Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

11-1-2007

MapReduce with Communication Overlap

(MaRCO)

Faraz Ahmad
faraz@purdue.edu

Seyong Lee

Mithuna Thottethodi

mithuna@purdue.edu

T.N. Vijaykumar
Purdue University, vijay@purdue.edu

Ahmad, Faraz; Lee, Seyong; Thottethodi, Mithuna; and Vijaykumar, T. N., "MapReduce with Communication Overlap (MaRCO)"
(2007). ECE Technical Reports. Paper 413.
http://docs.lib.purdue.edu/ecetr/413

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/ecetr
http://docs.lib.purdue.edu/ece

MapReduce with Communication Overlap (MaRCO)

Faraz Ahmad
Seyong Lee
Mithuna Thottethodi

T. N. Vijaykumar

TR-ECE-11-07

November 1, 2007

School of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University

West Lafayette, IN 47907-1285



MapReduce withtCommunicatiorQverlap
(MaRCO)

Faraz Ahmad, Seyong Lee, Mithuna Thottethodi and T. N. Vijaykumar

ABSTRACT model from Google inspired by functional languageeip
andreduce addresses these two programmability issues by
MapReduce is a programming model from Google for providing automatic data management among the cluster
cluster-based computing in domains such as searchnodes and transparent fault detection and recovery.
engines, machine learning, and data mining. MapReduceMapReduce programs have a fixed structure where the
provides automatic data management and fault tolerance tanput data ismappednto a set of<key, value>tuples and
improve programmability of clusters. MapReduce’s execu- then the values for each key amducedto a final value.
tion model includes an all-map-to-all-reduce communica- Because of parallelism within map and within reduce com-
tion, called the shuffle, across the network bisection. Someputations, multiple map and reduce tasks are run in paral-
MapReductions move large amounts of data (e.g., as muchel. However, the programmer merely specifies the map
as the input data), stressing the bisection bandwidth andand reduce functions, whereas task management, data man-
introducing significant runtime overhead. Optimizing such agement, and fault tolerance are handled automatically.
shuffle-heavy MapReductions is important because (1)Despite the fixed structure of its programs, MapReduce
they include key applications (e.g., inverted indexing for captures many important application domains in Internet
search engines and data clustering for machine learningland Web computing. Despite recent debate on the relative
and (2) they run longer than shuffle-light MapReductions benefits of MapReduce over databases [19], MapReduce
(e.g., 5x longer). In MapReduce, the asynchronous natureremains attractive for enterprises that handle large amounts
of the shuffle results in some overlap between the shuffleof fast-changingdata including Google [11], Yahoo [13],
and map. Unfortunately, this overlap is insufficient in shuf- Microsoft [16],[24] and Facebook [15], as discussed in
fle-heavy MapReductions. We propostapReduce with Section 4.
communicationoverlap (MaRCO) to achieve nearly full While MapReduce’sprogramming modelhas two
overlap via the novel idea of including the reduce in the phases — map and reduce, MapReduesiscution model
overlap. While MapReduce lazily performs reduce compu- has four phases. In the first phase, the map computation
tation only after receiving all the map data, MaRCO operates over input data and emits tey,value>tuples.
employs eager reduce to process partial data from someThis phase is completely parallel and can be distributed
map tasks while overlapping with other map tasks’ com- easily over a cluster. The second phase performs an all-
munication. MaRCO'’s approach of hiding the latency of map-to-all-reduce personalized communication [17] in
the inevitably high shuffle volume of shuffle-heavy which all the tuples for a particular key are sent to a single
MapReductions is fundamental for achieving performance. reduce task. Because there are usually many more unique
We implement MaRCO in Hadoop’s MapReduce and show keys than reduce tasks, each reduce task may process more
that on a 128-node Amazon EC2 cluster, MaRCO achievesthan one key. The third phase sorts the tuples on the key
23% average speedup over Hadoop for shuffle-heavyfield essentially grouping all the tuples for the same key.

MapReductions. This grouping does not occur naturally because each
reduce task receives tuples from all the map tasks and the
INDEX TERMS tuples for the different keys meant for a reduce task may be

i llel ing, MapReduce, per- Jumbled. Finally, the fourth phase of reduce computation
forﬁfﬁfecgg?imgﬁbﬁ?ra el computing, MapReduce, p processes all the tuples for the same key and produces the

final output for the key.

Because of the abundant parallelism within map and
1 INTRODUCTION within reduce, and because of reduce’s dependence on

i ) , map, map tasks occupy the entire cluster followed by

The explosion of information on the Internet and the reduce tasks instead of space-sharing the cluster with
World-wide Web has led to commercially-important prob- reduce tasks. Consequently, the all-map-to-all-reduce per-
lems in the Internet- and Web-computing domains such assonalized communication, calleshuffle[11], amounts to
search engines, machine learning, and data mining. Algo-a||l-nodes-to-all-nodes communication which crosses the
rithms for solving these problems process massive amountsetwork bisection. The shuffle moves data from the map
of data (e.g., terabytes) and exhibit abundant and simplenodes’ disks rather than their main memories, through the
parallelism. As such, the algorithms are suitable for inex- cluster network, to the disks of the reduce nodes, incurring
pensive large-scale clusters of commodity computers. both disk and network latencies. Whilshuffle-light
_ While the cluster-based approach achieves cost-effecMiapReductions move only small amounts of data (e.g., a
tive performance, data management (distribution andsmall fraction of the input dataphuffle-heavivapReduc-
movement), and fault tolerance performed manually by the tions move large amounts of data (e.g., as much as the
programmer degrade programmability. Faults (software input data), stressing the disk and network bisection band-
bugs or hardware failures) are not uncommon becausewidths. We observe that a MapReduction's functionality
most of the problems run for a long time even on a large fundamentally impacts its shuffle volume. Shuffle-light
cluster (e.g., a few hours on a 1000-node cluster). . MapReductions correspond to data summarization tasks

MapReduce [11], the celebrated new programming (e.g., counting occurrences) which naturally produce much



less output than input, whereas shuffle-heavy MapRedudata. Because typical reduce functions are commutative and
tions correspond to data re-organization (e.g., inverte@ssociative, their partial results can be re-reduced easily
indexing, sorting) which tend to output as much as or morewithout any ordering constraints to produce the correct final
than the input. Shuffle-heavy MapReductions incur considoutput. Accordingly, MaRCO breaks up reduce into many
erable performance overhead (e.g., 30-40%) due to the higbmaller invocations on partial data from some map tasks
data volume transferred using affordable disk and networkvhile overlapping with other map tasks’ shuffle latency.
bisection bandwidths of commaodity parts. Specifically, net-Thus, MaRCO’seager reduce overlaps with the shuffle
work bisection for large clusters (e.g., 55 Mbps per node fowhile the original MapReduce executionlazy reduce
a 1800-node cluster [22]) is scarcer than local disk bandstarts only after receivingll the shuffle data. We note that
width (e.g., 800 Mbps). Optimizing shuffle-heavy MapRe-while overlapping independent operations is common in
ductions is important because (1) they include keycomputer systems, overlapping dependent operations by
applications such as inverted-index in search engines and lexploiting commutativity and associativity as done by
means in machine learning and (2) they take long to comMaRCO is rarer. (4) In MaRCO, a final reduce step re-
plete due not only to long shuffle times but also to longreduces all the partial reduce outputs to produce the final
reduce times for processing the large shuffle data (gogt, output. Fortunately, the partial reduce closely resembles the
runs five times longer thagrep[11]). In contrast, shuffle- original reduce and the final reduce is often identical to the
light MapReductions are short-running with much less needriginal reduce. Therefore, the extra programming effort
and opportunity for optimization. under MaRCO compared to that under MapReduce is mini-

Many straightforward options for this problem are not mal. Thus, MaRCO maintains MapReduce’s programma-
effective. (1) Reducing the overhead via brute-forcebility advantages. Furthermore, MaRCO improves
approaches to improve bisection bandwidths are inherentlperformance on commodity cluster hardware without
not scalable. While specialized disk drives and networksncreasing the hardware cost or complexity. Finally, blindly
may deliver higher bandwidths, commodity hardware [8] isapplying partial reduce may introduce overheads for which
more cost-effective, a key consideration for MapReducewe employ several control mechanisms.
(2) In MapReduce’s parallel execution, a node’s execution We evaluate MaRCO by extending the public-domain
includes map computation, waiting for shuffle, and reduceMapReduce implementation from Hadoop [13] and we
computation, and the critical path is the slowest node. Teevaluate eleven MapReductions including a mix of shuffle-
improve performance, the critical path has to be shortenecheavy and shuffle-light MapReductions. Using a 128-node
However, the natural overlap afne node’s shuffle wait Amazon EC2 cluster, we show that on average MaRCO
with anothernode’s execution does not shorten the criticalachieves 23% and 14% speedups over Hadoop on shuffle-
path. Instead, the operations witlarsingle nodeneed to be  heavy and all MapReductions, respectively. We provide
overlapped. (3) Simultaneously running multiple MapRe-arguments and experimental evidence that our speedups
ductions may hide one job’s shuffle under another job’swill likely scale to larger clusters.
computation and improve cluster utilization, however, our In summary, the key contributions of this paper are:
goal here is to improve mapreduction latency and not data jdentifying the problem of exposed shuffle in shuffle-
center throughput because (a) latency is important in timing heavy MapReductions:
critical production runs which often chain multiple depen- ) T )
dent mapreductions many of which are shuffle-heavy and addressing the problem via the novel idea of fully over-
(b) reducing latency also improves throughput (as a good lapping the shuffle with the reduce;
side effect) whereas multitasking multiple jobs usually,  empioving control mechanisms to avoid overheads due
requires more memory to hold multiple program state. (4) . .
In MapReduce [11,13], the asynchronous nature of the © this overlap; and
shuffle combined with the fact that there are multiple map-  significantly speeding up shuffle-heavy MapReductions
tasks available at every node (to exploit within-map paral- in a complete MapReduce implementation running on a
lelism) results in some overlap between the shuffle and map o51.world cluster
(i.e., earlier map tasks’ communication with later map '
tasks’ computation). Unfortunately, overlap with map com-
putation is insufficient in shuffle-heavy MapReductions
because shuffle time is longer than map computation tim
(shuffle time is 30-40% o&ll computation but is longer
than map computatioaloné. (5) Alternately, overlapping
multiple map tasks’ communications with each other (i.e.,
earlier map tasks’ communication with later map tasks’ .
communicgtion) is not viable because the network ié))isectio@ MAPREDUCE: BACKGROUND
is saturated.

