
Efficient Content Search in iShare, a P2P based Internet-Sharing System

Seyong Lee, Xiaojuan Ren, and Rudolf Eigenmann
School of ECE, Purdue University

West Lafayette, IN, 47907
{lee222,renx,eigenman}@purdue.edu

Abstract

This paper presents an efficient content search system,
which is applied to iShare, a distributed peer-to-peer(P2P)
Internet-sharing system. iShare facilitates the sharing of
diverse resources located in different administrative do-
mains over the Internet. For efficient resource management,
iShare organizes resources into a hierarchical name space,
which is distributed over the underlying structured P2P net-
work. However, iShare’s search capability has a fundamen-
tal limit inherited from the underlying structured P2P sys-
tem’s search capability. Most existing structured P2P sys-
tems do not support content searches. There exists some re-
search that provides content search functionality, but the ap-
proaches do not scale well and incur substantial overheads
on data updates. To address these issues, we propose an ef-
ficient hierarchical-summary system, which enables an ef-
ficient content search and semantic ranking capability over
traditional structured P2P systems. Our system uses a hier-
archical name space to implement a summary hierarchy on
top of existing structured P2P overlay networks, and uses a
Bloom Filter as a summary structure to reduce space and
maintenance overhead. We implemented the proposed sys-
tem in iShare, and the results show that our search sys-
tem finds all relevant results regardless of summary scale
and the search latency increases very slowly as the network
grows.

1 Introduction

The proliferation of the Internet and related advances in
networking technologies provides us with tremendous op-
portunities for utilizing the free resources available in In-
ternet environments. One of the most promising but de-
manding topics in this area is to integrate computational
and information resources scattered over the Internet into
large-scale cohesive computing systems. iShare [10] is a
distributed peer-to-peer (P2P) Internet-sharing system that
facilitates the sharing of diverse resources located in dif-

ferent administrative domains over the Internet. For ef-
ficient resource management, iShare organizes resources
into a hierarchical name space, which is distributed over
the underlying structured P2P network. iShare uses Pas-
try [12] as underlying overlay network to exploit the ef-
ficiency, scalability, fault-tolerance, and autonomy. How-
ever, the underlying P2P network also sets a fundamental
limit on iShare’s search capability. In distributed P2P sys-
tems, advanced search functionality, such as content search
and result-ranking, is difficult to build, because information
about resources is also distributed.

In a content search function, the input is a set of key-
words representing a user’s interests and the output is a
set of resources containing these keywords. In the content
search context, resources represent text documents or meta-
data of general resources, such as software applications,
computer platforms, or data volumes. Content search is use-
ful when a user does not know the exact resource names of
interests; this case is common in P2P-based searches as well
as in web searches.

Several solutions have been proposed to build a content
search system on top of distributed P2P systems. Most
of the proposed solutions use an unstructured overlay net-
work, where searches are done by forwarding query mes-
sages from node to node in a flooded manner, leading to
poor scalability with respect to system size. On the other
hand, structured P2P overlay networks, where resources are
distributed based on hash functions, can provide improved
scalability. Existing structured P2P systems such as Pas-
try [12] provide mappings from keys to locations in a dis-
tributed manner. Searches based on such mappings cause
logarithmic latency and thus scale well as the P2P system
grows. However, in spite of the high search efficiency of
structured P2P systems, two challenges must be solved to
provide efficient and accurate content search in such sys-
tems.

First, general structured P2P overlay networks only pro-
vide search capabilities with a single keyword due to the use
of hashing. Simply searching for each of multiple keywords
individually results in poor efficiency [11]. Moreover, up-

dating resource data is expensive, as multiple peer nodes
containing the related keywords need to be notified.

