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Abstract Fine-Grained Cycle Sharing (FGCS)
systems aim at utilizing the large amount of com-
putational resources available on the Internet.
In FGCS, host computers allow guest jobs to
utilize the CPU cycles if the jobs do not sig-
nificantly impact the local users. Such resources
are generally provided voluntarily and their avail-
ability fluctuates highly. Guest jobs may fail un-
expectedly, as resources become unavailable. To
improve this situation, we consider methods to
predict resource availability. This paper presents
empirical studies on resource availability in FGCS
systems and a prediction method. From studies on
resource contention among guest jobs and local
users, we derive a multi-state availability model.
The model enables us to detect resource unavail-
ability in a non-intrusive way. We analyzed the
traces collected from a production FGCS system
for 3 months. The results suggest the feasibility of
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predicting resource availability, and motivate our
method of applying semi-Markov Process models
for the prediction. We describe the prediction
framework and its implementation in a produc-
tion FGCS system, named iShare. Through the
experiments on an iShare testbed, we demonstrate
that the prediction achieves an accuracy of 86% on
average and outperforms linear time series mod-
els, while the computational cost is negligible. Our
experimental results also show that the prediction
is robust in the presence of irregular resource
availability. We tested the effectiveness of the
prediction in a proactive scheduler. Initial results
show that applying availability prediction to job
scheduling reduces the number of jobs failed due
to resource unavailability.

Keywords Cycle-sharing · Resource
management · Resource availability ·
Prediction algorithm

1 Introduction

Distributed cycle-sharing systems have shown suc-
cess through popular projects such as SETI@
home [2, 14], which have attracted a large number
of participants, contributing their home PCs to a
scientific effort [3]. These PC owners voluntar-
ily share the CPU cycles only if they incur no
significant inconvenience from letting a foreign
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job (guest process) run on their machines. To
exploit available idle cycles under this restriction,
fine-grained cycle sharing (FGCS) systems [26,
31] allow a guest process to run concurrently
with local jobs (host processes) whenever the
guest process does not impact the performance of
the latter noticeably. For guest users, the free
compute resources come at the cost of highly
fluctuating availability with the incurred failures
leading to undesirable completion times. The pri-
mary victims of such failures are large compute-
bound guest applications, most of which are batch
programs. Typically, they are either sequential or
composed of multiple related jobs that are sub-
mitted as a group and must all complete before
the results can be used (e.g., simulations contain-
ing several computation steps [4]). Therefore, re-
sponse time rather than throughput is the primary
performance metric for such compute-bound jobs.
The use of this metric distinguishes our work from
the use of idle CPU cycles by others, which had
focused on high throughput in an environment of
fluctuating resources.

In FGCS systems, resource unavailability has
multiple causes and occurs frequently. First, as
in a normal multi-process environment, guest and
host processes run concurrently and compete for
compute resources on the same machine. Host
processes may be decelerated significantly by a
guest process. Decreasing the priority of the guest
process can only alleviate the deceleration in few
situations [26]. To completely remove the impact
on host processes, the guest process must be killed
or migrated off the machine, which represents a
failure. In this paper, we refer to such resource
unavailability as UEC (Unavailability due to Ex-
cessive resource Contention). Another type of
resource unavailability in FGCS is the sudden
leave of a machine – URR, (Unavailability due to
Resource Revocation). URR happens when a ma-
chine owner suspends resource contribution with-
out notice, or when arbitrary hardware–software
failures occur.

To achieve fault tolerance with efficiency for
remote program execution, proactive approaches
have been proposed in the environment of
large-scale clusters [22]. These approaches ex-
plore availability prediction in job scheduling or

runtime management. They achieve improved job
response time compared to the methods which
are oblivious to future unavailability [35]. While
proactive approaches can also be applied to FGCS
systems, they require successful mechanisms for
availability prediction, which in turn rely on the
understanding of characteristics of resource avail-
ability. However, there has been little work on
predicting resource availability in large-scale dis-
tributed systems, especially in FGCS systems.
While several previous contributions have ana-
lyzed the machine availability in networked en-
vironment [6, 18, 23], or the temporal structure
of CPU availability in Grids [17, 21, 32], no work
targets predicting availability with regard to both
resource contention and resource revocation in
FGCS systems.

The main contributions of this paper are the
design and evaluation of an approach for pre-
dicting resource availability in FGCS systems. To
understand the behavior of resource availability,
we have conducted a set of studies in a production
FGCS system, iShare [24]. We develop methods
to observe and predict when a resource will be-
come unavailable. To this end, we develop a multi-
state availability model, which integrates the two
classes of resource unavailability, UEC and URR.
To study the predictability, we traced resource
availability in an iShare testbed over a period of
3 months. A key observation made in analyzing
these traces is that the daily patterns of resource
availability are comparable to those in the most
recent days. Previous work has made a similar
observation [21]. It motivates our approach of
applying a semi-Markov Process (SMP) to predict
the temporal reliability, T R, which is the probabil-
ity that a resource will be available throughout a
given future time window. The prediction does not
require any model fitting, as is commonly needed
in linear regression techniques. To compute T R
on a given time window, the parameters of the
SMP are calculated from the host resource usages
during the same time window on previous days.
To alleviate the effect of deviations from the reg-
ular patterns of resource availability, we use sta-
tistical method to calculate the SMP parameters.

We show how the prediction can be realized
and utilized in the iShare system that supports
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FGCS. We evaluate our prediction techniques in
terms of accuracy, efficiency, robustness to noise
(irregular occurrences of resource unavailability),
and effectiveness when applying to a proactive
scheduler. To obtain these metrics, we monitored
host resource usages on a collection of machines
from a computer lab at Purdue University over a
period of 3 months. Users of these machines gen-
erated highly diverse workloads, which are suit-
able for evaluating the accuracy of our prediction
method. The experimental results show that the
prediction achieves accuracy of 86.5% on average
and 73.3% in the worst case; it outperforms the ac-
curacy of linear time series models [11], which are
widely used in prediction techniques. The SMP-
based prediction is efficient in that it increases
the completion time of a guest job by less than
0.006%. It is also robust in that the high variability
of host workloads disturbs the prediction results
by less than 6%. Initial results of the proactive job
scheduling show that, by applying our prediction
method, a higher number of guest jobs can be
completed successfully with improved response
time, than non-predictive scheduling.

The rest of the paper is organized as follows.
Section 2 reviews related work. Section 3 de-
scribes our studies of resource availability. The
derived multi-state availability model is shown
in Section 4. Section 5 presents the studies on
predictability, including trace collection and
analysis. The background and application of semi-
Markov Process models are described in Section 6.
Section 7 discusses implementation issues of avail-
ability prediction in iShare. Experimental ap-
proaches and results of evaluating the prediction
are described in Section 8.

2 Related Work

The concept of fine-grained cycle sharing was in-
troduced in [26], where a strict priority scheduling
system was developed and added to the OS kernel
to ensure that host processes always receive pri-
ority in accessing local resources. Deploying such
a system involves an OS upgrade, which can be
unacceptable for resource providers. In our FGCS
system, available OS facilities (e.g., renice) are

utilized to limit the priority of guest processes.
Resource unavailability happens if these facili-
ties fail to prevent guest processes from impact-
ing host processes significantly. In [26], the focus
is on maintaining priority of host processes. By
contrast, our work develops resource availability
prediction methods, so that guest jobs can be
managed proactively with improved response
times.

Related contributions include work in estimat-
ing resource exhaustion in software systems [30]
and critical event prediction [27, 28] in large-scale
dedicated computing communities (clusters). To
anticipate when a system is in danger of crash-
ing due to software aging, the authors of [30]
proposed a semi-Markov reward model based on
system workload and resource usage. However,
the data they collected deviate excessively from
the supposed linear trends of resource exhaustion
rate, resulting in prohibitively wide confidence
intervals. The work in [27, 28] predicted general
error events within a specified time window in
the future. The presented analysis and prediction
techniques require close observation of precedent
events happened right before an error, and thus
is infeasible for FGCS systems that do not have
access to all the event logs on a host system.