Instead of the above unviable options, we proposeg,,
MapReduce withcommunicatioroverlap (MaRCO)ased

The rest of the paper is organized as follows. We provide
ackground on MapReduce in Section 2. We describe
aRCO in Section 3, some related work in Section 4, and

our experimental methodology in Section 5. We present our
results in Section 6 and conclude in Section 7.

We briefly describe MapReduce with an illustrative
ample. In addition to the sequencing of the various com-

utation and communication steps in MapReduce, the

on the novel idea of overlapping the shuffle with the rGduc‘jtlj)escription also points out the sources of communication

computation. MaRCO achieves nearly full overlap of the Ly ) :
shuffle and is based on the following four key observationsd[?_?{%]?_nd the limited map-shuiffle overlap in MapReduce

(1) Because reduce computation is long in shuffle-heavy™ =qnsider the followin ;
. ' g computation expressed as a
MapReductions, MaRCO achieves better overlap than thwapReduction. The input is the directed gragh in

with map alone. (2) Because reduce generates no netwoik o
! . . ; gure 1(a) specified as a set of edges (each edge repre-
traffic, MaRCO is not constrained by network saturation.cantad” as acu,v> tuple of two vertices as shown in

(3) Though reduce is dependent on shuffle data, reduce cgf)g e 1(h)). The goal is to arrive at the adjacency list rep-
start operating orpartial data without waiting forall the  osantation of the reverse grah (i.e., G’ contains edge



] buckets) is held in the local disk and is not written to the
_ 5 global file system due to a fault-tolerance-related trade-off
@c) @do)|Aal @b ea = | (@ b)) discussed at the end of this section. After each map task is
(D)  (@d) @3] b.d) @h|$|b.den complete, reduce tasks must pull the relevant hash-bucket
' v (be) (.0)|2 of intermediate data from each map task. This all-map-to-
»‘ (a’e)(e'b)T &g (e(ad) all-reduce communication, calledhuffle, includes disk
(©) (d) bayeh |, | OH ()2l a) reads at the map tasks’ nodes, the network traversal, and
(&) ®h (th)| 5| Ca) GDIE| e, disk writes at the reduce tasks’ nodes. As mentioned in
€h (e || Cd (fe)g (.(b.c.de) Section 1, because of the abundant parallelism within map
o (d,b) €| (d.a) gl oo and reduce, and because of reduce’s dependence on map,
| 3 the map tasks occupy the entire cluster followed by the
(@ (b) © & @ reduce tasks instead of space-sharing the cluster with
FIGURE 1: MapReduce Example reduce tasks. Consequently, the shuffle amounts to all-
. . ' nodes-to-all-nodes communication which crosses the net-
<v,u> if G contains<u,v>). work bisection. Thus, the shuffle is a significant problem

In the two-phase MapReduce programming model, thgor MapReductions that produce a lot of intermediate data.
above computation can be specified as (1) a Map functioBecause MapReduce requires the shuffle to complete
that emits a tuplecv,u> (key isv and value i) for every  pefore sort and reduce computation begins, the shuffle lies
edge<u,v> in G which results in the intermediate data g the critical path.
shown in Figure 1(c) and (2) a reduce function that creates Tq reduce the volume of the shuffle, MapReduce uses an
a combined list of all the unique values associated with ptimization calledcombiningwhich performs a reduce
key and emits thev, list(u)> as the final output, as shown gperation on each of thR hash buckets of a map task’s
in Figure 1(d). The example highlights (shown in bold) thejntermediate data. The reduce operation used for combining
MapReduce functionality on the edges incident on 1@de s often, but not always, the same as the programmer-speci-

To illustrate the execution of the above example on &ied reduce function. While the requirement to specify the
cluster, we consider a cluster with two machinds<2)  compbiner may seem like an additional burden on the pro-
and we assume four map taské £ 4) and two reduce tasks grammer, in most cases the combiner is intuitive and pro-
(R=2). (In practice, the choice of the number of tasksyjges reasonable performance benefits. Figure 2 illustrates
depends on a number of factors including task-granularityhe combiner acting on th buckets of intermediate data
for load balance and re-execution granularity for failure tol-emitted by each map task and re-emitting the same number
erance.) Figure 2 illustrates the execution timeline on eaclf pyckets with potentially fewer tuples in each bucket.
of the two nodes. The activity on each node is further  The shuffle is asynchronous in nature which results in
divided into two rows with the top row corresponding to some overlap between the shuffle and map tasks. Because
map task execution and the bottom row corresponding teduce tasks may not be scheduled to run when map tasks
reduce task execution. _ complete, it is not possible for map tasks to directly push

Because the map function is, by definition, an SPMDthe shuffle data to reduce tasks. Due to its pull-based nature,
program that is applied to all input data, the input data ishe shuffle is effectively asynchronous from the perspective
partitioned intoM pieces each of which is processed by aof the map task because subsequent map td48a6dM4)
map task K1 throughM4 in Figure 2). To facilitate sched-  can begin execution without waiting for the shuffle of the
uling of theM map tasks to th&l nodes, the input data is prior map tasksNI1 andM2) to complete, as illustrated in
initially placed on a global file system which makes all Figyre 2. This asynchrony leads to overlap of map compu-
input data available to all nodes. However, because the glaation with the shuffle. While the figure corresponds to our
bal file system is typically implemented by using the local example with 2 map tasks per worker nodé/ = 4/2 =
disks of the machines in the cluster [3,12], access timeg) in general there are multiple map tasks per node.
may be non-uniform. Consequently, to maximize locality, Because the asynchrony exists irrespective of whether a
the runtime system attempts to schedule map tasks to nod@gde’'s map tasks are run sequentially or in some concurrent
where the data is local. Such a schedule is not always guamanner, the map-shuffle overlap exists independent of map
anteed and there may be cases where a map task has to rQégks being sequential or concurrent. Nevertheless, if the
data from a remote node. These remote accesses are ofiRp execution time is less than the shuffle time (typical for
source of network communication, though the runtimeshyffle-heavy MapReductions), there remains some
scheduling often succeeds making this communicatiorxposed shuffle which grows as the number of map tasks
uncommon. per node grows (shaded regions in the shuffle rectangles in

_ Each map task’s output data must eventually be commugjgyre 2).”As mentioned in Section 1, one caveat about
nicated to the various reduce tasks such that two conditionsigyre 2 is that the map-shuffle overlap within a node

are satisfied. First, tuples with the same key must be sent tghnroves performance but the natural map-shuffle overlap
the same reduce task. Second, the load across reduce tagk$ossnodes doesiot because the critical path through a
must be balanced. To satisfy the above two conditions, eac§inglenode determines overall execution time.

output tuple is assigned to oneRbuckets (one per reduce  Agter the shuffle is complete, each reduce task sorts all
task) using a hash function on the key. For our.example ifits data to group tuples with the same key. In the example,
Figure 2, each map task creates two hash buck@tsad  reduce tasiR1sorts (by the key) its input dat:R for i =1

R, for the i map task) becausR =2. Because all map thry 4). In addition to grouping tuples with the same key,
tasks use the same hash function, tuples with the same keyting has the added advantage that the output data can be
are mapped to the same reduce task. Because the hash-fuggarched easily — an important consideration when
tion is expected to map evenly acrossRltasks, the load  MapReduce is used for indexing. Hadoop performs some
(in terms of number of tuples) assigned to reduce tasks ig,.memory pre-sorting of intermediate data while waiting
more-or-less balanced. The intermediate data (i.e., all thgyr the rest of the intermediate data to be received at the



'OC%QSQ“G’ disk writes _ combiner

R 3R Time >
R e e
Node 2 R> _—
1 qShufﬂe (M1) to R2] [ Shuffle (M3) to R2 | | R1 | R1 | Network | T?
local comm. ; —» global
to R1 —DNNN\Y Reduce Task (R1) Sort Reduce + Disk IO file system
R R
Node | (] M2 PoRe] Y/ wa [y H/1
2 T
local comm. *Shuffle (M2) to R1] [ Shuffe(MHtoR1 | R2 | R2 Network |_’ g?obal
t0 R2 ——h SN _ON\A\N Redyce Task (R2) LSort Reduce + Disk /O file system

