a large stride, larger than the size of a memory page times
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the number of page table entries that fit into a cache line, each TLB miss will have

to go to L3 or to memory, causing an L2 cache miss. Our analysis does not predict

these cache misses because they are produced by the operating system on behalf of

the application, not by the application directly. Also, hardware prefetching schemes,

such as on the Opteron, are effective at fetching data in advance for streams of strided

accesses. Our analysis does not account for hardware or software prefetching schemes

at this time. However, prefetching algorithms implemented in hardware are not very

complex, and we plan to explore predicting their effects through a combination of

static and dynamic analysis.

Predictions for other architectures

At this time, we compute predictions of execution time for Itanium2 and MIPS

R12000 architectures. Computing predictions for architectures based on other pro-

cessors requires building models of those architectures using our machine description

language. Because our predictions are based on analysis of SPARC binaries that use

a RISC instruction set, our prediction work was focused on architectures with sim-

ilar RISC instruction sets. While the more recent x86 processors internally execute

micro-operations that are similar to RISC instructions, the instruction set used by

their front-end is based on a more complex CISC format. Computing predictions of

execution time for x86 architectures from analysis of SPARC binaries is still an open

issue.
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Appendix A

Enhancements to the EEL Library

Our binary analysis tools are built on top of the Executable Editing Library

(EEL) [32]. The EEL library was released in 1995 and it has not been publicly main-

tained since then. Since both the Sun Forte compiler and the GNU gcc compiler were

updated constantly in this time, we had to bring EEL up to date on understanding

control flow mechanisms used by today’s compilers.

Special effort was put into recovering the control flow of indirect jumps. We greatly

extended the previous method for correctly understanding the dispatched indirect

jump instructions which account for the vast majority (often 100%) of indirect jumps

in a program. Also, we replaced the old method for dealing with register indirect

jumps which considered the target address computed along one path only. The new

improved method is a fix point algorithm that checks each new path leading to the

jump instruction and adjusts the set of possible targets until no new path is discovered.

Additional extensions of the static analysis capabilities of the EEL library include

support for V8plus binaries and an improved method for identifying “hidden routines”

in the .text segment, in the sense that the new method produces much fewer false

positives. EEL uses the term hidden routine to refer to pieces of code that are neither
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identified as routines in the symbol table, nor reachable from the nearest preceding

routine entry specified in the symbol table. Since compilers include a large number

of read-only data in the .text segment, there is a high chance that some words of

data will have the same binary representation as valid instructions. EEL used to

mistakenly consider many such words of data as hidden routines. We conduct some

more checks before we classify sequences of seemingly valid instructions as hidden

routines.

While all the extensions enumerated above improve the quality and the accuracy

of the results produced by the static analysis, these extensions have a more important

contribution at increasing the robustness of the edited binaries produced by the EEL

library. A better understanding of the control flow in programs can only result in

more stable instrumented binaries.

EEL permits addition and deletion of code at arbitrary locations in the program.

Since the size of the text segment cannot be changed as other sections in the binary

follow at addresses right after the end of the text segment, EEL creates a completely

new section named .edited text which is placed after all the other sections in the

executable. The new section includes the code from the original .text section modified

as wanted, and it can grow as large as needed without affecting any other existing

sections. The principal challenge for having such a powerful capability, as moving

the code to a different location, is to update all the control flow instructions to

transfer the control flow to the correct instruction in the new section. For this reason,

understanding the original control flow correctly is such a necessary task.

Unfortunately, the target of some indirect jumps cannot be determined using
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static analysis. For instance, in the “C” language, function pointers can be stored

into variables or passed as arguments to other functions. A complex and costly

inter-procedural analysis may determine the target of some of these pointers. EEL

implements a simpler solution that uses the space occupied by the old .text section

to store a translation table. Every instruction in the original section is replaced with

an unconditional annulled branch instruction that transfers control to the new lo-

cation of the instruction. With this mechanism, whenever control flow reaches the

old location of a routine entry because of an “unknown” indirect jump, the uncondi-

tional branch will transfer the control back to the correct instruction. But all relative

branch instructions have a limited range. If the distance between the old and the new

address of an instruction is greater than the spanning range of the available uncon-

ditional branch instruction, the translation table will contain only the address where

the instruction is now located. To accommodate these situations, EEL replaces the

indirect jumps whose target cannot be determined, with a code patch that uses the

translation table to compute the destination target at run-time.