The second challenge of building content search on
structured P2P systems lies in the realization of a ranking
capability, which orders the retrieved search results by their
relevance to the queried keywords. Ranking techniques
have been studied in the area of semantic searches for P2P
overlay networks [15, 3, 13, 8]. In a semantic search, se-
mantic information, such as a classification hierarchy, is
used either to restrict the search scope with improved search
efficiency or to rank the retrieved search results by their se-
mantic relevance. To this end, many existing approaches
proposed a semantic overlay network, where semantically
related resources are closely clustered. However, most of
these approaches provide a single semantic concept search
only [8], i.e., they do not support content search capabilities.
Some other approaches can not handle the update of seman-
tic information, because they rely on either a static classifi-
cation hierarchy [3, 13] or predefined dictionary space [15].

In this paper, we propose an efficient search system,
built on structured P2P overlay networks. Our system ad-
dresses both issues of content search and semantic ranking.
To provide high search efficiency and accuracy, we extend
a path-name-based hierarchy system, which was proposed
in iShare, to build a summary hierarchy on top of general
structured P2P systems. A summary hierarchy is a tree-like
structure, where an intermediate node contains the union
set of keywords maintained by its child nodes. Each leaf
node in the hierarchy contains the keywords for describing
an individual resource. The proposed mechanism also al-
lows semantic ranking when there is a semantic hierarchy
(i.e., classification hierarchy), as in iShare. Moreover, flex-
ibility in the path-name-based hierarchy makes our ranking
system adaptable to changes of semantic information.

We deploy a Bloom Filter [2] as a space-efficient sum-
mary structure, so that the summary hierarchy scales well.
The probabilistic property of a Bloom Filter allows our
content search system to find all relevant results regard-
less of summary scale with an acceptable increase of search
overhead. Moreover, by using Bloom Filters, the over-
head of updating the hierarchical summary structure is
much smaller than in other existing summary hierarchy sys-
tems [14].

We implemented a prototype for the proposed content
search system in the iShare system. We evaluated our
content search system in terms of search accuracy, search
efficiency, and the effect of search-result caching, using
iShare’s built-in simulator. The rest of this paper is orga-
nized as following: Section 2 provides an overview of the
iShare system and explains the background of path-name-
based hierarchies and Bloom Filters. Section 3 presents the
proposed summary-hierarchy-based content search system.
Section 4 shows experimental results. Related work and

conclusions are presented in Section 5 and Section 6, re-
spectively.

2 Background

Our content search function builds on iShare’s hierarchi-
cal name space to create a summary hierarchy on top of
structured P2P overlay networks. A Bloom Filter summa-
rizes a branch in the hierarchy. The leaves represent simple
text documents or descriptions of metadata of general re-
sources, such as software applications, computer platforms,
or data volumes.

In this section, we provide an overview of the iShare sys-
tem and describe the concepts of path-name-based hierar-
chies and Bloom Filters.

2.1 Overview of the iShare Internet Shar-
ing System

iShare is an open Internet-sharing system, which in-
cludes resource management functionality for cycle-sharing
systems, such as resource publishing, resource discovery,
resource access, and administration. iShare’s resource man-
agement is based on a decentralized P2P framework, where
participants can play the roles of both providers and users.
Resource providers can easily describe and publish their re-
sources and usage policies; end users can easily browse and
access published resources. These functionalities are pro-
vided as a set of tools in the user interface of the iShare
system.

To enable the efficient search for resources with specific
capabilities, iShare organizes resources into a hierarchical
name space and distributes the name space to the underlying
P2P network. More information about the path-name-based
hierarchy is shown in the following section. This design en-
ables resource discovery without knowledge of where the
corresponding data items are stored. However, iShare’s
search system has a fundamental limit due to the underlying
P2P network: more advanced search, such as content search
and ranking, is difficult to realize in P2P-based search sys-
tems.

We propose a summary-hierarchy-based content search
system to address these issues; the system is presented in
Section 3.