Emerging platforms that support Grids [12] and
global networked computing [9] motivated the
work to provide accurate forecasts of dynami-
cally changing performance characteristics [11] of
distributed compute resources. Our work will
complement the existing performance monitoring
and prediction schemes with new algorithms to
predict resource availability in the environment
of fine-grained cycle sharing. In this paper, we
compare the commonly used linear time series
algorithms, which are related to our SMP-based
algorithm; we show that our algorithm achieves
higher prediction accuracy, especially for long-
term prediction.

Other efforts have analyzed machine availabil-
ity in enterprise systems [6, 23], or large Peer-to-
Peer networks [5], where machine availability is
defined as the machine being reachable for P2P
services. While these results were meaningful for
the considered application domain, they do not
show how to relate machine uptimes to actual
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available resources that could be effectively ex-
ploited by a guest program in cycle-sharing
systems. By contrast, our approach integrates
machine availability into a multi-state model, rep-
resenting different levels of availability of com-
pute resources.

A few other studies have been conducted on
percentages of CPU cycles available for large
collections of machines in Grid systems [17, 21,
33]. In [21], the author predicted the amount
of time-varying capacity available in a cluster of
privately owned workstations by simply averag-
ing the amount of available capacity over a long
period. The work in [33] applied one-step-ahead
forecasting to predict available CPU performance
on Unix time-shared systems. This approach is
applicable to short-term predictions within the
order of several minutes. By contrast, our SMP-
based technique predicts for future time windows
with arbitrary lengths. The authors of [17] studied
both machine and CPU availability in a desktop
Grid environment. However, they focused solely
on measuring and characterizing CPU availabil-
ity during periods of machine uptimes. Instead,
we predict the availability of CPU and memory
resources, while taking machine downtimes into
account.

3 Detecting Resource Unavailability

This section presents the studies that form the
basis of our availability model, shown in Section 4.
The goal is to find a practical and non-intrusive
method to detect resource unavailability, espe-
cially the unavailability due to excessive resource
contention. Such a detection method is critical
for preventing significant slowdown experienced
by host jobs. The detection would be trivial if
we could measure the slowdown of host jobs
directly. However, direct measurement requires
pre-knowledge of contention-free performance of
host jobs, which is not feasible. Therefore, we
need to use observable parameters as indicators
for the slowdown. By observable parameters, we
mean parameters that can be obtained without
special privileges on the host machine. Our overall
detection method is to determine thresholds for

observed CPU and memory utilization of host
jobs. The thresholds constitute noticeable slow-
down of host processes. The intuition is that re-
source contention is aggravated when the resource
use of host jobs increases; when the resource use
exceeds a threshold, contention becomes exces-
sive and, thus, the resource becomes unavailable
for guest jobs. We use offline experiments to de-
termine the values of these thresholds on specific
systems.

In the rest of this section, we first discuss
the observability of both types of unavailability,
UEC (unavailability due to excessive resource
contention) and URR (unavailability due to re-
source revocation). Then we present our offline
experiments to determine the thresholds.

3.1 Observability of Resource Unavailability

URR happens when machines are removed from
the FGCS system by their owners, or fail due
to hardware–software faults without externally
visible prior symptoms. System-internal symp-
toms, such as memory leakage and disk block frag-
mentation [30], have been considered to detect
failures. However, in FGCS systems, such in-
formation is often inaccessible to external uses.
Therefore, in the view of guest applications, ma-
chines may suddenly become offline and the re-
sulting URR can only be detected in that FGCS
services, such as the service for job submission,
are terminated. This fact supports a two-state
model for URR: a machine is either available or
unavailable; there are no other observable states
in-between.

UEC happens when host processes incur no-
ticeable slowdown due to resource contention
from guest processes. Detecting UEC requires
the quantification of noticeable slowdown of host
processes. Our FGCS system uses the observed
CPU and memory utilization of host jobs for
the quantification. If the host resource utiliza-
tion reaches certain thresholds, the system claims
that UEC happens. The exact thresholds for what
constitutes UEC may vary on OSes with differ-
ent mechanisms of resource management. We
use offline experiments to obtain these thresholds
on specific systems. The reason to use empirical
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studies instead of analytical models is that devel-
oping such models is very difficult, if not impossi-
ble, considering the complexities in OS resource
management. The experimental approaches and
results are discussed in the next section.

3.2 Studies on Resource Contention

In our experiments, we ran guest and host jobs to-
gether. The CPU and memory usages of each job,
when it is running alone, are known beforehand.
We measured the reduction rate of host CPU
usage (total CPU usage of all the host processes
running on a machine) due to the contention from
a guest job running concurrently. The “noticeable
slowdown” of host jobs is represented by the re-
duction rate going above an application-specific
threshold (we chose a threshold of 5%). We are
interested in finding out the exact values of host
resource usage when the reduction rate exceeds
5%, that is, when UEC happens.

To make sure that the experimental results
are not biased by particular workloads, we use
representative guest applications and a broad
range of host applications. In FGCS systems,
guest applications are normally CPU-bound batch
programs, which are sequential or composed of
multiple tasks with little or no inter-task com-
munication. Such applications arise in many
scientific and engineering domains. Common ex-
amples include Monte-Carlo simulations and seis-
mic analysis tools [4]. Because these applications
use files solely for input and output, file I/O oper-
ations usually happen at the start and the end of
a guest job; file transfers can be scheduled accord-
ingly to avoid peak I/O activities on host systems.
Some of the guest applications also have large
memory footprints. Therefore, CPU and memory
are the major resources contended by guest and
host processes. Host applications, on the other
hand, can be computational tasks, OS command-
line utilities, etc. In our experiments, they are
represented by processes with various CPU and
memory usages.

We conducted a set of experiments by run-
ning host processes with various resource usages
together as an aggregated host group. To avoid
any adverse contention among multiple guest

processes, no more than one guest process is al-
lowed to run concurrently on the same machine.
The priority of a running guest process is mini-
mized (using renice) whenever it slows down the
host processes noticeably. If this does not alle-
viate the resource contention, the reniced guest
process is suspended. The guest process resumes
if the contention diminishes after a certain dura-
tion (1 min in our experiments), otherwise it is
terminated.

3.2.1 Experiments on CPU Contention

To study the contention on CPU cycles, we cre-
ated a set of synthetic programs. To isolate the
impact of memory contention, all the programs
have very small resident sets. The host programs
have isolated CPU usage (CPU usage of a program
when it runs alone) ranging from 10 to 100%.
The wall clock time (gettimeofday) and CPU time
(getrusage) measurements were inserted in the
synthetic programs to calculate their CPU usages
and to adjust the sleep time to achieve the given
isolated CPU usages. The guest process is a com-
pletely CPU-bound program. In the experiments,
we ran these programs on a 1.7 GHz Redhat Linux
machine.

Figure 1 presents the reduction rate of host
CPU usage (the total CPU usage of all the host
processes in a host group), when a guest process
(G) is running together with a host group (H).
Figure 1b shows the results when G’s priority is
set to 19 (lowest) while H’s priority is 0. LH is the
CPU usage of a host group without interference
of guest processes. To create a host group with a
given LH that consists of M (M > 1) processes, we
randomly chose M host programs with different
isolated CPU usages and ran them together with-
out the guest process. If the total CPU usage of the
M processes was equal to LH , we chose them as a
combination to generate the host group. For each
tested host group, we used multiple combinations
of host processes to measure the reduction rate
of host CPU usage. The average of the measure-
ments is plotted in Fig. 1. This approach considers
the fact that the same host workload may result
from various individual host processes.
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Fig. 1 Host CPU utilization under CPU contention. The
x-axis (LH) is the CPU usage of a group of host processes
when the group is running alone. The y-axis shows the
reduction rate of the host group’s CPU usage (compared
to LH) when a guest process is running together

We tested host groups with LH ranging from
10 to 100%, when M was set to 1–5, respectively.
There are two reasons why we chose M to be
no larger than 5. First, the total number of active
processes started by a typical host user is usually in
the range of tens. Second, as shown in Fig. 1, the
curves for different M converge. That is, for the
same LH , the reduction rate of host CPU usage
decreases as M increases. Intuitively, in a time-
sharing system, the chances that a guest process
can steal CPU cycles decrease when there are
more host processes running. When the size is
beyond 5, the reduction saturates and, thus, there
is no need to experiment with arbitrary sizes of the
host group.

