2%
L2

RIC

Why Performance Models?

How well does this execution scale?
—problem size
—number of processors

How much resources does this execution need?
What kinds of resources are suitable?

How should data and computation be mapped to
resources?

How will I know if run-time adaptation is necessary?

How will a different architecture benefit this
application?

Performance Mcdeling Challenges and Geals

What to predict?

—computation time

—memory hierarchy utilization
—data movement volume and cost
Predict scaling as a function of
—data/problem size

—processor count

—processor node characteristics
—network characteristics

Our Approach

Construct architecture-neutral Application Signatures

* Measure static characteristics

* Measure dynamic characteristics for multiple

executions

—computation

—communication frequency and volume
—memory access locality

Look at application binaries instead of source code
—language-independent tools

—analyze heterogeneous applications

—tools may aid compiler developers

Capturing Dynamic Behavior

Binary instrumenter built on top of EEL library
Instrumenter has two modes:
—instrument for blocks frequency and communication data
—instrument for memory reuse distance
Approach: instrument each routine
—build the contral flow graph
—compute |oop nesting structure
—determine places where to insert instrumentation

Building Parameterized Performance
Models for Black-Box Applications

Gabriel Marin, John Mellor-Crummey Department of Computer Science Rice University

Capturing Dynamic Behavior II

Computation signature is given by the histogram of basic blocks
executed between synchronization points

Methodology:

—place edge counters to monitor BB execution

- determine where to place them for minimum cost monitoring
routines

—instrument calls to ion and data

—each instrumented event calls a (dynamic) library routine to
record its occurrence

—use the collected counters histogram to reconstruct counts for

all edges and basic blocks

Using a similar approach instrument all memory instructions to
collect dynamic data about memory access locality.

Capturing Dynamic Behavior III

Capturing Communication Traces at Run Time

Parallel performance depends on synchronization and
data movement

Capture a characterization of communication during
execution

—how much data is transferred
—what processes communicate
—where communication occurs in the program

Partially-ordered Execution Graph
SHl
R

Performance Modeling Overview

Goal: scalable, portable model useful for predicting performance

Analyze dynamic characterizations

—interval computation profile: how much computation is
between synchronization events?

—data movement profile: how much data is transferred at
synchronization points between communication partners?

—serialization analysis: how bal d is the

0
between synchronization points

—overlap analysis: how much computation is overlapped with
communication

—periodicity analysis: is the application behavior periodic?

Analyze how (pr'ofiles change in response to processor
and data scaling

] ion

ot Interval Proflle: 2 vs.

10 1 =
Log2(BB Count per Interval)

Predicting Computation Costs

Single process view
Function of

—basic block characteristics

- instruction mix

- instruction schedule dependences
—target processor architecture

- resources available per cycle

- instruction latencies
—memory hierarchy response

- cache configuration

- data access patterns

- cache and memory latencies

Building an Architecture-neutral
Model ‘of Computation

* Build a model for the execution frequency of each
counter

* Build control flow graph
* Recover loop nesting structure

* Use counters model to recover frequency of executed
paths
—restrict path recovery at individual loops
—consider loops from inside out
—a BB belongs only to the innermost loop in which it appears

Map Computation Model to a Target

* Input:
—parameterized model for loops execution frequency
—loops instruction mix and resource dependences

* Methodology:
—translate native instructions into generic RISC instructions

—instantiate configurable scheduler with target architecture
description

—simulate frequent executed paths
* Output:
—predicted execution time

Modeling Memory Hierarchy

Model portable across different machine configurations

* Temporal reuse distance: distinct locations accessed
between a pair of accesses to the same datum

Spatial reuse distance: distinct locations accessed
between a pair of accesses to the same cache line

Model the reuse distance seen by each memory access
—use complete histograms of reuse distances

—divide data in multiple bins

—build parameterized model for each bin

Memory Reuse

L1 Hits LZH“S‘
n I|||| 1101 || Il

Reuse Distance
L2

L1 Size Size

Collected data Constructed model
One of the most frequently executed memory accesses in Sweep3D

e
Collected data
Another fr

Constructed model
in Sweep3D

memory

Predicting Memory Hierarchy Access

* Translate memory reuse distance model into cache miss ratios
—conflict misses affect accuracy
—transformations can reduce number of conflict misses

Matrix Predicted Values Hardware Counters Values
#accesses | L1misses | L1misses | #accesses | L1 misses | L1 misses
% (%)
500 |2.513e+08 | 1.584e+07 | 6.306% | 2.50e+08 | 1.59e+07 6.36%
853 | 1.245e+09 | 7.840e+07 | 6.297% | 1.24e+09 | 7.92e+07 | 6.387%
1024 | 2.153e+09 | 1.364e+08 | 6.337% | 2.15e+09 | 1.38e+08 | 6.418%
1271 | 4.115e+09 | 2.603e+08 | 6.327% | 4.11e+09 | 2.66e+08 | 6.472%

size

A comparison side by side of the predicted and measured values
for a matrix-multiply application

* Modeling memory hierarchy

—conflict misses and spatial locality are difficult to
incorporate into scalable models

* Modeling computation

—incorporating memory latency into scheduler

—tuning branch prediction simulation for better accuracy
* Modeling communication

—need work to understand communication's impact on
serialization in the form of a scalable model

* Composing the models
* Using models to guide Grid-enabled executions

ACKNOWLEDGEMENTS

We would like to thank Richard Hanson and Ronald Goldman for
providing valuable input on computing parameterized curves from a
set of measured points.