2.2 Path-Name-based Hierarchy

Using a path name in a hierarchical name space, our sys-
tem forms a hierarchy on top of an existing structured P2P
system [12], where peer nodes are located in a flat ID space.
In this hierarchical name space, each resource is represented
by a node in a tree and the path from the root to this node
is called the path name of the resource. If the name space is

configured as a semantic hierarchy (i.e., classification hier-
archy), it can be used for general semantic search or rank-
ing, where each node in the hierarchy tree represents a se-
mantic concept or a category. In this system, the resources
that are semantically related are stored in the same node or
in sibling nodes in the semantic tree. Figure 1 shows a se-
mantic hierarchy example where Cyber Lab is a root node
and there are two categories: Biology and Chemistry. In this
example, each category contains two resources; all interme-
diate nodes in the hierarchy represent semantic concepts or
categories, and all leaf nodes represent resources.

Cyber Lab

Biology Chemistry

GeneDB BLAST ReactSim Chem
Cluster

Figure 1. Semantic Hierarchy Example

Table 1. Messages needed to publish
a resource whose path name is “/Cyber
Lab/Biology/GeneDB”

Message Key Content
1 Cyber Lab Biology
2 Biology Biology/GeneDB
3 Biology/GeneDB metadata of GeneDB

In a path-name-based P2P hierarchy, an item in the hi-
erarchical space is mapped to a peer node, based on the
hash value of the item’s path name. A child’s path name
is kept in the parent. Hence, a resource can be searched
incrementally through its hierarchical path name. For the
hierarchical name space in Figure 1, Table 1 shows neces-
sary messages to publish a resource, whose path name is
“/Cyber Lab/Biology/GeneDB”. The first message checks
whether a node representing Cyber Lab has the Biology cat-
egory as a child node, and if not, it creates the category. The
second and third messages are used to publish a resource
called GeneDB in the hierarchy. Each message is routed to
the destination node, whose ID is numerically closest to the
hash value of the message’s key.

2.3 Bloom Filters

A Bloom Filter is a space-efficient probabilistic data
structure that is used to test whether an element is a mem-

ber of a set. Physically, a Bloom Filter is an array of m
bits, where the value of each bit is decided by hash func-
tions. When a Bloom Filter is created, all m bits are initial-
ized to 0. Given a keyword, a set of hash functions com-
pute the corresponding bits in the Bloom Filter. The opera-
tion of inserting a keyword sets the selected bits to 1. Due
to hash functions, a Bloom Filter can perform insertion or
membership-check in constant time.

One important property of a Bloom Filter is that it can
give a positive answer even though a certain element or key-
word is not contained in the set. However, it does not give
false negatives; a Bloom Filter always answers yes if the set
contains a keyword. Given the number of input keywords,
both the array size m and the number of used hash func-
tions decide the probabilistic error rate. In Section 4, we
will show how different parameter settings for the Bloom
Filter affect our search performance. Another intrinsic limit
of a Bloom Filter is that deletion of a keyword is impos-
sible. To delete a keyword, at least one of the bits set by
the keyword must be reset to 0. However, this has the side
effect of removing any other keywords that set the bit to 1
and there is no way of determining whether any such key-
words have been added. Hence, to delete a keyword from
a set, the Bloom Filter must be regenerated from the begin-
ning. In our system, rebuilding a Bloom Filter still causes
negligible overhead, which will be explained in Section 3.1.

3 Summary Hierarchy based Content Search

In this section, we present an efficient summary-
hierarchy-based content search system. We assume that
each resource belongs to a category in some hierarchical
name space. A hierarchy in the name space can be any pre-
defined classification hierarchy, such as the ODP (Open Di-
rectory Project) category hierarchy [1] or a user-defined hi-
erarchy, such as the one used in iShare. For example, iShare
allows that each resource provider can either choose an ex-
isting category or create a new category, to which the re-
source will be published. Our system uses the hierarchy in
the name space to form a summary hierarchy; each node
(category) in the hierarchy contains summary information
about its child nodes.