The results in Fig. 1 show the existence of two
thresholds, Th1 and Th2, for LH , that can be
used as indicators of noticeable slowdown of host
processes. Th1 and Th2 are picked according to
the lowest values of LH among the different host

group sizes, where the guest process needs to be
set to a low priority or terminated, respectively, to
keep the slowdown below 5%.

3.2.2 Experiments on CPU Contention Using
Different Methods to Control Guest Priority

To verify that the existence of the two thresholds
is not the simple result of our method of control-
ling guest priorities, we tested resource contention
using different ways to adjust guest priorities, as
used in practical FGCS systems. The two alterna-
tives are, gradually decreasing the guest priority
from 0 to 19 under heavy host workload (LH >

Th1), or setting the guest priority to its lowest
value whenever the guest process starts [9]. (The
extreme case of terminating a guest application
whenever a host application starts makes it a
coarse-grained cycle sharing system [14].) In the
first alternative, fine-grained values between Th1

and Th2 are needed to indicate different guest
priorities. Relating to the second alternative, only
Th2 is needed. We conducted a set of experiments
to test if these two alternatives deliver a better
model of CPU availability than using the two
thresholds. In these experiments, we ran the same
set of synthetic programs on the 1.7 GHz Linux
machine.

In the experiment for testing the first alter-
native, we ran a host process concurrently with
a guest process of different priorities. Figure 2
presents the degradation of host CPU usage due
to resource contention. When the isolated host

Fig. 2 Reduction rate of host CPU usage due to the con-
tention from a guest process with different priorities. This
figure implies that gradually decreasing guest priority does
not make the guest process consume more CPU cycles
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CPU usage (LH) is between 20 and 50%, impact
of different guest priorities is trivial. This indicates
that the guest process does not consume signifi-
cantly more CPU by taking higher priorities than
19. When LH is larger than 50%, the guest priority
must be set to 19 (lowest) to ensure acceptable
degradation of host CPU usage. Therefore, grad-
ually decreasing guest priority does not achieve
additional benefit in terms of CPU availability for
guest processes. Instead, it causes higher overhead
to managing guest jobs at runtime.

The experiment for the second alternative was
conducted via running a set of CPU-intensive
guest processes (isolated CPU usage ≥ 70%) with
priority 0 and 19 under light host workload (LH ≤
20%), respectively. We measured the CPU usage
of the guest processes and plotted the results in
Fig. 3. The differences between the two sets of
bars in this figure show that, the guest CPU usage
with priority 0 is about 2% higher on average than
that with priority 19. In FGCS systems, the 2%
more CPU usage can make a significant difference
in job completion times if the guest job takes
hours to finish. Therefore, the approach of always
enforcing the lowest guest process priority is too
conservative.

In all the above experiments, we used
randomly-generated host groups without relying
on any specifics in OS scheduling. Therefore,
we view the existence of the two thresholds as
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a general, practical property of Linux systems.
This also holds for Unix systems, as confirmed
by our experiments on both CPU and memory
contention on a Unix machine. The next section
presents these experiments.

3.2.3 Experiments on CPU and Memory
Contention

So far, we have considered CPU contention, only.
To test the more complicated contention on both
CPU and memory, we experimented with a set of
larger applications. For guest processes, we chose
four applications from the SPEC CPU2000 bench-
mark suite [15]: apsi, galgel, bzip2 and mcf, which
are all CPU-bound. Their working set sizes range
from 29 to 193 MB. To simulate the behaviors of
actual host users on text-based terminals, we used
the Musbus interactive Unix benchmark suite [20]
to create various host workloads. The created
workloads contain host processes for simulating
interactive editing, Unix command-line utilities,
and compiler invocations. We varied the size of
the file being edited and compiled by the “host
users” to create host processes with different us-
ages of memory and CPU. Table 1 lists the re-
source usages of the four guest applications and
the six host workloads (H1 to H6) created by
Musbus.

We ran a guest process concurrently with each
host workload on a 300 MHz Solaris Unix ma-
chine with 384 MB physical memory. For each set
of processes, we measured the reduction of the
host CPU usage caused by the guest process, when
the guest process’s priority was set to 0 and 19,
respectively. The results are shown in Fig. 4.

In Fig. 4, memory thrashing happens when run-
ning H2 or H5 together with apsi, bzip2, or mcf
under different priorities. In all these cases, the to-
tal working set size of the guest and host processes
(including kernel memory usage of about 100 MB)
exceeds the physical memory size of the machine.
Changing CPU priority does little to prevent
thrashing when the processes desire more mem-
ory than the system provides. Therefore, the host
processes make little progress regardless of the
guest priorities. The fact that memory thrashing
happens for both H2 and H5 indicates that the
occurrences of UEC with memory contention are
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Table 1 Resource usage
of tested applications Workload CPU usage (%) Resident size (MB) Virtual size (MB)

apsi 98 193 205
galgel 99 29 155
bzip2 97 180 182
mcf 99 96 96
H1 8.6 71 122
H2 9.2 213 247
H3 17.2 53 151
H4 21.9 68 122
H5 57.0 210 236
H6 66.2 84 113

orthogonal to host CPU usage. On the other hand,
when there is sufficient memory in the system, the
occurrences of CPU unavailability solely depend
on the host CPU usage. For example, in Fig. 4,
slowdown of the host processes can be ignored
for H1 and H3, while the guest process has to be
reniced under H4 and terminated under H6. In
these cases, the two thresholds, Th1 and Th2, can
still be used to evaluate CPU contention. From
the results in Fig. 4, Th1 is around 20% and Th2 is
between 22% (CPU usage of H4) and 57% (CPU
usage of H5) for Solaris Unix systems.

In conclusion, memory contention and CPU
contention can be isolated in detecting UEC. We
do not need to consider the case of both resources

under contention, since the additional effect due
to one resource, when contention for another is
already underway, is negligible.

4 Multi-state Availability Model

The presented results for resource contention in
Section 3.2 show the feasibility of two thresholds,
Th1 and Th2, for the measured host CPU load
(LH), that can be used to quantify the noticeable
slowdown of host processes, thus the occurrences
of UEC. In our FGCS testbed, consisting of Linux
systems, Th1 and Th2 are 20 and 60%, respec-
tively. Based on the two thresholds, a three-state
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S3

S1 S2

S4

S1: Full resource availability for
guest process
S2: Resource availability for guest
process with lowest priority
S3: CPU unavailability (UEC)
S4: Memory thrashing (UEC)
S5: Machine unavailability (URR)

S5

Fig. 5 Multi-state system for resource availability in FGCS

model for CPU contention can be created, where
the guest process is running at default priority
(S1), is running at lowest priority (S2), or is ter-
minated (S3). Due to the isolation between CPU
contention and memory contention, the three-
state model can be extended by adding a new
unavailability state (S4) for memory thrashing.
These states are combined with URR (S5) to give
a five-state model, as presented in Fig. 5. Note
that the three states, S3, S4, and S5, represent
unrecoverable failures for guest processes. Even
if the CPU or memory usage of host processes
drops significantly or the host becomes available
again, the guest process has already been killed or
migrated off.