The above solution works well in practice most of the time. However, occasionally,

unpatched code from system shared libraries invokes a routine from the original .text

segment. Such cases occur in the finalization code of Fortran programs on SPARC

machines. We modified the EEL mechanism to handle also such cases. Instead of

storing in the translation table the address of the new location of every instruction in

the old .text section, for routine entries we place a sequence of three valid instructions

that act as a trampoline and can transfer control to any place in the address space.

Although the trampoline code overwrites the entries corresponding to the second and
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the third instructions of a routine, we consider that in practice, unknown indirect

jumps and control transfer instructions from system shared libraries do not jump to

the second or the third instruction of a routine. Until now, we did not encounter any

case in which this assumption did not hold.

Finally, we added support in the EEL library to modify the .dynamic section of

a program to include an arbitrary number of new shared library names that must

be loaded when the program starts. No binding of the global symbols from the new

libraries is performed by the loader. However, the code in the special initialization

function init is executed when the library is loaded. In the case of a user compiled

shared library, the initialization routine can be replaced with custom code. The

code in the initialization function can export the addresses of the desired symbols in

a special area of the program’s address space that is reserved in the instrumented

binary. We use this mechanism to force instrumented programs load the libdl.so

library and export the entry addresses of dlopen and dlsym routines to the profiling

code.
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Appendix B

Routine Level Cache Miss Predictions on IA64
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Figure B.1: Routine-level memory predictions for sweep on IA64
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Figure B.2: Routine-level memory predictions for bt23 on IA64
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Figure B.2: Routine-level memory predictions for bt23 on IA64 (con’t)
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Figure B.2: Routine-level memory predictions for bt23 on IA64 (con’t)
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Figure B.3: Routine-level memory predictions for bt30 on IA64
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Figure B.3: Routine-level memory predictions for bt30 on IA64 (con’t)
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Figure B.4: Routine-level memory predictions for lu23 on IA64
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Figure B.4: Routine-level memory predictions for lu23 on IA64 (con’t)
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Figure B.5: Routine-level memory predictions for LU hp2d NPB 3.0 on IA64
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Figure B.5: Routine-level memory predictions for LU hp2d NPB 3.0 on IA64 (con’t)
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Figure B.6: Routine-level memory predictions for LU hp3d NPB 3.0 on IA64
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Figure B.6: Routine-level memory predictions for LU hp3d NPB 3.0 on IA64 (con’t)
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Figure B.7: Routine-level memory predictions for LU orig NPB 3.0 on IA64
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Figure B.7: Routine-level memory predictions for LU orig NPB 3.0 on IA64 (con’t)

234



Legend
L2 measured
L2 predicted fully-associative
L2 predicted set-associative
L3 measured
L3 predicted fully-associative
L3 predicted set-associative
TLB measured
TLB predicted fully-associative

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

0 50 100 150 200

[50][20]

M
is

s 
co

un
t /

 C
el

l /
 T

im
e 

st
ep

Mesh size [cubic mesh]

sp23

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 50 100 150 200

[50][20]

M
is

s 
co

un
t /

 C
el

l /
 T

im
e 

st
ep

Mesh size [cubic mesh]

Routine compute_rhs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200

[50][20]

M
is

s 
co

un
t /

 C
el

l /
 T

im
e 

st
ep

Mesh size [cubic mesh]

Routine lhsx

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 50 100 150 200

[50][20]

M
is

s 
co

un
t /

 C
el

l /
 T

im
e 

st
ep

Mesh size [cubic mesh]

Routine lhsy

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 50 100 150 200

[50][20]

M
is

s 
co

un
t /

 C
el

l /
 T

im
e 

st
ep

Mesh size [cubic mesh]

Routine lhsz

Figure B.8: Routine-level memory predictions for sp23 on IA64
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Figure B.8: Routine-level memory predictions for sp23 on IA64 (con’t)
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Figure B.9: Routine-level memory predictions for sp30 on IA64
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Figure B.9: Routine-level memory predictions for sp30 on IA64 (con’t)