Figure 2 shows the overall system structure. In our
search system, a large number of machines (peer nodes)
constitute a structured P2P overlay network, where each re-
source is published using its path name as a hash key. Our
system extends a path-name-based hierarchy to build a sum-
mary hierarchy. New categories are automatically published
into the same ID space, where resources are published, if a
new resource’s path name contains categories that do not
exist in the system. To summarize contents efficiently, we
use a Bloom Filter.

Content search is performed by traversing the summary-

P2P Node i

1

2

3

P2P Overlay Network

Query
forwarding

Local
Search
Engine

Cyber Lab

Biology Chemistry

RSC2 RSC3 RSC4RSC1

Cyber Lab
Biology

Chemistry

Summary Hierarchy

Biology
RSC1

RSC2

Figure 2. Overall search system. Each node
in the P2P overlay network contains sum-
mary information of its child nodes in a path-
name-based hierarchy.

hierarchy tree to find resources containing the keywords of
the query. If a semantic hierarchy is used, various optimiza-
tions can be applied to our search system to improve effi-
ciency and accuracy.

The following subsections describe design components
of our search system. Section 3.1 explains how to build a
summary hierarchy; Section 3.2 describes the overall mech-
anism of the proposed content search system; Section 3.3
shows a semantic ranking system as an application of our
content search system and Section 3.4 discusses scalability.

3.1 Building Summary Hierarchy

To build a summary hierarchy, we extended the path-
name-based hierarchy, such that each node in the hierar-
chy contains summary information of its children. When a
resource is published, the summary information for the re-
source is also created. In our system, a summary is a set
of keywords used in the description metadata of a resource.
The keywords are stored in the form of a Bloom Filter. Be-
cause a Bloom Filter uses hash functions to represent key-
words, summary data is generated with much less compu-
tational overhead than such techniques as the Vector Space
Model (VSM) [16] and Latent Semantic Indexing (LSI) [9].
The summary data is included in a resource-publish-request
message. It updates the summary information of the cate-
gories encountered along the path from the root to the leaf
node representing the resource.

In a P2P overlay network, peer nodes can join and leave
frequently. Therefore, corresponding summary data should
be split or merged upon a peer node’s join or leave. In our
summary-hierarchy system, merging two sets of summary
data is very easy. Because a Bloom Filter is implemented
as a bit array, merging two existing summaries involves a
simple bitwise OR operation. Considering that publishing

new resources are more common than unpublishing (delet-
ing) resources in a P2P system, such a lightweight merge
operation makes the summary hierarchy efficiently adapt-
able to a dynamic P2P environment.

One intrinsic limit of a Bloom Filter-based summary hi-
erarchy is that deleting partial summary information is not
allowed, as mentioned in Section 2.3. To delete keywords
from summary data, we should rebuild the summary using
the remaining keywords from the beginning. In our sum-
mary hierarchy system, deleting keywords is needed when
a resource is unpublished from the P2P overlay network or
when a summary for a category must be split because of a
new peer node’s join. In these cases, however, rebuilding
the summary hierarchy still does not cause large overhead.
In terms of a summary hierarchy, a resource deletion or cat-
egory split can be seen as deleting or splitting children of
a node in the summary hierarchy, and thus, these opera-
tions can be done simply by doing bitwise OR operations
on the summaries of the remaining child nodes. This sum-
mary change of a node is propagated up to parent nodes
till it reaches the root node. For fault-tolerance, replicas of
modified summary data are also updated.

In summary, the overhead for maintaining the summary
hierarchy is tolerable, because it requires only simple bit-
wise OR operations in a branch of the hierarchy and a few
messages to forward updated summary data. Further opti-
mizations to reduce this overhead will be described in Sec-
tion 3.4.

3.2 Hierarchy-based Content Search

Using the summary information, the search function pro-
ceeds as follows. First, a user’s multiple-keyword query is
sent to the root node in the summary hierarchy. The root
node determines which child nodes contain related infor-
mation, and forwards the query to these nodes. This for-
warding is repeated from the root node to leaf nodes in the
hierarchy, and when a leaf node receives the query, the node
determines if it has the keywords of the query. If the leaf
node, which represents one resource, contains these key-
words, then it answers the query and replies to the user’s
local search engine. Next, the user’s local search engine
collects and ranks these replies. Methods for semantic rank-
ings are discussed in Section 3.3.