The formal definition of the five states is as
follows:

– S1: When the host CPU load is light (LH <

Th1), the resource contention caused by a
guest process can be ignored. S1 also contains
the cases when LH transiently rises above Th2

and the guest process is suspended;
– S2: When the host CPU load is heavy (Th1 ≤

LH ≤ Th2), the guest process’s priority must
be minimized to keep the impact on host
processes small (slowdown ≤ 5%). S2 also
contains the cases when LH transiently rises
above Th2 and the guest process is suspended;

– S3: When the host CPU load is higher than
Th2 for a period (1 min in our system), any
guest process (with default or lowest prior-
ity) must be terminated to relieve resource
contention;

– S4: When there is no enough free memory
to fit the working set of a guest process, the
guest process must be immediately terminated
to avoid memory thrashing;

– S5: When the machine is revoked by its
owner or incurs a system failure, URR hap-
pens, whereby resources immediately become
offline.

In the above definition, S1 and S2 also repre-
sent the scenarios that LH gets higher than Th2

transiently (less than 1 min in our experiments)
and the guest process is suspended. We do not
introduce a new state for a temporarily suspended
guest process, because we find it very common
that the host CPU load, after exceeding Th2, will
drop down shortly in a few seconds. The tran-
siently high CPU load may be caused by a host
user starting a remote X application or by some
system processes.

5 Predictability Study: Trace Collection
and Analysis

Based on the multi-state model presented in
Section 4, we developed a module for unavail-
ability detection and traced resource availability
in an Internet-sharing systems, iShare [24], which
supports FGCS. The goal is to find out if the
availability is predictable and what factors consti-
tute a good prediction method. On each host ma-
chine, there is a resource monitor measuring CPU
and memory usage of host processes periodically.
To achieve non-intrusiveness to the host system,
the monitor applies lightweight system utilities,
such as vmstat and prstat. Implementation details
for iShare’s resource monitor are discussed in
Section 7.2. The monitor is started automatically
when the resource provider turns on the iShare
software and its termination indicates resource
revocation.

We installed and started a resource monitor on
each machine in an iShare testbed, which con-
tains 20 1.7 GHz Redhat Linux machines in a
general purpose computer laboratory for student
use at Purdue University. The local users on these
machines are students from different disciplines.
They used the machines for various tasks, such
as checking emails, editing files, and compiling
and testing class projects, which created highly
diverse host workloads. On a tested machine,
processes launched via iShare are guest processes,
and all the other processes are viewed as host
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Table 2 Statistics of host
resource utilization State S1 S2 S3 S4 S5

Holding time 55.8% 6.6% 25.9% 9.2% 2.3%
Average available 61.8%
CPU

Standard deviation 8.4%
(among different machines)

Average available 297.4
memory (MB)

Standard deviation 78.9
(among different machines)

processes. When a resource becomes unavailable,
the running guest process is terminated. Resource
revocation happens when the user with access to
a machine’s console does not wish to share the
machine with remote users, and simply reboots
the machine. The resource behavior on these ma-
chines is consistent with the availability model in
Fig. 5.

We traced the availability of each tested ma-
chine for 3 months, from August to November
2005, resulting in roughly 1,800 machine-days of
traces. The data contains the start and end time
of each occurrence of resource unavailability, the
corresponding failure state (S3, S4, or S5), and
the available CPU and memory for guest jobs. In
the following, we present our results of trace
analysis.

5.1 Statistics of Resource Availability

Table 2 shows percentage of time that a machine
stays at each state. The five states are the same as
shown in Fig. 5. These statistics were collected us-
ing the whole set of 1,800 machine-days of traces.
According to the results, a machine stays at S1

(where resources are fully available) and at S2

(where resources are available under minimum
guest priority) for 55.6 and 6.6% of the time,
respectively. This leads to the total amount of

61.8% of CPU cycles that can be utilized by guest
applications. This number is lower than those re-
ported in related work [17, 21]. The reason is that
we consider host workloads in a university stu-
dent environment. The workloads present more
causes of resource unavailability, namely, mem-
ory thrashing and resource revocation, which are
ignored in previous papers.

Table 3 lists the statistics on resource unavail-
ability due to different causes. Number of occur-
rences refers to how many times a particular kind
of unavailability happened during the 3 months
on an individual machine, and percentage shows
its relative proportion with respect to the total
number of all kinds of unavailability. The two pa-
rameters were measured on each machine in the
testbed, and the ranges on all the tested machines
are given in Table 3.

Table 3 shows that high host CPU load is the
main cause of resource unavailability in our FGCS
testbed. Because the physical memory size is
larger than 1 GB on all the tested machines, mem-
ory thrashing happens less frequently. In general,
UEC happens much more often than URR in
FGCS systems. As discussed earlier, URR has
two sources: resource providers’ intentional leave
and software–hardware failures. In our testbed,
the first source corresponds to machine reboots,
which appear in our traces as URR with inter-

Table 3 Resource
unavailability due to
different causes

UEC

Categories Total CPU Memory URR
number contention contention

#Occurrences 405–453 283–356 83–121 3–12
Percentage (%) 100 69–79 19–30 0–3
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vals shorter than 1 min. Software–hardware fail-
ures are represented by URR lasting longer than
1 min. By examining the interval lengths for all
the recorded URR, we found that around 90% of
URR originated from machine reboots. This is not
surprising because, on our tested machines, a local
user may experience slowdown due to processes
submitted by non-local users. A common user
behavior in that case is rebooting the machine,
thereby contributing to URR incidents.

In conclusion, UEC constitutes the major part
of resource unavailability in our studied FGCS
system. Regarding our goal of studying the pre-
dictability, this means that the predictability is
tightly correlated with the pattern of host work-
loads, especially host CPU load. While previous
studies have observed the possibility to coarsely
estimate the aggregated CPU availability of desk-
top machines [9, 17], it is difficult to relate the in-
formation directly to the predictability of resource
availability. In particular, the understanding of
temporal characteristics of availability intervals
(that is the statistical lengths of time intervals
during which a resource will be available) and
the frequency of unavailability occurrences is key
to obtaining direct measures of the predictability.
We develop such characterizations in the next two
sections.

5.2 Distribution of Lengths of Availability
and Unavailability Intervals

Resource availability intervals are periods dur-
ing which a guest application can utilize host re-
sources. Unavailability intervals are periods when
the application fails or gets suspended. Facilities
to predict such interval lengths provide the knowl-
edge of how much computation power an FGCS
system can deliver without interruption and when
resources will return from excessive contention
or revocation. Figure 6 plots the cumulative dis-
tribution of the duration of resource availability
and unavailability intervals. These results were
calculated from the traces of all the 20 machines
during the 3 months.

From Fig. 6, we see that availability intervals
are shorter during weekdays, with an average of
close to 3 h, versus above 5 h during weekends.
Further, about 60% of availability intervals are

Fig. 6 Cumulative distribution of lengths of availability
and unavailability intervals. A date point, (x, y), means that
y% of the corresponding intervals are shorter than x hours.

between 2 and 4 h on weekdays, and between 4
and 6 h on weekends. The distributions of unavail-
ability intervals with different causes present sim-
ilar patterns. All the three curves rise sharply for
intervals less than 5 min, constituting about 60%
among all measured intervals. We found that they
are mainly CPU peaks resulting from activities
of system processes. This implies that the system
could suspend a guest job for about 5 min upon
resource unavailability. For most cases, resources
will return shortly after the suspension.

5.3 Daily Pattern of Failure Occurrences

To understand the more fine-grained behavior of
resource availability, we counted the number of
unavailability occurrences during each hour of a
day on all the machines in the testbed. Figure 7
plots the distribution of unavailability occurrences
during a weekday and a weekend, respectively.
The value for hour i means the amount of unavail-
ability occurred in the time interval between hour
i − 1 and i. The unavailability spanning multiple
hours was counted for each of the 1-h intervals.
Both the average values and the ranges over all
the weekdays and weekends in the period of
3 months are depicted.
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Fig. 7 Occurrences of unavailability during each hour in a
day. The value at hour i means the amount of unavailability
occurred between (i − 1,i)

The results in Fig. 7 show that the frequency
of unavailability occurrences per hour is tightly
correlated with the host workloads during the cor-
responding hour. This confirms our observation in
Section 5.1. For example, unavailability happens
more frequently during the day time after 10 am
with more students using the machines, and for
the same time window, the amount of unavailabil-
ity is larger on a weekday than on a weekend.
One exception is the extremely high number (20
on both weekdays and weekends) of unavailability
occurrences between 4 and 5 am, when very few
students are using the machines. We found that
this is caused by the high CPU load of a system
process updatedb (also viewed as host processes),
which updates file name databases used by GNU
locate to search for files in a system. The process
is started at 4 am every day and lasts for about
30 min. Therefore, the amount of unavailability
happened between 4 and 5 am is equal to the
total number of machines in the testbed (20). This
“exception” also shows the correlation between
unavailability occurrences and host workloads.