238



Appendix C

Routine Level Cache Miss Predictions on R12K
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Figure C.1: Routine-level memory predictions for sweep on R12K
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Figure C.2: Routine-level memory predictions for bt23 on R12K
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Figure C.2: Routine-level memory predictions for bt23 on R12K (con’t)
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Figure C.3: Routine-level memory predictions for bt30 on R12K
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Figure C.3: Routine-level memory predictions for bt30 on R12K (con’t)
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Figure C.4: Routine-level memory predictions for lu23 on R12K
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Figure C.4: Routine-level memory predictions for lu23 on R12K (con’t)
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Figure C.5: Routine-level memory predictions for LU hp2d NPB 3.0 on R12K
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Figure C.5: Routine-level memory predictions for LU hp2d NPB 3.0 on R12K (con’t)
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Figure C.6: Routine-level memory predictions for LU hp3d NPB 3.0 on R12K
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Figure C.6: Routine-level memory predictions for LU hp3d NPB 3.0 on R12K (con’t)
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Figure C.7: Routine-level memory predictions for LU orig NPB 3.0 on R12K
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Figure C.7: Routine-level memory predictions for LU orig NPB 3.0 on R12K (con’t)
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Figure C.8: Routine-level memory predictions for sp23 on R12K
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Figure C.8: Routine-level memory predictions for sp23 on R12K (con’t)
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Figure C.9: Routine-level memory predictions for sp30 on R12K
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Figure C.9: Routine-level memory predictions for sp30 on R12K (con’t)
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Appendix D

Grammar of the Machine Description Language

MachineName ExecUnits InstructionDescriptions

MachineDescription

Machine : StringConst
, Version : StringConst

;

MachineName

CpuUnits = CpuUnitList ;

ExecUnits

Identifier UnitInformation
,IdentifierUnitInformation

CpuUnitList

"

[^\"\n]

"

StringConst

_

[a–zA–Z]

[_0–9a–zA–Z]

Identifier
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* IntConst

* IntConst
{ StringConst }

{ StringConst } * IntConst

UnitInformation

Maximum IntConst from UnitsList RuleName ;

UnitsRestriction

{ StringConst }

RuleName

ALL_UNITS

RestrictionUnit

,RestrictionUnit

UnitsList

Identifier UnitRange

RestrictionUnit

InstructionReplacement

InstructionExecution

InstructionBypass

UnitsRestriction

MemoryHierarchyDef

InstructionDescriptions

MemoryHierarchy = MemoryLevelsList ;

MemoryHierarchyDef
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Identifier MemLevelInformation
,IdentifierMemLevelInformation

MemoryLevelsList

[ MemNumBlocks , MemBlockSize , MemAssocLevel ,

MemBandwidth , MemNextLevel , MemPenalty ]

MemLevelInformation

IntConst

*

MemNumBlocks

IntConst

*

MemBlockSize

IntConst

*

MemAssocLevel

FloatConst

IntConst

*

MemBandwidth

Identifier

*

MemNextLevel
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IntConst

*

MemPenalty

Replace ListGenericInstructions with ListGenericInstructions RuleName ;

InstructionReplacement

GenericInstruction

+

ListGenericInstructions

InstName

ListRegisters –>

ListRegisters

–>

ListRegisters

GenericInstruction

FpRegName

GpRegName

[ GpRegName ]

,

FpRegName

GpRegName

[GpRegName]

ListRegisters

Bypass latency IntConst for ListInstructionTypes

DependencyTypes ListInstructionTypes ;

InstructionBypass
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InstName

ANY_INSTRUCTION

|InstName

ListInstructionTypes

–>

[ ListDependencies ]

DependencyTypes

DepType

|

ListDependencies

Instruction InstName template = InstTemplates ;

InstructionExecution

InstTemplate

|

InstTemplates

CycleTemplate
* IntConst ,CycleTemplate

*IntConst

InstTemplate

NOTHING

ALL_UNITS

UnitClass

+UnitClass

CycleTemplate
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Identifier UnitRange UnitCount

UnitClass

[ RangeIntervals ]

UnitRange

OneInterval

,

RangeIntervals

IntConst

IntervalLimit : IntervalLimit
: IntervalLimit

OneInterval

IntConst

IntervalLimit

( IntConst )

UnitCount

0

[1–9]

[0–9]

IntConst
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IntConst
.

[0–9] Exponent

Exponent

. [0–9]

[0–9] Exponent

FloatConst

e

E

–

+

IntConst

Exponent

memory

control

gp_register

fp_register

DepType

$f [0–9a–zA–Z]

FpRegName

$r [0–9a–zA–Z]

GpRegName

generic instruction name

InstName
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