One important issue in this search mechanism is how
to efficiently find relevant nodes in the hierarchy, so that
a query can be forwarded only to these nodes. For this goal,
we use summary information. Each node in the hierarchy
contains efficient summary information of its children as
explained in Section 3.1. When one node receives a query
message, this node examines the query against summary in-
formation of its children. The query is then forwarded only
to the nodes containing the relevant keywords. By using

these summaries, we can reduce unnecessary message over-
head and therefore, our search system scales well.

For a large-scale P2P system, space efficiency and com-
putation complexity of a summary data structure are cru-
cial factors for search efficiency. Space-inefficient sum-
mary data will cause significant memory overhead. Com-
plex summary update operations are not suitable for gen-
eral P2P systems, where nodes can join and leave frequently
and the hierarchy can change dynamically. A Bloom Filter-
based summary hierarchy addresses these issues.

Using a Bloom Filter as a summary, we can always find
relevant results if they exist, because a Bloom Filter al-
ways answers positively if a keyword exists in the summary
set. As mentioned in Section 2.3, however, a Bloom Filter
may answer positively, even though a certain keyword is not
stored in a set. A false answer incurs additional overhead,
as the query messages will be forwarded to nodes that do
not store the relevant resources. The probability of this false
answering is a function of the number of hash functions, bit-
array size, and the number of inserted keywords. Hence, if
we can estimate the total number of keywords used in the
target system, we can limit the probabilistic error rate by
choosing an appropriate number of hash functions and bit-
array size.

In our system, users may not have complete knowledge
of the hierarchy because the hierarchy information itself is
distributed over peer nodes and can change. However, if a
user knows the hierarchy information, the user can restrict
the search scope by initiating the query from an intermedi-
ate node in the tree, rather than from the root. If the hierar-
chy is a semantic hierarchy, this has the effect of restricting
the search scope to certain semantic categories; this restric-
tion can avoid the bottleneck of all requests going through
the root node.

To reduce search latency, our system uses a search-result
cache, where recently searched results are stored. Our
search system first checks if search results are stored in the
local cache. If valid (unexpired) cache results are found, the
search system directly returns them. Otherwise, the search
system initiates a request as usual.

3.3 Semantic Ranking using Summary Hi-
erarchy

Semantic ranking is an important application of content
search. Several ranking functions have been proposed; they
assume underlying content search functionality. Here we
describe possible ranking methods that build on our context
search system.

One way of ranking is to employ the user’s predefined
preference. We call this semantic-distance-based ranking.
In this ranking method, query users store semantic cate-
gories relevant to users’ interests in their profiles, and when

retrieved results are ranked, the ones closest to each user’s
preferred semantic categories are ranked first. Figure 3
shows one example where a user is interested in the Chem-
istry category and the search system found three results:
GeneDB, BLAST, and ReactSim. Based on the relative dis-
tance between the user’s interested category and each re-
trieved result, the shortest one is ranked first.

Cyber Lab

Biology Chemistry

GeneDB BLAST ReactSim Chem
Cluster

If system retrieved 3 results:
GeneDB, BLAST, ReactSim

And if the user is interested in
Chemistry domain

=> Ranked list of results

1) ReactSim

2) BLAST

3) GeneDB

Figure 3. Example for Semantic-Distance-
Based Ranking

Another method is a personalized-categorization-based
ranking, which has been proposed for web search [7]. In
this approach, the ranking system records the user’s previ-
ous interests (i.e., semantic categories to which the user’s
previously selected results belong), and when a user makes
a new query, semantic similarities between the user’s query
and categories representing the user’s interests are calcu-
lated. Next, the categories (the user’s interested domains)
are ranked in descending order of similarity. This ranked
list shows the user’s interests implied by the query. The
query results are then ranked according to this list; results
belonging to the first category in the list will be ranked first.
To calculate a semantic similarity, various similarity func-
tions, such as Cosine Similarity or KL distance [5], which
are commonly used in the Information Retrieval area, can
be used.