The most important observation obtained from
Fig. 7 is that the deviations of unavailability fre-
quency over the same time window across dif-
ferent weekdays (weekends) are small. This is
evidenced by the relatively small range bars for
each hour of the day. This means that the daily

patterns of resource availability are comparable
to those in the recent history. Previous work has
made a similar observation [21]. Therefore, it is
feasible to predict resource availability over an
arbitrary future time window from history data
for the corresponding time windows of previous
weekdays or weekends. In FGCS systems, the
time window can be derived from the estimated
execution time of a guest job. An aggressive pre-
diction algorithm would accommodate the small
deviations of resource availability among related
time windows. Our approach will use statistics on
history trace to alleviate the effects of “irregular”
data. More specifically, we propose to apply semi-
Markov Process models for the prediction. The
reasons are discussed in the next section.

5.4 Discussions on Prediction Algorithms

A number of time-series and belief-network al-
gorithms [28] appear in the literature for pre-
dicting continuous CPU load and discrete events.
Our goal is to design a prediction algorithm that
achieves both high accuracy and efficiency appro-
priate for online uses. Several algorithms pursue
one of these goals. For example, time-series algo-
rithms are fast by sacrificing accuracy, especially
for long-term predictions; learning algorithms, on
the other hand, often require tedious processes
of offline learning and massive data sets. Another
prediction method used Bayesian Network mod-
els [28], which operate on acyclic transition paths
and are thus inapplicable to the five-state avail-
ability model in Fig. 5, where the states S1 and S2

form a cycle.
We base our prediction algorithm on a semi-

Markov Process (SMP) model, as it naturally fits
the multi-state model without modification. This
algorithm does not require any model fitting, as is
commonly needed in linear regression techniques,
and is thus efficient. To achieve high accuracy, we
apply a statistical method to calculate the SMP
parameters. The next section presents details of
the algorithm.

6 Semi-Markov Process Models

In the multi-state availability model presented
above, transitions between the states fit a semi-
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Markov Process (SMP) model, where the next
transition only depends on the current state and
how long the system has stayed at this state. In
essence, the SMP model quantifies the dynamic
structure of the multi-state model. More impor-
tantly, for our objective, it enables the efficient
prediction of temporal reliability. This section
presents background on SMP and shows how it
can be applied for our prediction based on the
availability model in Fig. 5.

6.1 Background on Semi-Markov Process Models

Markov Process models are probabilistic mod-
els useful in analyzing dynamic systems [1]. A
semi-Markov Process (SMP) extends Markov
process models to time-dependent stochastic be-
haviors [19]. An SMP is similar to a Markov
process except that its transition probabilities de-
pend on the amount of time elapsed since the last
state transition. More formally, an SMP can be
defined by a tuple, (S, Q, H), where S is a finite set
of states, Q is the state transition matrix, and H is
the holding time mass function matrix. The most
important statistics of the SMP are the interval
transition probabilities, P.

Qi( j ) = Pr{the process that has entered Si

will enter Sj in its next transition};
Hi, j(m) = Pr{the process that has entered Si

remains at Si f or m time units

before the next transition to Sj}
Pi, j(t1, t2) = Pr{the process enters Sj at time t2,

given that it stays at Si at time t1}
= Pr{S(t2) = j | S(t1) = i} (1)

To calculate the interval transition probabilities
for a continuous-time SMP, a set of backward
Kolmogorov integral equations [19] were devel-
oped,as shown in (2). H′ is the holding time den-
sity function matrix, the derivative of H.

Pi, j(t1, t2)=
∑

k∈S

∫ t2

t1
Qi(k) ∗ H′

i,k(u) ∗ Pk, j(t2−u) du

(2)

Basic approaches to solve these equations in-
clude numerical methods and phase approxima-
tion. While these solutions are able to achieve
accurate results in certain situations, they perform
poorly in many situations, such as, when the rate
of transitions in the SMP is as high as exponential
with time. In real applications [1], a discrete-time
SMP model is often utilized to achieve simpli-
fication and general applicability under dynamic
system behaviors. This simplification delivers high
computational efficiency at the cost of potentially
low accuracy. We argue that the loss of accuracy
can be compensated by tuning the time unit of
discrete time intervals to adapt to the system dy-
namism. In this paper, we develop a discrete-time
SMP model, as described in the next section.

6.2 Semi-Markov Process Model for Resource
Availability

This section discusses how a discrete-time SMP
model can be applied to the availability model
presented in Fig. 5. The goal of the SMP model
is to compute a machine’s temporal reliability,
TR, which is the probability of not transferring
to S3, S4, or S5 within an arbitrary time window,
W, given the initial system state, Sinit. The time
window W is specified by a start time, Winit, and a
length, T. Equation (3) presents how to compute
TR by solving the equations in terms of Q and H.
The derivation of the equation can be found in [1].
In (3), Pi, j(m) is equal to Pi, j(Winit, Winit + m),
P1

i,k(l) is the interval transition probabilities for
a one-step transition, and d is the time unit of a
discretization interval. δij is 1 when i = j and 0
otherwise.

T R(W) = 1 −
5∑

j=3

Pinit, j(T/d)

Pi, j(m) =
m∑

l=0

∑

k∈S

P1
i,k(l) ∗ Pk, j(m − l)

=
m−1∑

l=1

∑

k∈S

Hi,k(l) ∗ Qi(k) ∗ Pk, j(m − l)

Pi, j(0) = δij j = 3, 4, 5

i = 1, 2, 3, 4, 5 (3)
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The matrices Q and H are essential for solv-
ing (3). In our design, these two parameters are
calculated via the statistics on history logs col-
lected by monitoring the host resource usages on
a machine. The details on resource monitoring
are explained in Section 7. To compute Q and H
within an arbitrary time window on a weekday
(a weekend), we derive the statistics from the
data within the corresponding time windows of
the most recent N weekdays (weekends). The
rationale behind this is the observation that the
load patterns in a given time window (e.g., from
9 to 11 am) are comparable on different weekdays
(weekends) [21].

7 System Design and Implementation

We implemented the described prediction meth-
ods within the iShare [24] Internet-sharing sys-
tem. iShare is an open environment for sharing
both HPC resources, such as the TeraGrid facil-
ity [8], and idle compute cycles available from
any Internet-connected host. This section intro-
duces the fine-grained cycle sharing capabilities of
iShare and shows how the availability prediction
is implemented and utilized.

7.1 Fine-Grained Cycle Sharing in iShare

The iShare system supports the publication and
discovery of compute systems and their applica-
tions [25], and it enables the remote execution
of these applications on most suitable systems.
Cycle-sharing happens when users submit guest
jobs to the published machines, while these ma-
chines also run local jobs. A scheduler is respon-
sible for matching guest jobs and host systems.
To this end, existing techniques can be utilized to
estimate the execution time [16] and the memory
usage [13] of a guest job. A proactive scheduler
would use these two quantities and pass them to
the temporal reliability prediction. The predicted
result is then used by the scheduler to select
resources with relatively high availability or to
manage the job adaptively during its execution.

Figure 8 shows the iShare framework with re-
source availability prediction. The Host Node and
the Client show examples of a resource provider
and a user, respectively. The prediction function

iShare
Gateway

Job
Scheduler

State
Manager

Guest
Process

Resource
Monitor

Host Node

Client

Fig. 8 Processes related to resource availability prediction
in iShare. Arrows indicate inter-process communication

is invoked on the host node upon a request of
job submission from the client. There are three
prediction-related daemons on the host node. The
iShare Gateway communicates with remote clients
and controls local guest processes. The Resource
Monitor measures CPU and memory usage of host
processes periodically. The State Manager stores
history logs and predicts resource availability.
These daemons are started automatically when re-
source providers turn on the iShare software and
their termination indicates resource revocation.
The guest process is launched for a job submission
from the client.