FIGURE 2: MapReduce Execution Time Line (M=4, R=2, N=2)

reduce task. Further, Hadoop opportunistically performs inin Section 1 and Section 2, the asynchronous nature of pull-
memory merging of pre-sorted intermediate data at eachased shuffle results in some shuffle-map overlap, but the
reduce task. Both these optimizations essentially place averlap is insufficient if a map computation time is less than
part of the sort computation in parallel with map computa-the shuffle delay. To increase overlap and reduce the critical
tion, allowing the critical path to be shortened. Finally, afterpath on individual nodes in the cluster, MaRCO eagerly
sorting the intermediate data, reduce computation is perexecutes reduce computation which offers more work to
formed on each such set of tuples with the same keyoverlap with the shuffle (Observation 1 from Section 1).
Another reason for the long execution times of shuffle-Because reduce computation operates on sorted data, our
heavy MapReductions (other than the shuffle bottleneck) i®ager reduce involves some eager sorting, callgubésal
that the volume of intermediate data directly translates tsort Eager execution of sort and reduce is possible because
long sort and reduce times. The final reduce task output isitermediate data begins arriving at the reduce task soon
written to the global file system which involves communi- after the first map task completes (and continues as subse-
cation over the network to remote nodes. Because the finguent map tasks complete). An added advantage of overlap-
output is buffered and the actual communication occuring the shuffle with partial sort and reduce is that, unlike
whenever the buffers are full, the communication is inter-map tasks, partial reduce do not generate any additional
leaved with final reduce computation. Using asynchronousetwork traffic (Observation 2 from Section 1).
writes can overlap the interleaved output communication Figure 3 illustrates the execution time line of MaRCO
and reduce computation which would be beneficial foron a two-node cluster with map tasks shown in the top row
shuffle-heavy MapReductions whose outputs are largeand reduce tasks shown in the bottom row for each node.
Therefore, we modified Hadoop to employ asynchronousSimilar to Figure 2, the rectangle of each map task contains
writes. (in order) the delay of reading input data which may be
Handling failures is one of the key motivations for local or remote (cross-hatched rectangle), the map compu-
MapReduce. To that end, fault tolerance for input and finatation, the emitting oR hash buckets of intermediate data,
output data is achieved via replication in the underlyingthe operation of a combiner and the emittingRafombined
global file system. To achieve fault tolerance for computa-hash buckets of intermediate data. The partial reduce tasks
tion and intermediate data (from map tasks), MapReducat every node overlap with the shuffle (and run concurrently
uses re-execution. When a map task fails without completwith the node’s on-going map tasks). Because of the work
ing, the task is re-executed on another machine. Becausione by the partial sort and reduce tasks, the final sort and
the input data on the global file system is replicated (and iseduce tasks complete earlier than in MapReduce
not lost due to the failure), re-execution on other machinegFigure 2), resulting in the shortening of the critical path of
is always an option. Note that the intermediate data, whiclexecution.
is present only on the local file system becomes unavailable We now describe MaRCQ'’s implementation of eager
when a machine fails necessitating re-execution of evepartial sort (Section 3.1) and partial reduce (Section 3.2)
completed map tasks. This design choice, previously menahich goes significantly beyond the limited forms of eager
tioned in this section, is made in recognition that re-execusort/reduce (i.e., combiners, presorting, in-memory merg-
tion of map task is less expensive than replication of thang) that exist in MapReduce as described in Section 2.
intermediate data because replication cost is incurred each )
time whereas re-execution cost is incurred only in case oB.1 Eager Partial Sort
failures. Alternate designs have been proposed in other con- , . . . .
texts where the decision to replicate or not may depend OF Google's MapReduce implementation, as described in
whether re-execution is more expensive than replication [9]|11]; 1azily sorts the intermediate data after all the data is
Finally, MapReduce uses re-execution to handle the taski&ceived. Hadoop achieves a limited form of eager in-mem.-
on slow nodes that have not failed (i.e., the nodes respon@y sorting and merging before writing sorted runs to disk.
to the master node, but their map/reduce tasks lag fathese sorted runs can span multiple map tasks’ intermedi-
tasksare launched pro-actively assuming the original taskgreation of sorted runs converts the final sort to a merge of
are stuck due to some machine-specific performance glitci'e€ multiple sorted runs.

and results from the earliest completing task are used. In contrast, MaRCO's eager sorting approach further
merges the disk-resident sorted runs (created by the in-

3 MARCO memory merge) without waiting for all intermediate data.
This merging creates longer and fewer sorted runs, which
The goal of MaRCO is to overlap the significant exposeddecreases the amount of work to be done in the final sort.
shuffle delays (for MapReductions with large amounts ofFurther, MaRCO’s eager sorting benefits from caching
intermediate data) with useful computation. As mentioneceffects when eager partial sort may find the sorted runs in



M1 |_| |:|r//] M3 |_| |_|_/_X Time -

Node
1 Shuffle (MI) to R2 | [Shuffle (M3)To RZ ] To
J AN N : | Network |—> global
R1 Partial Sort & Reduce (many invocations) | Sort Reduce +Disk 1/0 file system
Reduce Task (R1)
WS/ Ea=I:/Ea=1=IN
5 Shuffle (M2) to R1 Shuffle (M4) to RT
_ _ _ | | Network |_’ Iobal
R2 Partial Sort & Reduce (many invocations) || Sort Reduce +Disk 1/10 ?Ie system
Reduce Task (R2)

FIGURE 3: MaRCO Execution Time Line (M=4, R=2, N=2)

memory. Because MaRCO uses both eager partial sort arttbns. Thus, the partial reduce is a new tool to improve
partial reduce in conjunction, partial sort is invoked only MapReduce’s performance for the important class of shuf-
when a partial reduce is invoked. The precise policy thafle-heavy MapReductions. Second, while invoking the com-
controls when, and over what data, partial reduce (and thulsiner is straightforward, the partial reduce introduces
partial sort) operates upon is explained below inoverhead (both CPU and disk I/O) that can hurt perfor-
Section 3.2. Note that the merging performed by eager pamance if the invocation and scheduling are not controlled
tial sort is similar to what an external merge sort would properly (e.g., uncontrolled partial reduce incurs 11% aver-
achieve in Hadoop, except that the merging is staggeredge slowdown over MapReduce). There are three types of
over the duration of the shuffle. such overhead which MaRCO controls by employing three
) mechanisms.
3.2 Eager Partial Reduce
o ) ) ) ) 3.3 Controlling Partial Reduce Overhead

Similar to partial sorting, reduce functionality can also
be applied without waiting for all intermediate data to be  First, unlike eager partial sort where there was no
received. Because the partial reduce operates on subsetsinfrease in the total amount of work compared to lazy sort-
tuples the functionality of the partial reduce in MaRCO ing (any merging of sorted runs achieved by the partial sort
must be commutative and associative and there must beaiminates an equivalent merge that must occur at the final
final reduce operation to re-reduce all the partially-reducedort), the partial reduce introduces overheads. Specifically,
data. This requirement is not a problem in practice as comthe writing of the partially reduced output to disk and read-
mon reduce functions are often commutative and associang that data in the final reduce operation are both over-
tive, as mentioned in Section 2. In such cases, the partidleads that do not occur in the lazy reduce version.
reduce, the combiner and the final reduce could, in theoryAccordingly, we observe that for the partial reduce to do
be the same. In practice, however, because the combineseful work and decrease the burden on the final reduce, the
operates on only one map task output while the partiapartial reduce must operate on multiple tuples with the
reduce combines several map task outputs, the combiner same key and emit a single reduced tuple. Reading tuples
light-weight (e.g., duplicate elimination or summation) and emitting them back unchanged does not decrease the
whereas the partial reduce is more heavy-weight (e.g., setmount of work for the final reduce. Instead, given that the
union, list building) to match their respective opportunities.combiners already eliminate duplicate keys in the output of
Indeed, the partial reduce and the combiner functions ara singletask, tuples with the same key must be aggregated
different formostof our shuffle-heavy MapReductions. For across the intermediate datarofiltiple map tasks. To this
instance, in our benchmark term-vector, combiner comend, we impose a minimum threshold, called
bines n <word, 1> into <word,n> but partial-reduce buildsstart_thresholdthe number of map task outputs that must
tuples of the form <host, {wordcount, word,:couns, ...,  be received at a reduce task before a partial reduce can
wordg:.coun}> (See Table 1). When the reduce function is commence. The choice of the threshold is driven by a trade-
non-commutative or non-associative, an alternate partiabff between the overheads and the exposed shuffle. On one
reduce function can be specified in MaRCO. The additionahand, waiting for the intermediate data of a large number of
burden on the programmer to extract and specify the appranap tasks (i.e., setting a high value fstart_thresholjl
priate commutative and associative partial reduce functiomesults in wasted opportunity where the exposed shuffle is
from the full (and potentially non-commutative or non- not overlapped with the partial sort/reduce. But setting a
associative) reduce function is only slightly higher than thehigh value forstart_thresholdis likely to decrease over-
burden imposed by the use of combiners which MapReducbkeads because it is more likely that multiple tuples with the
implementations already support (Observations 3 and 4 isame key will be encountered when larger sets of interme-
Section 1). diate data are considered. Current MapReduce implementa-