3.4 Scalability Issue

As explained in Section 3.1, adding a new summary to
our hierarchy is simple, but deleting a summary incurs over-
head. In a large-scale system, where resources can be added
or deleted frequently, this overhead can be significant. To
reduce it, our system reconstructs the summary hierarchy
only when the false answering rate exceeds a certain thresh-
old. Avoiding delete operations in this manner does not re-
duce search accuracy, but it may cause extra message over-
head. To strike a balance between search overhead and sum-
mary update overhead, measuring the false answering rate
is key. If a node receives irrelevant query messages, this
means that the Bloom Filter in its parent node answered a
query with a false positive. By monitoring irrelevant query
messages, each node can check this false answering rate. A

high rate indicates high search overhead; the summary hi-
erarchy should be reconstructed. Triggering the summary
hierarchy reconstruction in this way can control the balance
effectively.

Another scalability issue is that the root node in our sys-
tem can form a bottleneck, as it represents the entry node
for all queries, unless a user restricts the search scope ex-
plicitly. To alleviate this hot-spot problem, our system ex-
plicitly replicates the root node; query messages are sent to
a randomly selected replica. The number of replicas is a de-
sign parameter, which is chosen based on the expected P2P
system size.

4 Evaluation

We have implemented a prototype of the proposed con-
tent search system, using the Pastry P2P overlay built in the
iShare system. We evaluated our content search system in
terms of search accuracy, search efficiency, and the effect of
search-result caching. To measure these metrics in systems
of different sizes, we simulated several iShare testbeds of
various scales.

4.1 Methodology

We simulated our search system on a GT-ITM router net-
work using the transit-stub model [17]. To test the scal-
ability, we used several iShare testbeds with a number of
nodes ranging from 100 to 10,000. Our simulations use the
Reuters-21578 text categorization test collection [6]. The
categories in the collection are used to build a summary hi-
erarchy tree, and each text document is used as a resource
published in the iShare system. For the summary structure,
we used a Bloom Filter with 8 hash functions and bit ar-
ray size varying from 1 KBytes to 5 KBytes. By changing
the Bloom Filter’s bit-array size, we examined the effect of
summary data size on search accuracy and overhead.

To measure the influence of a user’s keyword search pat-
terns on search latency, we examined a naive search system,
which does not use caching, with three types of synthetic
user search patterns: a random keyword selected from a col-
lection of keywords, multiple random keywords with AND
logical operators, and multiple random keywords with OR
logical operators. For the last two types, the total number of
keywords varies from 1 to 5. Each search query starts from
the root node in the hierarchy, and propagates to all relevant
nodes. To understand the effect of search result caching, we
compared search latency under different cache expiration
times.

4.2 Results

Figure 4 shows the effect of summary data size (Bloom
Filter size) when the number of unique keywords varies
from 1000 to 25000. In this experiment, the iShare testbed
consisted of 1000 nodes, and a set of resources were ran-
domly published to the nodes. Table 2 shows the number
of published resources and categories for each test. In this
table, the number of keywords means the total number of
keywords in all published resources. We tested for keyword
searches using one random keyword selected from a key-
word collection for each search query. For each search op-
eration, one node in the P2P overlay network was randomly
selected and the search request was initiated from the node.

0

0.2

0.4

0.6

0.8

1

1.2

1000 2000 5000 10000 15000 20000 25000

Unique Keywords

R
ec

al
l

BF size = 1KBytes

BF size = 5KBytes

0

2

4

6

8

10

12

14

16

1000 2000 5000 10000 15000 20000 25000

Unique keywords

#A
ve

ra
ge

 h
op

s
pe

r r
es

ul
t

BF size = 1KBytes

BF size = 5KBytes

 (a) Recall

(b) Average hops per results

Figure 4. Keyword search accuracy and la-
tency when number of keywords varies from
1000 to 25000. BF means Bloom Filter.