Upon the request of a job submission on a
client, the client’s Job Scheduler queries the gate-
ways on the available machines for their tempo-
ral reliability during the expected window of job
execution, and decides on which machine(s) the
job would be executed. If a machine is selected,
a guest process is launched on the machine and
the corresponding resource monitor is notified of
the new process id. During the job execution, the
monitor detects any state transition and signals
the gateway of a new transition. The gateway then
reduces the priority, or kills the guest process,
as needed. Checkpointing can also be used to
migrate the guest process off the machine if re-
sources become unavailable.

There are two main design challenges to im-
plement the framework shown in Fig. 8. First, the
resource monitor needs to be non-intrusive to the
host machine where the monitoring takes place
periodically. Because resource availability predic-
tion happens on the critical path upon the request
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of a job submission, the computational cost of the
prediction must be negligible. Our solutions to
the two challenges are described in the next two
sections.

7.2 Non-intrusive Resource Monitoring

As discussed in Section 4, state transitions among
S1, S2 and S3 can be detected by monitoring the
total CPU load of all the host processes on a
machine; transitions to S4 can be detected by mon-
itoring the free memory size and amount of mem-
ory swap to disk on the machine. The resource
monitor shown in Fig. 8 uses system utilities such
as vmstat and prstat on Unix and top on Linux,
which are light-weight operations in most OS im-
plementations, including Redhat Linux used in
our experiments.

To monitor the occurrences of resource re-
vocation (transitions to S5), the timestamp of
the most recent load measurement, tmonitor, is
recorded in a special log file on the host machine.
This timestamp is updated when the periodic re-
source monitoring occurs. To detect if a machine
has become unavailable, the monitor compares
the current timestamp with the saved tmonitor at
each periodic monitoring. If the gap between the
two timestamps exceeds a threshold, it indicates
that the resource monitor, and by implication
the iShare system, had been turned off on the
monitored machine (due to either system crash
or machine owner’s intentional leave). This is
a simple solution to the important problem of
avoiding the need for administrator privileges in
accessing system logs for machine reboots. It is
also more efficient and scalable compared to other
techniques [5] for tracing machine uptimes, where
a centralized unit is needed to probe all the nodes
in a networked system.

7.3 Minimum Computation in Solving SMP

In our design, matrix sparsity in the SMP model
is exploited to minimize the computational cost
of availability prediction. Figure 9 describes the
sparsity of the matrices Q, H and P in (3). In
this figure, all the blank cells are for zero values.
The sparsity relies on two facts – it takes a finite
amount of time to transition from one state to an-

X

S1 S2 S3 S4 S5

S1

S2

S3

S4

S5

X X
X X X

1

1

1

1

1

1

X

X X XX

X X X

P(0) P(m), m > 0

X
X

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 1

X
X

Q and H(m), m > 0
H(0) = 0

Fig. 9 The sparsity of Q, H and P. The blank cells are
for elements whose values are zero. Non-zero elements are
labeled with a X (arbitrary values) or 1 (the value is 1)

other, and states S3, S4 and S5 are unrecoverable
failure states.

With the sparsity shown in Fig. 9, Q and
H(m) can be stored as an eight-element vector.
As shown in (3), the value of TR is decided
by the summation of Pinit,3(T/d), Pinit,4(T/d) and
Pinit,5(T/d), where the value of init is either 1
or 2. Equation 4 shows the minimum computa-
tion needed to solve the three probabilities by
exploring the sparsity of Q and H. This equa-
tion shows that only six elements in P(m) are
required: P1,3, P1,4, P1,5, P2,3, P2,4, and P2,5. The
total number of recursive steps is T/d − 1, decided
by both the length of the time window, T, and
the discretization interval, d. In this work, we
choose the discretization interval the same as the
period of resource usage monitoring. The results
on computational overhead presented in Section 8
demonstrate the effectiveness of the optimization
in solving SMP.

P1, j(T/d) =
T/d∑

l=0

∑

k∈S

H1,k(l) ∗ Q1(k) ∗ Pk, j(T/d−l)

=
T/d−1∑

l=1

[H1,2(l) ∗ Q1(2) ∗ P2, j(T/d − l)

+ H1, j(l)∗Q1( j )]+H1, j(T/d)∗Q1( j )

P2, j(T/d) =
T/d∑

l=0

∑

k∈S

H2,k(l) ∗ Q2(k) ∗ Pk, j(T/d − l)

=
T/d−1∑

l=1

[H2,1(l) ∗ Q2(1) ∗ P1, j(T/d − l)

+ H2, j(l)∗Q2( j )]+H2, j(T/d)∗Q2( j )

j = 3, 4, 5 (4)
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8 Evaluation

We have developed a prototype of the system as
described in Section 7. This section presents the
experiments for evaluating our prediction tech-
niques in terms of accuracy, efficiency, robust-
ness to irregular patterns of resource availability,
and effectiveness when applying to a proactive
scheduler.

All of our experiments were conducted on the
same FGCS testbed as described in Section 5. We
used the same set of traces collected from August
to November 2005, which present highly diverse
host workloads. Because accuracy of the SMP-
based prediction is mainly affected by the variety
of host workloads, the testbed proved appropriate
to test our prediction algorithm comprehensively.

We considered four sets of experiments. First,
we measured the overhead of the resource mon-
itoring and the prediction algorithm. Second, we
tested the accuracy of our prediction algorithm by
dividing the trace data for each machine into a
training and a test data set. The prediction was run
on the training set and the results were compared
with the observed values from the test set. We
also compared the prediction accuracy with that
of a suite of linear time series models. Third, to
test the robustness of our prediction algorithm,
we inserted noise randomly into a training set and
measured the difference between the prediction
results by using the infected training set and those
by using the original training set. Finally, we ap-
plied our prediction algorithm in a proactive job
scheduler and tested its effectiveness in improving
the execution of guest jobs. The results are pre-
sented and analyzed in the rest of this section.

8.1 Efficiency of Availability Prediction

The overhead of the proposed prediction method
includes the computational cost caused by both
the resource monitoring and the SMP computa-
tion. With a sampling periodicity of 6 s, resource
monitoring consumed less than 1% CPU and
1% memory on each tested machine in our test-
bed. Therefore, our resource monitoring is non-
intrusive to the tested host system. To measure
the computational overhead of the prediction, we
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Fig. 10 Computation time of the probability that a re-
source will be available during a given time window. This
overhead adds to the execution time of a guest application

measured the wall clock time of the prediction for
time windows with different lengths. In Fig. 10,
the computation time of calculating Q and H
and the whole prediction algorithm (including the
computation for Q, H and TR) are plotted as a
function of time window length. Recall that the
goal is to predict the probability that a resource
will be available during a given time window for
guest job execution. As expected, the prediction
over a larger time window takes longer because
of the higher number of recursive steps needed.
The total computation time follows a superlinear
function (with exponent of 1.85) of the number
of recursive steps, with the relative overhead in-
creasing with job execution time. For the time
window of 10 h (the last point on the x-axis), the
computation time for Q and H is 29.35 ms and the
total computation time is about 2.1 s. This gives
the stated overhead of 0.006% for the average
guest process execution time of 10 h. Because
most guest jobs in our FGCS system have com-
pletion time less than 10 h, we can conclude that
our prediction algorithm is efficient and causes
negligible overhead on the completion time of
typical guest jobs in FGCS systems.