Beyond the difference in functionality, combiners andtions can be interpreted as one extreme of this trade-off,
the partial reduce differ at a more fundamental level. Firsteffectively minimizing overhead but incurring the penalty
the combiners are most effective in shuffle-light MapRe-of all the exposed shuffle. On the other hand, beginning the
ductions which summarize data and hence are amenable partial reduce operations on data from only a few map tasks
combining. However, because data reorganization does natcreases the overlap of the partial reduce with the shuffle
lend itself to combining, the combiners achieve only mar-communication of early map tasks but decreases the
ginal reduction in the shuffle volume in shuffle-heavy amount of useful work accomplished in the partial reduce
MapReductions, even if applied to tuples of multiple mapbecause there may be fewer tuples with the same key. We
tasks. Therefore, the partial reduce’s ability to hide theexperimentally determined the appropriate threshold
latency of the inevitably high shuffle volume is fundamentalstart_thresholdto be 8. Finally, we observed that shuffle
for achieving performance in shuffle-heavy MapReduc-data is initially slow (because all map tasks do not finish at



the same time). To accommodate this slow-start phenomesomputation that is available for overlapping with the shuf-
non, we setstart_thresholdto 4 for the first two partial fle. We did not explore this option as a single level of partial
reduce invocations arifor subsequent partial reduce invo- reduce was adequate to overlap all the shuffle in our bench-
cations. While Figure 3 shows the casesti#rt_threshold- marks.
0 whereR1 (and R2) partial sort and reducestart before Second, one may think that MaRCO reduces MapRe-
receiving any intermediate data, a non-zero value ofluction execution time by increasing CPU and /O utiliza-
start_thresholdwould imply thatR1 (and R2) partial sort  tion due to partial sort/reduce (including overheads) and
and reducewould start later — after enough data is that such increased utilization may adversely affect the
received. throughput of other applications that may be sharing the
Second, the partial reduce computation must remain hideluster. However, because the partial reduce tasks are depri-
den under the shuffle without extending the execution timeoritized, they do not steal CPU or I/O from other applica-
Typically, the partial reduce operations that begin when théions when resources are heavily utilized. On the other
shuffle is almost complete may continue execution even hand, when the cluster is underutilized, MaRCO exploits
afterthe shuffle is complete. Avoiding such non-overlappedidle resources to improve the latency of shuffle-heavy
partial reduce is important because such partial reduc®lapReductions.
extends overall execution time irrespective of whether the Finally, MaRCOdoes not make any changesMapRe-
partial reduce does useful work or not. In cases where thduce’s basic re-execution based fault-tolerance mechanism.
partial reduce achieves little useful work (i.e., there is little On the input end of the partial sort/reduce, MaRCO does
decrease in the number of tuples after the partial reduce dusot modify the shuffle implementation. As such, any map
to the nature either of the partial reduce function or of thetask failures are handled transparently by the shuffle imple-
data), the non-overlapped partial reduce obviously extendsientation, which automatically causes map task re-execu-
execution time. Even in cases where the partial reduce dod®n if any intermediate data cannot be retrieved. Note that
useful work, the final reduce is a more efficient way to per-node failures after intermediate data has been retrieved do
form the computation because the final reduce has no ovenot cause any re-execution of map tasks. On the output end,
heads. MaRCO addresses this problem by prohibitingour design choice of emitting partial sort/reduce output to
further partial reduce invocations after a fraction, calledlocal disk implies that the work done by partial sort/reduce
stop_fraction of the shuffle data is received. However, the is lost when a machine fails. Recall that this choice is driven
on-going invocations are not aborted. by the same rationale that keeps map tasks’ intermediate
Third, the partial reduce must not hinder map computa-data in local disks. Thus, entire map tasks and (partial and
tion by contending for CPU and disk resources. MaRCOfinal) reduce tasks re-execute on failuresactly as in
employs two schemes to address CPU contention. (1IMapReduce.
MaRCO assigns low priority to the partial sort/reduce task,
ensuring that the partial sort/reduce is scheduled only whed RELATED WORK
map tasks are not runnable. (2) While our description of
MaRCO assumed a single core per node and a single reduce There have been some follow-on papers on MapReduce.
task per node, in general there may be multiple reduce taskdap-reduce-merge [23] extends MapReduce to include a
per node and each node may have a multicore processor. [Rerge phase after reduce to enable database-join opera-
such cases, MapReduce can run as many reduce tasks p@ns. Another paper [25] reduces the unnecessary launch of
node as the number of cores (S@)’ Subsequent reduce back—up tasks |n_ heterogeneous .Clusters, which have fast
tasks, if any, are started as and when reduce tasks compled@d slow machines, by observing that tasks on slow
such that at mos€ reduce tasks run at any given time. machines would lag behind others even in the absence of
However, for MaRCO, each reduce task also adds partigdny_performance glitches. These ideas are orthogonal to
reduce computation which often contends with map task&1aRCO which overlaps the shuffle with partial sort and
for CPU resources. To decrease the contention, we begipartial reduce. Finally, a recent paper argues that databases
execution with only one reduce task (and its associated paferform better than MapReduce [19]. However, the paper
tial reduce computation) instead of &lreduce tasks. By ~concedes that a) while MapReduce provides fault tolerance
the time the first reduce task receives all its shuffle data, afior both data and computation, databases provide fault tol-
map tasks (on all nodes) must be complete. Consequenti§rance only for data; and b) because loading data is signifi-
the remainingC-1) reduce tasks can be scheduled after thiscantly slower in databases than in MapReduce which uses
time without any possibility of interfering with the node’s raw data dumps, MapReduce is a better candidate when
map tasks. The sole purpose of this optimization, calledlata changes frequently as is the case for Web data.

reduce staggeringis to avoid contention from partial ~ Dryad [16] and DryadLINQ [24] offer a framework that
reduce computation. Therefore, reduce staggering is ndé more general than MapReduce with design features that
applicable to (and does not improve) MapReduce. enable (a) efficient database joins, and (b) automatic opti-

MaRCO cannot eliminate disk I/O contention, unlike Mizations within and across MapReductions using tech-
CPU contention. However, because disk I/O bandwidth igiiques similar to query execution planning. A Dryad-based
less of a bottleneck than network bisection bandwidth, diskvapReduce implementation can include automatic combin-
contention results in a modest increase in map executiolg at the node-level across multiple map tasks’ output to
time which is more than compensated by the overlapping ofeduce the shuffle volume. As discussed before, partial
useful work with the shuffle. reduce’s latency hiding is more important and effective than

We end our description with three observations. Firstsuch combining for shuffle-heavy MapReductions. Such
though our description of MaRCO is limited to a single latency-hiding techniques may be extended to other
level of partial reduce operations before the final reduce, iMapReduce — implementations including Dryad-based
is possible to have multiple levels of partial reduce wherédmplementations.
each upper level partial reduce operates on the outputs of Finally, in other orthogonal research, MapReduce has
lower-level partial reduce to further increase the amount oPeen proposed as a viable programming model for multi-



cores [10,21] and GPUs [14,18]. MapReductions run much longer than the shuffle-light
ones, indicating the importance of optimizing shuffle-heavy
5 EXPERIMENTAL METHODOLOGY MapReductions.

) o We note that the difference in shuffle volumes between

We evaluate our ideas by modifying Hadoop’s MapRe-shuffle-light and shuffle-heavy MapReductions arises from
duce implementation (version 0.13.1) [13]. the fundamental nature of the MapReductions. Shuffle-light
MapReductions correspond to data summarization tasks

(e.g., counting, classifying and binning) which naturally
o roduce a lot less output than input, whereas shuffle-heavy
Because there are only three reasonably-sized MapR apReductions correspond to data re-organization (e.g.,

ductions —binary-sort word-count and grep — in the : : : ; ;
: ! sorting, indexing, and clustering) which tend to output as
E:g\?yognrg'gﬁﬁﬁievﬂ?g"ﬁ'{%ﬁfé%we@ore covering both Shufﬂemuch as or more than the input, as mentioned in Section 1.