Figure 4 (a) shows the search accuracy for two summary
sizes (1 KBytes and 5 KBytes). We use recall values as the
metric for search accuracy. Recall is defined as follows:

Recall =
the number of retrieved relevant resources

the number of all relevant resources

From the figure, we can see that our search system finds
all relevant results regardless of the number of keywords
stored in the system. This is expected, as a Bloom Filter

Table 2. Statistics of published resources and
categories

Test # published # keywords # unique

keywords

published

categories

1 24 1556 1003 10

2 69 4056 2042 15

3 226 16093 5070 30

4 938 58759 10014 47

5 1992 126055 15002 52

6 3452 222304 20000 58

7 5561 367308 25003 281

does not return false negatives. On the other hand, Fig-
ure 4 (b) shows that, in certain cases, search overhead can
increase, as the number of keywords increases. In Figure 4
(b), we can see that, when a Bloom Filter size is 1 KBytes,
the average number of hops per result increases, as more
keywords are added to the iShare testbeds. In a Bloom
Filter-based summary, the error rate is proportional to the
number of stored keywords, but inversely proportional to
the size of the Bloom Filter. Error rate means the probabil-
ity that the Bloom Filter gives false positives, as explained
in Section 3.2; this property leads to the search query be-
ing forwarded to irrelevant child nodes, which increases the
number of messages used in the search.

In the case of a Bloom Filter with the size of 5 KBytes,
however, the number of average hops per result decreases
as the number of keywords increases. This decrease can
happen because our search system is tested with random
keywords. If many relevant results are located within one
or a small number of categories, the average number of
used messages per result will be smaller than the opposite
case where relevant results are scattered among several cat-
egories. From Figure 4 (b), we can see that Bloom Filter
size of 5 KBytes is big enough for a system with total 25000
unique keywords.

Figure 5 presents how search efficiency scales with the
system size. In these experiments, the three different user
search patterns were used. For each search query, one
random node in the P2P network was selected to initiate
the search request. The results in Figure 5 show that the
search latency increases very slowly with the total number
of nodes, and the influence of different search query pat-
terns is not significant.

In the last set of experiments, we measured the effect of
caching search results with different normalized cache ex-
piration time e (e = cache expiration time/average request
period). In these experiments, a random keyword was cho-
sen for each search query, and the query was initiated from a
random node selected among five pre-selected nodes in the

0

2

4

6

8

10

12

14

16

18

20

10
0

50
0

10
00

15
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Nodes

#A
ve

ra
ge

 h
op

s
pe

r r
es

ul
t

One random keyword

multiple random keywords (OR)

multiple random keywords (AND)

Figure 5. Average number of hops per result
as a function of the number of iShare nodes

0

2

4

6

8

10

12

14

16

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Nodes

#A
ve

ra
ge

 h
op

s
pe

r r
es

ul
t

e = 1
e = 5
e = 10
e = 100
e = 1000

Figure 6. Average number of hops per result
for random query model. e is the normalized
cache expiration time (e = cache expiration
time/average request period).

P2P networks. From Figure 6, we see that, with fair expi-
ration time (e= 5), search response time is reduced by 14%
on average, compared to the search without a local cache.
Moreover, the figure indicates that the cache effect is not a
function of system scale.

5 Related Work

Content search systems for unstructured P2P system are
proposed in many papers [4], but these approaches incur
substantial search overhead in unstructured P2P systems.

In [11], the authors proposed a multiple-keyword search
technique using a distributed inverted index, which uses
a Bloom Filter as a summary representation. The system
in [11] supports only simple multiple-keyword searches,
which do not use any semantic information. Moreover, the
system incurs high maintenance overhead because, when-
ever a new resource is published or unpublished, all nodes
containing the keywords of the resource must be updated.