8.2 Accuracy of Availability Prediction

To test the accuracy of our prediction algorithm,
we created a training and a test data set for each
machine by dividing its trace data into two equal
parts and choosing the first half as the training
set. The parameters of the SMP model were cal-
culated by statistics of the training data set and
were then used to predict the TR for different



J Grid Computing (2007) 5:173–195 189

time windows in the test data set. We used the
actual observations from the test data set to calcu-
late the empirical T R. We computed the relative
error as abs(T Rpredicted − T Rempirical)/T Rempirical.
Figure 11 plots the relative error of our predic-
tion algorithm. The curve shows the average error
of predictions on time windows with different
lengths, and the bars show the minimum and max-
imum errors. To collect the average errors for
predictions over time windows of the same length,
we experimented with different start time ranging
from 0:00 to 23:00 on different machines, in steps
of 1 h. As shown in Fig. 11, the relative predic-
tion error increases with the time window length.
The reason is that TR gets close to 0 for large
time windows leading to possibly large relative er-
rors. Prediction on small time windows performs
slightly worse on weekends than on weekdays,
which can be explained by the smaller training size
used for prediction on weekends. The prediction
achieves accuracy higher than 73.38% in the worst
case (maximum prediction error for time windows
with length of 10 h on weekdays). The average
prediction accuracy is higher than 86.5% (average
prediction accuracy for time windows with length
of 10 h on weekends) for all the studied time
windows in Fig. 11.
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Fig. 11 Relative errors of predicted TR (temporal relia-
bility). Each point plots the average error of predictions
over 24 time windows with different start time ranging from
0:00 to 23:00, in steps of 1 h. The bars show minimum and
maximum prediction errors

Fig. 12 Relative prediction errors with different ratios of
training and test data sizes for weekdays

We also conducted a set of experiments to
analyze the sensitivity of the prediction accuracy
to the size of the training set. Intuitively, the
prediction with larger training sets should perform
better than that using smaller training sets. How-
ever, a large training set includes older data, which
may bias the most recent pattern of host resource
usages on the studied machine. We are interested
in finding out if there exists a best choice of
training size. Toward these goals, we divided all
the trace data for weekdays into training and test
sets with different size ratios. On each setting of
the data, we ran the prediction over the same 240
time windows used for the experiment in Fig. 11
and measured the relative prediction errors which
are plotted in Fig. 12. “Max-average error” is
measured by first averaging over prediction errors
for the time windows of the same length and then
taking the maximum of all the average values.
The results in Fig. 12 show that there exists a
sweet spot (6:4 in our experiment) for the ratio of
training and test sizes. While the observation of
this sweet spot may be specific to our dataset and
is not intrinsic for the SMP-based prediction, its
existence is important. It suggests a practical way
to achieve best prediction accuracy by tuning the
size of history data for arbitrary systems.

8.2.1 Comparison with Linear Time Series Models

Among a number of algorithms [28] for predicting
continuous CPU load or discrete events, we chose
linear time series models [11] as reference points
for our SMP-based prediction algorithm. Linear
time series models have been used for predicting
CPU load in Grids [11]. The algorithms use lin-
ear regression equations to obtain future observa-
tions from a sequence of previous measurements.
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Table 4 Linear time series models

Model Description

AR(p) Autoregressive models with p coefficients
BM(p) Mean over the previous N values (N ≤ p)
MA(p) Moving average models with p coefficients
ARMA Autoregressive moving average models with
(p, q) p + q coefficients
LAST Last measured value

Compared to the SMP model, time series models
consider different load levels and fit them into
a liner model by ignoring the dynamic structure
of load variations. Our comparison on the two
classes of models will quantify the benefits of con-
sidering the dynamic structure in resource avail-
ability prediction.

We used a set of linear time series models
implemented in the RPS toolkit [10]. The models
are described in Table 4. We took the same para-
meters for these models as used in RPS. In our ex-
periments, we focused on the prediction accuracy
of the time series models compared to our SMP-
based prediction. We applied time series models
to predict the state transitions in a future time
window based on the samples from the previous
time window of the same length. Thus, to predict
transitions for 10–11 am on a weekday, we use
historical data from 10 to 11 am from previous
weekdays. The prediction accuracy is determined
by the difference of the observed temporal reli-
ability on the predicted and the measured state
transitions.

In this experiment, we used the training and the
test sets of equal size. We ran the prediction on
each time window (starting at different time and
of different lengths) on all the tested machines.
For each given start time and window length,
we calculate the error in the temporal reliability
prediction at each machine. Then, the maximum
prediction error over different machines is used
as the metric of comparison, which forms the basis
for a worst case comparison. Figure 13 shows the
comparisons. As a representative case, we present
the relative errors of predictions over time win-
dows starting at 8:00 am on weekdays/weekends.
Predictions for other time windows achieve sim-
ilar results in terms of the relative differences
among these algorithms.

Fig. 13 Maximum prediction errors of different algorithms
over time windows starting at 8:00 am on weekdays and
weekends

From the results in Fig. 13, we made the fol-
lowing observations. (1) Based on the relative pre-
diction errors for the time windows studied, our
SMP-based algorithm performs better than all five
time series models. The advantage is more pro-
nounced for predictions over large time windows.
(2) Linear time series models are not adept at
long-term predictions. This is because these mod-
els use multiple-step-ahead for predicting on large
time windows and the prediction error increases
with the number of steps lookahead.

8.3 Robustness of Availability Prediction

As we discussed earlier, the SMP-based prediction
is able to accommodate deviations from the load
patterns that are comparable in recent days. This
ability is confirmed by the high prediction accu-
racy presented in Section 8.2. To further test the
ability, we study its robustness to noise (irregular
occurrences of unavailability) in the training data.

We injected different amounts of noise into the
training data set and measured its impact on the
prediction results. To inject one instance of noise,
we manually inserted one occurrence of unavail-
ability around 8:00 am (when unavailability is very
rare due to low resource utilization) to a train-
ing log of a weekday in the trace data collected
on a machine in the testbed. The holding time
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of the added failure state was chosen randomly
between 60 and 1,800 s. With varying number
of noise injections, we measured the prediction
discrepancy by comparing the prediction results
against the original predicted values without noise
injection. Experimental results are presented in
Fig. 14. The prediction discrepancy bars for large
time windows (T = 5, 10 h) are often negligible
compared to the values for small time windows.
Hence some of the bars for large time windows do
not show in the figure.

Figure 14 shows that predictions on smaller
time windows are more sensitive to noise. As
shown by the bars for “T = 1 h,” four instances
of noise lead to a prediction discrepancy of more
than 50%. On the other hand, for the time win-
dows larger than 2 h, 10 instances of noise cause
less than 5.56% (the bar for “T = 3 h”) prediction
discrepancy. The reason behind this observation
is that the negative impact of noise on large time
windows is alleviated by taking more history data
in the prediction. Recall that our prediction uti-
lizes history data within the corresponding time
window (with the same start time and length) for
predicting on a future time window.

In a practical FGCS system, such as iShare,
most guest jobs are either small test programs
taking less than half an hour, or large computa-
tional jobs taking several hours. For small test
programs, resource unavailability happens rarely
(according to Fig. 6, about 90% of the availability
intervals are longer than 2 h); a job scheduler can
perform well without the availability prediction.

Fig. 14 Prediction discrepancy with different amounts of
noise injected to a training log for weekdays. T is the length
of the future time window. Prediction discrepancy is the
relative difference between the prediction results using the
training data with and without noise injection, respectively

Therefore, small jobs will not suffer from the pre-
diction inaccuracy resulted from irregular avail-
ability patterns. For large jobs taking more than
2 h, intensive noise (10 noise events within 1 h)
causes less than 6% disturbance in our prediction
algorithm. Therefore, we can conclude that our
prediction algorithm is robust enough for applica-
tion in practical FGCS systems.

8.4 Applying Prediction in a Proactive Scheduler

Proactive scheduling algorithms apply availability
prediction to select machine resources for a given
guest application. We are developing such algo-
rithms using the SMP-based prediction. In this
section, we present our proactive algorithm and
the initial results of scheduling a single compu-
tational task onto FGCS resources. To evaluate
the benefits of utilizing availability prediction in
resource selection, we chose three algorithms for
comparison: (1) a Condor-like algorithm sched-
ules jobs to it presently available resources by
matchmaking [29]; (2) our proactive algorithm
predicts resource availability to improve schedul-
ing decisions; and (3) an omniscient algorithm
with full knowledge of host resource utilization
in the future. All these algorithms are static, i.e.,
a guest job is scheduled at the beginning without
further migration or rescheduling.