5.1.1 Shuffle-heavy MapReductions 5.2 Implementation

Our shuffle-heavy applications includeinary-sort Hadoop implements MapReduce as a run-time system to
term-vectorinverted-indexself-join adjacency-listandk- ~ be linked in with the user-supplied Java classes for map,
means which are described in Table 1. We note that thecombiner (optional), and reduce functionality. Hadoop uses
partial reduce is different from the combiner formeans @ single global manager thread for the whole cluster. The
inverted-indexse”-join andadjacency-"stas Suggested in global manager orchestrates the MapReductlon execution
Section 1. We use the same light-weight combiner in botHy (1) assigning map/reduce tasks to per-node local man-
Hadoop and MaRCO. One may think that Hadoop wouldager threads, (2) monitoring the health of nodes via time-
perform better by using the heavy-weight partial reduce a®uts, and (3) re-assigning tasks to fault-free nodes upon
the combiner. However, we found that such usage results iRode failure. Hadoop uses remote procedure call for the
worse performance for Hadoop. shuffle. All disk I/Os use in-memory buffering (75 MB

We summarize the input data sizes, dataset descriptiongefault). , ,
and benchmark characterization in Table 2. The input is We implement MaRCO which takes user-provided Java

split among multiple map tasks each of which is given is 50methods for map in map class and combiner, partial reduce
MB of input data (or less if the input is not a multiple of 50 and final reduce methods in reduce class. To hide the shuf-

MBY). This input split size follows the recommendation in fle, MaRCO launches one reduce thread at the start of the
[11] and remains the same for Hadoop and MaRCO, andhap phase. While Hadoop++ concurrently runs 4 map
across the benchmarks. We also show the run times of tH@reads and 2 reduce threads on one node (2 CPUs),
base case (described later) to give an idea of how long oU¥laRCO runs 2 map threads and 2 (low-priority) reduce
benchmarks run. Partial reduce finary-sortis pure over-  threads using reduce staggering (Section 3.3). MaRCO runs
head (last column) because partial reduce simple emits tHéwer map threads to make room for the partial reduce’s
tuples without performing any of the final reduce’s work. In CPU dutilization. The reduce thread launches child threads
term-vectoy partial reduce is only partly useful because thewhich perform partial sort and partial reduce tasks when the
final reduce discards infrequent words some of which aréiumber of map outputs exceeds ttart_threshold4 for
processed by the partial reduce. For the other shuffle-heaw€ first two launches and 8 for the rest). To prevent the par-
MapReductions, partial reduce is useful and long (becaus@al reduce from delaying the final reduce after the map
the original reduce is long). phase is complete (Section 3.2), the child threads are not
These benchmarks have substantial communication, prd@unched once reduce threads receive 9884p(_fraction =
viding significant opportunity. Though some of that oppor- 0-9) of map outputs. _
tunity is hidden under map computation in Hadoop, map We experimentally determined the best number of map
computation alone is insufficient to fully hide communica- threads to be run concurrently on one CPU to hide one map
tion. MaRCO hides most of this communication under thetask’s disk I/O under another’s computation (Hadoop's
useful work done by partial (in-built) sort and the partial default is 1 map thread). The best number varies between 2
reduce, with the exception dfinary-sortwhere the partial and 4 for most of our benchmarks. We clarify that this num-
reduce is all overhead but the partial sort is useful. ber affects only the map-disk-I/O overlap and not map-
All the benchmarks write their final outputs to the repli- shuffle overlap which occurs irrespective of the number of
cated file system which adds some run-time overheagoncurrent map tasks, as me_ntloned in Section 2. Because
despite the writes being asynchronous. Unfortunately, thi§etting the number to be different for each benchmark
work cannot be done in partial reduce and hence cannot b&ould be hard to do in practice, we use 2 map threads,

5.1 Benchmarks

overlapped with the shuffle. which gives the best average performance for all the bench-
) , marks. In addition, we modified Hadoop to use asynchro-
5.1.2 Shuffle-light MapReductions nous writes for the final reduce output (Section 2). In

shuffle-heavy MapReductions the final output is large and
the asynchronous writes hide much of the write latency.
The Hadoop variant with 2 map threads and asynchronous

ings, which are described in Table 3. writes, calledHadoop++, serves as our base case for per-

Because the shuffle and the reduce work are small igymance comparisons with MaRC@ecause asynchro-
these benchmarks, there is little opportunity for MaRCO'ngous write is a well-known optimization that is orthogonal

Table 2 includes input data sizes, dataset descriptions, and MarRCO. we include asynchronous writes in_both
benchmark characterization for these benchmarks. The Paadoop++ and MaRCO. To ensure thitadoop++ is a
tial reduces for these MapReductions are either pure OVelsirong base case, we Co}npamﬂoopﬁ with the default

head (as irbinary-sor) or are useful and short (because the ; -100 .
original reduce is short). We note that the shuffle-heavyHadOOp' We found thetiadoop++ achieves 6-19% and 2

Our shuffle-light MapReductions includeord-coung
classification grep, histogram-movigsand histogram-rat-



Table 1: Shuffle-heavy benchmarks

Binary-sortis based on NOWSsort [7] for sortingpbinary key,value>tuples on the binary keys. The map task is ident
function which simply reads the tuples. Because sorting produces as many output records as input records, t
combiner (Section 2). The sorting occurs in MapReduce’s in-built sort while reduce tasks simply emit the sorted
In MaRCO, partial sorting occurs in the built-in sort while partial reduce merely outputs the partially-sorted tok
which are merged by the final reduce. Because the partial reduce does not perform any of the final reduce’s wor
reduce is pure overhead (though small). To distinguish betwedrirtaey-sortapplication and the in-built sort, we wil
refer to them abinary-sortand in-built sort, respectively.

Term-vectordetermines the most frequent words in a host and is useful in analyses of a host's relevance to a seg
map tasks emihost, termvectorstuples whergermvectoiis itself a tuple of the fornrxword, 1>. The combiner comj
binesn tuples for the same word froome map task into oneword, n> tuple. The reduce task discards the words

ty

ere is no
tokens.
ens

k, partial

rch. The

whose frequency is below some cut-off and outputs a list of the rest of the words and their counts as a tuple of the form

<host, {word,:count;, word,:couny, ....,word:couni}>. In MaRCO, the partial reduce adds up partial counts for
given word at a host and builds partial lists which are merged by the final reduce. Because the final reduce dig
some of the (infrequent) words processed by the partial reduce, some of the work done by partial reduce is ug

Inverted-indextakes tuples of the forrmword:file, n>wheren is the number of appearancesnaird in file and gener-
ates lists of files containing a given word in decreasing order of frequency of appelaraarted-indexs similar to
constructing a reverse web-link graph for identifying documents containing a given URL instead of a given wo
map tasks produceword, {n:file}> tuples. Because the input already specifies the count for a given word in a file,
is no opportunity for combining counts here. Reduce task builds a list of all the files that contain a given word
number of occurrences in each file, and produces tuples of the faorddn,:file,, ny:file,, ....,nfile }>. In MaRCO,
the partial reduce tasks build partial lists of the above form and the final reduce merges the partial lists.

Self-joinis similar to the candidate generation part of éheriori data mining algorithm to generate association amg
k+1 fields given the set d¢field associations [5]. Map tasks recelveized candidate lists of the formlémeny,
elemery, ...., element in alphanumerically sorted order. The map tasks breaks the lists {eterent, elemeny, ....,
element 1}, { elemeng> tuples. The combiner simply removes duplicates within one map task’s output. Reduce
pares a sorted list of all the map values for a given key by buildeigment, elemeny, ..., element}, { element,
element, ...., elemeng> tuples. From these tuplelst1-sizedcandidates can be obtained by appending consecu
pairs of map valueslement’, element;,; to thek-1-sizeckey. By avoiding repeatink-1-sizedey values for every pair
of map values in the list, the tuples are a compact representatiorkefltsezedcandidates set. In MaRCO, partial
reduce produces partial sorted lists of a subset of map values and the final reduce merges the partial lists.

Adjacency-listis similar to search-engine computation to generate the adjacency and reverse adjacency lists of
a graph for use by PageRank-like algorithms. Map tasks receive as inputs graphpegigesacdirected graph that
follows the power law of the World-wide Web. For the input, we assume the probability, that a node has an ou
of i, is proportional to 116) with an average out-degree of 7.2. Map tasks emit tuples of the fprm <
from_list{p}:to_list{}> and ¢, from_list{}:to_list{q}>. The combiner simply removes duplicate tuples within one 1
task’s output. For a given key, reduce generates unions of the respective listéramthbstandto_listfields, sorts the

items within the union lists, and emitx<from_list{sorted union of all individual from_list}:to_list{sorted union of a|l

individual to_list} tuples. In MaRCO, partial reduce produces partial sorted unions which are merged togethe
final reduce.

k-meansis a popular data mining algorithm to cluster input datakmdosters[1]. k-means iterates to successively
improve the clustering. We classify movies based on their ratings using Netflix’s movie rating data [2] which is

a
scards
seless.

rd. The
there
and the

ng

pre-

ive

hodes of
-degree

nap

[ by the

of the

form <movie_id, list{rater_id, rating}. We use random starting values for the cluster centroids. Map computes the

cosine-vector similarity of a given movie with the centroids, and determines the centroid to which the movie is
(i.e., the cluster to which it belongs). Map emitertroid_id, (similarity_value, movie_dataj#heremovie_datas

(movie_id, list{rater_id, rating}) While movie_datancreases shuffle volume and is not needed for reduce, the da
needed for the next iteration kimeansBecause there is no sum or list involved, there is no opportunity for a co

closest

ita is
’T]-

biner. Reduce determines the new centroids by computing the average of similarity of all the movies in a cluster. The

movie closest to the average is the new centroid and reduce emits the new centroid’s and all movies’ tuplesto b
the next iteration. The algorithm iterates until the change in the centroids is below a threshold. In MaRCO, thg
reduce computes partial averages of similarity of a subset of movies in a cluster and the final reduce computes

e used ir
partial
the final

averages, and identifies and emits the new centroids.