In more detail, the Condor-like algorithm
matches guest job requests with known host ma-
chine resources. These guest jobs and hosts are
specified in classified advertisements using a semi-
structured data model [29]. A given guest job can
specify the ranking criteria for resource selection.
In our implementation, we chose the clock rate
of a host as the criterion. That is, if multiple re-
sources match the requests, the one with the high-
est CPU speed will be chosen. In the omniscient
algorithm, we use future traces of host workload
and the associated resource availability to pre-
execute the guest job, and then choose the one
that finishes earliest. Therefore, it obtains optimal
results among all the scheduling algorithms. It is
also the fastest without causing any computational
overhead to make scheduling decisions.

In our proactive algorithm, we first calculate
the estimated job completion time (JCT) without
considering potential failures, JCT = T L/[CR ∗
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(1 − Lt0(T L))]. In this equation, t0 is the job sub-
mission time, CR is the clock rate of the host,
Lt0(t) is the estimated CPU load1 averaged over
the time interval between t0 and t0 + t, and T L
is the task length (the job completion time on
a dedicated host machine with the average CPU
speed as in our FGCS testbed). To factor future
availability in resource ranking, two more para-
meters, mean time to failure (MTT F) and effective
task length (ET L: the length of task expected
to finish before being interrupted), are derived
from the predicted temporal reliability, T R, of a
host machine. Equations (5) and (6) present the
computation of the two parameters.

MTT F =
∫ ∞

0
t ∗ Pr{ job f ails at t} dt

=
∫ ∞

0
t dPr{ job f ails before t}

=
∫ ∞

0
t d(1 − T R(t))

= −[t ∗ T R(t)]|∞0 +
∫ ∞

0
T R(t) dt

=
∫ ∞

0
T R(t) dt (5)

ET L = MTT F ∗ CR ∗ (1 − Lt0(MTT F)) (6)

In (5), to simplify the results of integration by
parts, we apply the fact that T R decreases super-
linearly with t in our FGCS system. To make re-
source selection decisions, the proactive algorithm
first compares MTT F with JCT (the estimated
job completion time without considering failures).
If, for each resource, the latter is larger, the al-
gorithm selects the one with the largest ET L.
Otherwise, it selects the one with the minimum
job completion time, considering failures (JCT F),
which can be calculated from (7).

T L = CR ∗ (1 − Lt0(JCT F)) ∗
∫ JCT F

0
T R(t) d t

(7)

1We applied the aggregated one-step-ahead algorithm [34]
to obtain the average CPU load for a future time window.

We implemented the above three algorithms in
the GridSim [7] simulator. There are two reasons
for using simulation rather than the testbed men-
tioned in Section 5: we need to repeat experiments
for guest jobs with different start time and lengths
for all the three scheduling algorithms; and we
plan to simulate an FGCS system whose scale is
beyond the testbed. On the other hand, we can
still use the host workload trace collected from
our testbed because the host (not including guest)
workload on an individual machine is orthogonal
to the scale or other settings of an FGCS system.

The GridSim simulator supports the modeling
and simulation of a wide range of heterogeneous
resources in Grids. In our experiments, it was used
for simulating job execution on a host with cer-
tain occurrences of resource unavailability, which
we injected using the same traces described in
Section 5. A submitted job is specified by a job id,
the job (task) length, the memory usage, and the
submission time. To schedule a job, the simulator
first discovers a list of resource candidates. If no
resource is available at the time point, it waits
for 5 min and tries again. The job will return
as unscheduled if no resource becomes available
after the 5 min. A scheduled job will return either
as finished or, if resources become unavailable
during the job execution, as failed. A failed job
will be restarted from the beginning repeatedly
until it finishes successfully.

We conducted three experiments, for each of
the three scheduling algorithms. In each exper-
iment, a total number of 420 jobs were sub-
mitted. Their submission times were distributed

Fig. 15 Percentage of jobs with different status. Unsched-
uled jobs can not get executed because no resource is
available at the time of job submission
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uniformly between 6 am and 10 pm. For each sub-
mission time, we tested jobs with seven different
lengths, ranging from 0.5 to 6 h. We measured two
metrics, job failure rate and average makespan.
Job failure rate shows how many jobs fail due
to resource unavailability. Makespan is the time
interval between a job submission and the time
it completes. We measured the makespans of all
the scheduled jobs (including those that failed and
then restarted) and collected the average values
for each scheduling algorithm. These two metrics
indicate how effective a scheduling algorithm is in
selecting resources with high availability and high
computing capability.

Figure 15 shows the percentage of jobs returned
with different status. For each job length, about
3% of jobs were unscheduled. This value is the
same for all scheduling algorithms, because a sub-
mitted job was tested identically in each algo-
rithm. For all the jobs, our proactive algorithm
achieves a better or similar failure rate compared
to the Condor-like algorithm. The difference be-
tween the proactive and the omniscient algorithm
is due to the availability prediction inaccuracy,
which generally increases with job length. For jobs
with lengths of 3 h, the Condor-like algorithm
obtains slightly lower failure rate than the proac-
tive algorithm. The reason is that about 60% of
availability intervals are longer than 3 h, as shown
in Fig. 6, and thus the Condor-like algorithm does
not suffer much from unexpected job failures.
Meanwhile, the proactive algorithm is affected by
the errors in availability prediction (the error is
about 10% in the worst case according to Fig. 11).
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Fig. 16 Slowdown of jobs under different scheduling algo-
rithms. The baseline is the omniscient algorithm, which has
full knowledge of host resource utilization in the future.
The slowdown only counts jobs that finished successfully

For large jobs that experience possibly frequent
failures, the proactive algorithm performs much
better than the Condor-like algorithm.

Figure 16 presents the relative slowdown of
the scheduling algorithms by comparing them to
the omniscient algorithm. To measure the relative
slowdown of an algorithm, we first collected the
average makespan of all the jobs scheduled and
finished (including those failed and then restarted)
using this algorithm, and then compared the value
to that of the omniscient algorithm. There are two
sources for the slowdown: the ineffectiveness in
selecting the best resource and the computational
overhead of the scheduling algorithm. The omni-
scient algorithm can make the perfect selection
knowing future traces and its overhead is set to
zero to serve as the baseline. The Condor-like
algorithm is computationally fast, but its resource
selection does not consider the available comput-
ing capability in the future. Therefore, it causes
slowdown as high as 22% (for jobs of 4 h). The
proactive algorithm outperforms the Condor-like
algorithm in all the cases. It improves the average
makespan by 4–14%.

9 Conclusion and Future Work

We presented new techniques for predicting the
availability of resources (compute cycles) in fine-
grained cycle sharing systems. Exploiting daily
patterns in the resource use history, the tech-
niques compute the probability that a resource
will be available during a given, future time win-
dow. We use this capability to find the most
suitable computer system on which to execute a
computational application in the iShare Internet
sharing system.

A semi-Markov Process (SMP) model under-
lies our prediction method. Experimental results
show an average prediction accuracy of 86.5% and
an added overhead of 0.006% to an application.
We have also found that our techniques are re-
silient to irregularity in history data. When apply-
ing the prediction to a proactive job scheduler,
it was able to improve job failure rate and job
makespan, compared to non-predictive schemes.

We have developed the prediction method in
the context of a system that exhibits computer
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workloads in a university student environment.
These workloads were highly diverse; we expect
the results to hold for different environments.
Several parameters, such as the threshold for tol-
erable impact of a guest job on a host computer,
may be adjusted. In ongoing work we are evaluat-
ing our techniques in new environments. We are
also exploring new applications of the prediction
techniques, such as the use in job schedulers that
support migration and rescheduling.
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