Table 2: Benchmark Characteristics  (* relative to total time)

Benchmark Input | Input data #maps & | Base | Shuf | Map Red | Partial

size #reduces | runt- | fle time* uce | reduce

ime vol- time
ume *

binary-sort 85GB | synthetic, random 1500 & 30 3043s high short long  pure overhead
term-vector 15GB | Project Gutenberg 300& 30 3083s hiq;h very lang short useful & short
inverted-index 22GB | Project Gutenberg 330 & 3(Q 1013 s hid;h long long  useful & Igng
self-join 15GB | synthetick=5 300&30 | 977s high| long long| useful & long
adjacency-list 30GB | synthetic 600 & 30| 18565 high long long  useful & long
k-means 15GB | Netflix datak =6 | 300 & 6 1550 s| high| long long| useful & long
word-count 15GB | Project Gutenberg 300 & 30 1448 s little verylong short useful & short
classification 15GB | Netflix datak =6 | 300 & 6 308s | little| verylong shor{ pure overhead
grep 15GB | Project Gutenberg 300& 1 203 $ little verylopg shprt pure overhead
histogram-movies || 15GB | Netflix data 300 &8 195s littlg verylong short useful & short
histogram-ratings || 15GB | Netflix data 300 &5 374s| littlg verylong shopt useful & shprt

4% speedups on our shuffle-heavy and shuffle-lightl.7 GB RAM, 160GB SATA disk drives rated at 2400 Mbps

MapReductions, respectively.

this paper ran for more than 1000 hours and buying
5.3 Platform

peak bandwidth, running Linux 2.6.16. The experiments for

that

much time on the Amazon cluster is expensive. Conse-

quently, we show speedups on the Amazon cluster for a rep-

We use a 128-node Amazon EC2 cluster to evaluatgesentative subset of our benchmarks and use our
MaRCO. Each node is a Xen-based virtual machine with gyned 16-node cluster to show more detailed results. |
virtual core of 2-3 GHz Opteron or Xeon, 1MB L2 cache,

Table 3: Shuffle-light benchmarks

self-
n our

Word-countcounts the occurrences of words in the input and is similar to determining the frequency of URL occurfences

in a document. In Hadooptsord-counf each map task emitsvord, 1> tuples. As interm-vectoythe combiner adds ug
the count for the same word froomemap task. The reduce tasks simply add up the counts for a given wordafrdine

map tasks and output the final count. In MaRCO, the partial reduce tasks add up a word’s partial counts from multiple

map tasks.

Classificationclassifies the input into one bpre-determined clusters (unlikemeansthe cluster centroids are fixed).

Similar tok-meansclassificationuses Netflix movie rating data which is of the formovie_id, list{rater_id, rating}.

Similar tok-meansmap computes the cosine vector similarity of a given movie with the centroids, and determines the

centroid to which the movie is closest (i.e., the cluster to which it belongs). Map emsnitsoid_id, movie_id>Unlike

k-meansthe details of movie ratings are not emitted because there are no further iterations which may need the¢ details.

There is no opportunity for a combiner. Reduce is identity function which collects all the movies in a cluster ang
<centroid_id, movie_id>ln MaRCO, the partial reduce is identity function.

emits

Grepsearches for a pattern in a file and is a generic search tool used in many data analyses. Map outputs lines containing

the pattern asline, 1> tuples. There is no opportunity for a combiner. Reduce is identity function which just outpulf
tuples from map. In MaRCO, partial reduce is identity function as is the final reduce.

s the

Histogram-moviegyenerates a histogram of input data and is a generic tool used in many data analyses. We usg the Ne
flix movie rating data. Based on the average ratings of movies (ratings range from 1 to 5) we bin the movies intp 8 bins

each with a range of 0.5. The input is of the femater_id, rating, date>and the filename imovie_id Map computes
the average rating for a movie, determines the bin, and €hiits1> tuples. The combiner combines the tuples for
same bin from one map task. Reduce collects all the tuples for a bin and outthits a> tuple. In MaRCO, the partial
reduce adds up partial counts of tuples for the same bin.

Histogram-ratingsgenerates a histogram of the ratings as opposed to that of the movies based on their average
The input is same as that faistogram-moviesHere, we bin the ratings of 1-5 into 5 bins and map esrting, 1>

emits a<rating, n> tuple. In MaRCO, the partial reduce adds up partial counts of tuples for the same rating.

he

> ratings.

tuple for each review. The combiner combines tuples with the same rating. Reduce collects all the tuples for a ra‘ting and




@ 8-nodes = 16-nodes =2 29-nodes hardware characteristics (e.g., CPU speed and local disk

® ﬁg bandwidth) are the same for the small and larger clusters.
E With the run times of the small and larger clusters being

= 100 =Y

c 90 close, MaRCO's speedups would hold as the cluster size is
% 80 increased. As evidence, we scale our cluster size from 8
8 70 nodes to 29 nodes and the input data size accordingly, while
i ?,8 keeping the per-node bisection bandwidth constant at 50
2 20 Mbps and the per-node workload constant. In Figure 4, we
= 30 show Hadoop++'s and MaRCO’s run times on the different

€ 20 cluster sizes normalized to their respective run times on 8
‘g 10 nodes. We show the run times’ statistical range using lines

< on top of the bars. The run times remain practically the
\e¢:§<\%e“ N o . \ same (i.e., within statistical error) as the cluster size is
et o ‘9\\0@3«\ WO et gt W increased, implying that our small-cluster results will likely
\ W~ \ W hold for larger clusters. Because we could not get long-term
Hadoop++ MaRCO access to the 29-node cluster, we use our 16-node cluster
FIGURE 4: Scaling for the rest of the experiments.

16-node cluster, each node is a 2.8-GHz dual-core Xeo

with 2 MB L2 cache and 4GB RAM running Linux 2.6.9 B EXPERIMENTAL RESULTS

and SATA150 disk drives rated at 1200 Mbps peak band- \ye gtart with quantifying MaRCO’s performance
width and 600-800 Mbps observed bandwidth. Later in this provements over %ado%'sgassuming no ?aults for sim-
section we provide some arguments and experimentaljicit followed by a breakdown of execution time to
results on why the results from our small cluster would hOIdeprain the improvements. We then present performance in
for much larger clusters. In our cluster, one of the nodespe presence of faults. Finally, we present results for our

runs the global manager which manages the entire clustelyrovements’ sensitivity to the network bisection band-
and this node does not run any worker (i.e., MapReducgigin.

computation) threads which run on the rest of the 15 nodes.
Because of real system artifacts such as differences ig.1 Performance (no faults)
disk seek times and OS scheduling variations, the execution
time for the same job can vary across runs. To account for We show results for our 16-node cluster first and then for
this effect, we repeat each run 6 times to achieve a confia 128-node Amazon EC2 cluster.
dence level of 95%. We determined the number of repeti-
tions using standard statistical calculations based on th@-1.1 Performance on 16-node cluster

observed variance and Studentfistribution [4,6]. ; ;
The cluster network is a gigabit ethernet which com- We compare MaRCO wittHadoop++ which, recall
: ; : : . _from Section 5.2, runs two map tasks per processor for bet-
bined with the relatively small size of our cluster results in a
much higher per-node bisection bandwidth than that avaiIIer overlap between the shuffie and map tasks and employs
asynchronous writes for the final reduce output. For

able in a typical large cluster. To simulate limited bisection,\/I :
. e : aRCO, we run one map thread and one partial-sort-and-
bandwidth, we use the network-utility todis andiptables reduce  thread (deprioritized) per processor, use

to limit the bandwidths from one quarter of the cluster to _ - : ;

another to some parameter value without limiting theiﬁgﬁgﬁﬁgﬁ'g— 334 fgﬁJheer?]rpsfoi,wﬂe'Qﬁggat'gtgz)ggﬂﬁg
within-quarter bandwidth. We vary this parameter betweeh(SecTion 3.2). We show two variants of MaRCO, the first
75-25 Mbps (typical per-node bisection bandwidth for Iargeone is calledMaRCO-no-partial-reducewhich overlaps
clusters) in our experiments. Because limiting the band . 1arial sort with the shuffle and does not perform any
widths ofall possible bisections is hard to do, our methodpartial reduce. The second variant MaRCO-no-control
approximates by limiting the bandwidths of only some which does not employ any of the control mechanisms of
bisections and not all. This approximation only makes OUlsection 3.3. In MaRCO-no-control, the partial reduces are
results conservative by reducing our opportunity. not deprioritized,start_threshold= 1 andstop_fraction=

Though we simulate limited bisection bandwidth, there : :
still remains the question of how our speedups would scal ;,fta(fiusrtrg%;ﬁ/aergfl reduces are not invoked once all the map

to larger clusterdn general speedups may not scale due to In Figure 5, the Y-axis shows the performance of

inherent bottlenecks either in the applications such as IoaﬂA ;

. o ; aRCO, MaRCO-no-partial-reduce, and MaRCO-no-con-

Wabrglasra%?] ‘ggdn?{&gﬂ;ogz'fnagw&tﬁveégggd{ f%rr Itnh et:hghnﬁlr gfrol normalized to that of Hadoop++. The X-axis shows our
: P enchmarks, grouped as shuffle-heavy and shuffle-light) in

there are no other synchronizations in MapReduction ; :
which are well load-balanced and have abundant parallilg;le order of decreasing performance improvements of

eF (At ot s ot L get
C - OV '\ .cO AP AC
‘\J B d ‘\ed ce,(\;J)

ism. Thus, the only bottleneck that can prevent speedu aRCO to show clearly the trends across our benchmarks.

; . 'e show the statistical range across the runs using lines on
from scaling to larger clusters is the shuffle due to larger,
clusters’ lower per-node bisection bandwidths. top of the bars. The numbers below the bars showptre

By limiting this bandwidth in our small cluster to the Mt speedups for an ideal case whose runtime s
amounts typically seen in larger clusters, we claim that th p 9

run times on a small cluster with small input would be cIoset'rggeiégglkcgsneeﬂorrlé)sggg f{ﬂgl ssr?Lrj'g‘fITa rggitrj]ce r::zindeén-r?ousthe
to those on a larger cluster with larger input if the following maximum extent possible 9
two conditions are met. (1) The per-node workload (per- P '

" The ideal speedups are in the range of 15-40% for the
node map and reduce workload) remains the same as t ) ; ; P
input data size is scaled up for larger clusters. (2) The nod%(ﬁUfﬂe heavy MapReductions. The high speedups indicate



1.30 1.30
1.25
1.20

8

2 1.15

£ 1.10

£ 1.05

[}

a 1.00

°©

© 0.95

Il varcO 1.25 I Hadoop++
/) MaRCO-no-partial-reduce 1.20 El MaRCO
= MarCO-no-control
1.15
‘I | 1.10
1.05
1.00
095
£ 0.90
< 0.80 0.85
0.75 0.80
[ A U /1 )
070 24 40 22 1526 5 5 5 2 3 25 15 0.75
ot e 2 0.70 3

[] Hadoop++

‘S 0.90
50.85

Normalized Performance

& & & & 1@ & R
o R e \’&\(\Q’&O\}'\G@\\o RV oot X <0 We® oo
e W™ S e ‘Qo‘é\,ae‘){\ e’&\ﬂ@@\ (\e(\’\(\ o o o e
'\(\q ’6'6\ ‘\6\00-)"\‘5\0@ O \ex\ [$) ‘\(\QG ‘3—6\’& AV '\5\0(5‘ W
WS Q R
S
shuffle-heavy shuffle-Tight shuffle-heavy shuffle-fight

FIGURE 5: Performance on 16 nodes (no faults)

that the shuffle introduces considerable runtime overhea?.

MaRCO achieves good improvements (12-28%) overf€W faults during our runs. We see that the performance
eves 3 Improv ( ) OV improvements for each of the shuffle-heavy benchmarks on

the 128-node cluster are close to those on the 16-node clus-

26%, 24%, and 22% improvements, respectively. Thesée! (Figure 5). As with our 16-node cluster, MaRCO does
four programs have high shuffle volume and long reducd'ot degrade the shuffle-light benchmarks’ performance on
time (Table 2) that can be overlappeterm-vectorand the 128-node cluster. These results support our claim that
binary-sort achieve less improvements, 13% and 129604 small-cluster results hold for larger clusters.
respectively. Despite its high shuffle volumerm-vectols  (S€ction 5.3 and Figure 4). .
improvement is less because the reduce computation i In the rest of the paper, we show detailed results on the
short and also some of partial reduce’s work is uselesd6-node cluster.
(Table 2). Similarly,binary-sortalso has high shuffle vol- . .
ume but its partial reduce does not do any useful WOI’k,6'2 Execution Time Breakdown
leaving only partial-sort to overlap with the shuffle. Due to  \ye explain the above improvements using a detailed
!%Ckro\c/’é gﬁpoﬁuon&ggﬂ th?i q ggluzleég%zt SME_%gedgﬁgopesa xecution time breakdown of the 16-node runs. In Figure 7,
improvemen¥s 2-3%) I\)//IaRCO’s ir?"n rovgments aore close t he Y-axis shows the execution times of Hadoop++ and
the? ideal Speedupsoiri many cases IOMaRCO’s improvemen al%g)o .Prf”;“(ahz.ed LO that ﬁi#adr?ofﬁ-i“‘-h(wmcpﬂls ;h%""”
. - : . The X-axis shows all the shuffle-heavy MapReduc-
for inverted-index, k-means, self-jaane slightly better than Ciié;ns but only two shuffle-light MapReductions, namely
h

FIGURE 6: Performance on 128-node Amazon EC2

Hadoop++ for the shuffle-heavy MapReductiohserted-
index k-means, adjacency-lisand self-join achieve 28%,

or equal to their ideal speedups because the partial sort a togram-moviesand grep due to two reasons. (1) The
the partial reduce achieve some overlap with map disk I/Qyp,, ffje-|ight MapReductions’ runtimes are uniformly domi-
in addition to the overlap with the shuffle, whereas ideal, 5104 by map times. (2histogram-ratings'sand word-
considers overlap only with the shuffle. MaRCO'’s improve- ., nysireakdowns resemblestogram-movies'andclas-
ments foradjacency-lisendbinary-sortare much less than - giicatioris is close togreps. The execution time is broken
the ideal speedups because the partial redubaary-sort  5into time spent in map computation, exposed map disk I/
does not do any useful work (Table 2) and MaRCO incursy exposed part of the shuffle (both disk and network),
some computational overhead &ujacency-listwhich is  gyerhead (only for MaRCO), partial sort and partial reduce
quantified in Section 6.2. . (only for MaRCO), final sort, and final reduce. Map disk I/
MaRCO-no-partial-reduce improves over Hadoop++q {ime includes only map tasks’ disk accesses and not the
despite not overlapping the shuffle with partial reduce.gpffie's disk accesses which are included in the shuffle
However, the limited overlap puts MaRCO-no-partial- {jne 'For Hadoop++, final sort and final reduce components
reduce behind MaRCO Dby a significant margin. Finally, shqy the time spent in the original sort and original reduce,
MaRCO-no-control performs significantly worse than ragpectively. The overhead component is the extra computa-
Hadoop++, illustrating the importance of our control mech-isn" herformed by MaRCO and is the difference between
anisms and emphasizing the point that partial reduce invoyaRCO’s partial sort + partial reduce + final sort + final
cation and scheduling need careful control. reduce and Hadoop++'s final sort + final reduce. Each indi-
6.1.2 Performance on 128-node cluster vidual component is the average across nodes. We obtain
this breakdown by modifying Hadoop’s logs to provide
Figure 6 shows the performance of MaRCO normalizeddirect measurements of the components.
to that of Hadoop++ on a 128-node Amazon EC2 cluster Hadoop++'s execution times foinverted-index k-
running a subset of our benchmarks. We keep the configuraneans, adjacency-lisgnd self-join get more or less equal
tion of Hadoop and MaRCO same as in Section 6.1.1contribution from all the components — map, map task
Despite its larger size, the 128-node cluster experiencedisk 1/O, shuffle, sort, and reduce. term-vectoy the map



/I Final Reduce = Overhead $ 130 == MaRCO without faults
a—Hadoop++ (Y Final Sort B Exposed Shuffle & 125 mm MaRCO with faults
b — MaRCO [ Partial Sort + B Exposed Map Disk 10 S 120
. Partial Reduce A Map Computation % 1.15
100} & ] g 110
o 1.05
90r S 1.00
el
g 8otk i o 0.95
= b ‘%0'901\5-\"(\55\
= 7 - 10450y Seletl sofoieindeanato” oro?
S ¥ ed el oA xer WOl fas®
5 % : R
e shuffle-heavy shuffle-light
"',f 50r T FIGURE 8: Speedups on 16 nodes (with faults)
[0
= 40r . certain MapReduce-based wrapper application experienced
E 50l | faults [20]. Therefore, we evaluate MaRCO's performance
2 in the presence of faults. Because both 16-node and 128-
20} _ node runs experienced few faults, we simulated faults in our
16-node cluster. . »
101 . We simulate a fault by simply killing some of the
0 MaRCO-associated threads approximately in the middle of

inverted-index adjacency-list term-vector histogram-movies a MapReduce job. For Hadoop++ 10 out of 90 map and

k-means self-join binary-sort grep reduce threads (11%) were killed, and for MaRCO 10 out

\ /N / of 60 map and reduce threads (16.6%) were Killed
shuffle-heavy shuffle-light (Section 5.2 explains why the thread counts are different).

FIGURE 7: Execution time breakdown These simulated failure rates are in line with the MapRe-

times are relatively long whereas the reduce times are shoftuce paper [11] which killed 200 out of 1746 threads
whereas it is the reverse binary-sort Becausderm-vec-  (11.5%). In Figure 8, we show MaRCO’s speedups over
tor processes every one of the large number of words in th&ladoop++ with and without faults. We include the no-fault
input file, the map tasks are long. Becaus®ofary-sort's ~ Case from Figure 5 for comparison. We see that the faults
large data size (Table 2), the final output to the file systenflave little impact on MaRCO's speedups.

increases the reduce time. Irrespective of these differences, e ; . .

all the shuffle-heavy MapReductions have significanté'4 Sensitivity to network Bisection Bandwidth
exposed shuffle times because the map computation is not

long enough to achieve full overlap, illustrating a key point ;o tion handwidth. Using the network-utility todtsand

of this paper. As mentioned before, the shuffle-light;yiapias(Section 5.3), we varied the inter-quarter bisection

MapReductions’ map times dwarf all other components.  panqgwidths in our 16-node cluster as 75 Mbps, 50 Mbps
_MaRCO's partial sort and partial reduce tasks overlag ety I) and 25 Mbps. These values are close to the

with both map disk 1/0 and the shuffle. This overlap almoste, o1& per-node bisection bandwidth available in a large

completely hides the shuffle in most benchmarks except fof| jster (e.g., 55 Mbps in a 1800-node cluster [22]). In

term-vectorandbinary-sortwhere partial reduce is useless Figure 9, we show MaRCO’s speedups over Hadoop++ for
or insufficient (Table 2). However, partial sort and partial y,ase three bandwidth settings. As the bisection bandwidth

reduce may introduce some overhead (e.g., partial redu%creases, MaRCO's opportunity increases and MaRCO's

may write data to the local disk to be read by the ﬁnali;geedum improve, as expected. At higher bandwidths, our

We study MaRCO'’s performance sensitivity to the

reduce whereas the original reduce does not make the ntrol mechanisms ensure that MaRCO does not incur

accesses), as mentioned in Section 3.2. The extra disl,vdowns even for the shuffle-light MapReductions.
accesses in this overhead compete with map disk I/O caus-

ing MaRCO to have some exposed map disk 1/0 in all theg 5 Sensitivity tostart_thresholdand stop_fraction
benchmarks. Also, these accesses may also cause MaRCO's

partial sort + partial reduce + final sort + final reduce times  Finally, we study MaRCO’s sensitivity to
to exceed Hadoop++'s final sort + final reduce times. This 4 ;3
excess, called the overhead, occuradjacency-listterm- & 1 :25
vectorandbinary-sort The extra disk I/O and the overhead § ’
offset some of the overlapped shuffle times, explaining the £ 1.20
difference between ideal speedups and MaRCO’s improve- 3 1.15

[ 75Mbps ‘mmmmm 50Mbps

ments (Section 6.1). 3 1.10
. 8105
6.3 Performance (with faults) 3 1'oo
o 1.
. . . (5]

Because one of MapReduce’s key motivations is fault & 0.95

tolerance, and because the chance of a failure during long- 08k 0anS NSk AW L 0Y ot (185 in0S quit o (ef
L=, all Al ; An0% e ey iR N el - S0 noV S 2N R oMk cal O of

running jobs in large clusters is high, showing performance.\“\.eﬂed \‘&‘\‘ace“ Son ‘b\g%“}(ggﬁam‘gqo‘%\ass\‘m
improvement in the no-fault case offers insufficient indica- SRS
tion of actual improvements in large clusters. For example,  shuffle-heavy shuffle-light

Google has previously reported that 57% of the runs of @ FIGURE 9: Sensitivity to bisection bandwidth



(4]
£ 1200 m1 ms8s @12 |[mo08 W09 2 1.0
}_
S 115 (1]
g [?
g 1.10 3]
Ll
5 1.05 [4]
N
< 1.00
£ [5]
S 0.95 .
z Wt cont Y Wb cont ov
.50 \l\e A00e .50 NIED o [6]

Ne“edd\\aoe“ ‘é\(\a“}a«\— S\\O‘ ‘\ed \ace ‘\<J>\“ oot &<

e e [71

start_threshold stop_fraction

FIGURE 10: Sensitivity to start_threshold & stop_fraction

start_thresholdand stop_fraction the parameters for our (8]
partial reduce control mechanisms (Section 3.3). In
Figure 10, we vanystart_threshold(left) as 1, 8 (default), 9]
and 12, andstop_fraction(right) as 0.8, 0.9 (default), and

1.0 in our 16-node cluster. The Y-axis shows executlor}
times normalized to that of the default MaRCO. In the %0
interest of space, we show only three shuffle-heavy and two
shuffle-light MapReductions. We see that the default value
perform the best and that the two parameters have signif 1]
cant impact on execution time. As explained in Section 3.3
with start_thresholdf 1, the partial reduce not only is less
effective but also incurs overhead as it is invoked with too
little data (just one map output) and hence not enougiﬁml
tuples with the same key. Withtart_thresholdof 12, the 14]
partial reduce invocations are delayed causing the shuffle to
be exposed. Wittstop_fractionof 0.8, the partial reduce
invocations are discontinued too early (when 80% of mapﬁ‘r’]
output is received) causing the shuffle to be exposed; an 6]
with stop_fractionof 1.0, the partial reduce invocations are
discontinued too late (when all the map output is receivedi
causing the partial reduces to extend even after the shuffle &1
complete and delaying the final reduce. 18]

[12]

7 CONCLUSION

While MapReduce achieves some overlap between the
shuffle and the map tasks, the map computation is not Ion?
enough to achieve full overlap with the long shuffle in shuf-[19]
fle-heavy MapReductions. We proposktpReduce with
communicationgverlap (MaRCO)to achieve nearly full
overlap via the novel idea of including the sort and reduce
in the overlap. While MapReduce lazily performs sort and[20]
reduce computation only after receiving all the map data,
MaRCO employs eager sort and reduce to process paruéﬂll
data from some map tasks while overlapping with other
map tasks’ communication. Such overlap is a fundamental
and new tool to improve performance for the important
class of shuffle-heavy MapReductions. We implemented
MaRCO by augmenting Hadoop’s MapReduce and showet??]
that on a 128-node Amazon EC2 cluster MaRCO achieves
23% and 14% speedups over Hadoop on shuffle-heavy and
all MapReductions, respectively. (23]

ACKNOWLEDGMENT
24
This work is supported, in part, by the National Science Foun-[ ]

dation (Award Number: 0621457).

REFERENCES

J.HartiganClustering Algorithms. Wiley, 1975

Netflix movies datahttp://www.netflixprize.com/download

The Hadoop Distributed File System: Architecture and Dedign.
tp://lucene.apache.org/hadoop/hdfs_design.html

J. Aczél and W. Ertel. A new formula for speedup and its charac-
terization.Acta Informatica 34(8):637-652, 1997.

R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. InProc. of 20th VLDB1215:487499, 1994.

A. Alameldeen and D. Wood. Variability in architectural simula-
tions of multi-threaded workloads. Rroc. of HPCA-2003.

A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson. High-performance sorting on
networks of workstations. IProc. 1997 SIGMODpages 243—
254, Tucson,Arizona, May 1997.

L. Barroso, J. Dean, and U. Holzle. Web search for a planet: The
Google cluster architecture. Micro, IEEE, 2003.

J. Bent, D. Thain, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.
Explicit control in a batch-aware distributed file systemPlroc.

First NSDI, March 2004.

C.Chu, S.Kim, Y.Lin, Y.Yu, G.Bradski, A.Ng, and

K. Olukotun. Map-Reduce for Machine Learning on Multicore. In
Proc. 20th NIPSDec 2006.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. I[Rroc. OSDI '04 2004.

S. Ghemawat, H. Gobioff, and S. Leung. The Google file system.
ACM SIGOPS OS Revie®7(5):29-43, 2003.

Hadoop. http://lucene.apache.org/hadoop/.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars:
a mapreduce framework on graphics processorACT '08:
Proc. of the 17th PAGTpages 260-269, 2008.

Facebook Hive. http://hadoop.apache.org/hive.

M. Isard, M. Budiu, Y. Yu, A.Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks. InProc. EuroSys '072007.

V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to
Parallel Computing: Design and Analysis of Algorithms. 1994.

M. D. Linderman, J.D. Collins, H. Wang, and T.H. Meng.
Merge: a programming model for heterogeneous multi-core sys-
tems. INASPLOS XlII: Proceedings of the 13th international con-
ference on Architectural support for programming languages and
operating system2008.

A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale
data analysis. IfProceedings of the 2009 SIGMOD international
conference on Management of d&2809.

R. Pike. Interpreting the data: Parallel analysis with SawZaik
entific Programming13(4):277-298, 2005.

C. Ranger, R.Raghuraman, A.Penmetsa, G.Bradski, and
C. Kozyrakis. Evaluating MapReduce for Multi-core and Multi-
processor Systems. IEEEE 13th International Symposium on
High Performance Computer Architecture, 2007. HPCA 2007
pages 13-24, 2007.

D. Weld. Lecture notes on MapReduce(based on Jeff Dean’s
slides). http://rakaposhi.eas.asu.edu/cse494/notes/s07-map-re-
duce.ppt.

H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-re-
duce-merge: simplified relational data processing on large clus-
ters. INSIGMOD ’'07: Proceedings of the 2007 ACM SIGMOD
international conference on Management of da@07.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gun-
da, and J. Currey. Dryadling: A system for general-purpose dis-
tributed data-parallel computing using a high-level language. In
Proceedings of International Symposium on Operating System
Design and Implementation (OSDP2008.



[25] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica. Im-
proving mapreduce performance in heterogeneous environments.
In Proceedings of OSDI 2008



	Purdue University
	Purdue e-Pubs
	11-1-2007

	MapReduce with Communication Overlap (MaRCO)
	Faraz Ahmad
	Seyong Lee
	Mithuna Thottethodi
	T. N. Vijaykumar

	Abstract
	Index Terms
	1 Introduction
	2 MapReduce: Background
	3 MaRCO
	3.1 Eager Partial Sort
	3.2 Eager Partial Reduce
	3.3 Controlling Partial Reduce Overhead

	4 Related Work
	5 Experimental Methodology
	5.1 Benchmarks
	5.1.1 Shuffle-heavy MapReductions
	5.1.2 Shuffle-light MapReductions

	5.2 Implementation
	5.3 Platform

	6 Experimental Results
	6.1 Performance (no faults)
	6.1.1 Performance on 16-node cluster
	6.1.2 Performance on 128-node cluster

	6.2 Execution Time Breakdown
	6.3 Performance (with faults)
	6.4 Sensitivity to network Bisection Bandwidth
	6.5 Sensitivity to start_threshold and stop_fraction

	7 Conclusion
	Acknowledgment
	References