There are several approaches to exploit semantic infor-
mation for search or ranking: one approach [15] uses a se-
mantic vector, which is generated by Latent Semantic In-
dexing (LSI) [9], as the key to store the document index
in Content-addressable Networks (CAN); and [3, 13] use a
predefined classification hierarchy or ontology to exploit a
semantic relationship. In contrast to these approaches, [8]
uses a path-name-based semantic hierarchy, which is simi-
lar to our system. However, [8] allows only an exact clas-
sification path or a statement for a query model, while our
system allows general multiple-keyword searches.

The system proposed in [14] is the most closely related
to our system. It uses a two-level hierarchical summary in-
dexing structure for content searches. However, the pro-
posed system in [14] works only on the unstructured Super-
peer P2P Network, and the hierarchy used in the system
does not have any semantic relationship. Semantic infor-
mation is generated when an advanced index summary tech-
nique such as LSI is applied to Vector Space Model (VSM),
which is a base summary technique in [14]. Even though
LSI can discover an underlying semantic correlation among
resources, the complexity of LSI generation and update, and
the space requirement for VSM set limits on the system’s
scalability. Our system, however, uses a changeable seman-
tic hierarchy realized by a Bloom Filter, achieving improved
efficiency and scalability.

6 Conclusion

In this paper, we have presented a summary-hierarchy-
based content search system. The proposed technique is
realized in a general structured P2P overlay network. An
extended path-name-based hierarchy allows us to build a
summary hierarchy on top of the P2P system, and a Bloom
Filter-based summary structure makes our system efficient
and scalable without losing search accuracy. In this paper,
we have focused on design and evaluation of the P2P con-
tent search system in our Internet-sharing system, iShare.
The semantic hierarchy space of our system allows various
optimizations, such as a semantic ranking. In future work,
we will examine various ranking methods to explore their
interaction with our content search system.

References

[1] Open directory project. [online]. available: http://dmoz.org/.
[2] B. H. Bloom. Bloom filter. [online]. available:

http://en.wikipedia.org/wiki/bloom filter.
[3] A. Crespo and H. Garcia-Molina. Semantic overlay net-

works for p2p systems. Technical report, Computer Sicence
Department, Stanford University, October 2002.

[4] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. Planetp: Using gossiping to build content address-

able peer-to-peer information sharing communities. Proc.
HPDC, June 2003.

[5] S. Kullback and R. A. Leibler. On information and suffi-
ciency. Annals of Mathematical Statistics, 22:79–86, 1951.

[6] D. D. Lewis. Reuters-21578. [online]. available:
www.daviddlewis.com/resources/testcollections/reuters21578/.

[7] F. Liu, C. Yu, and W. Meng. Personalized web search for
improving retrieval effectiveness. IEEE Trans. KDE, 16-
1:28–40, 2004.

[8] A. Loser, K. Schubert, and F. Zimmer. Taxonomy-based
routing overlays in p2p networks. Proc. IDEA, pages 407–
412, 2004.

[9] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vem-
pala. Latent semantic indexing: A probabilistic analysis.
pages 159–168, 1998.

[10] X. Ren, A. Basumallik, Z. Pan, and R. Eigenmann. Open
internet-based sharing for desktop grids in ishare. 1st Work-
shop on Large-scale, Volatile Desktop Grids, March 2007.

[11] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword
searching. Proc. Middleware, June 2003.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-
peer systems. Proc. Middleware, pages 329–350, November
2001.

[13] C. Sangpachatanaruk and T. Znati. Semantic driven hash-
ing (sdh): an ontology-based search scheme for the seman-
tic aware network (sa net). Proc. Peer-to-Peer Computing,
pages 270–271, August 2004.

[14] H. T. Shen, Y. Shu, and B. Yu. Efficient semantic-based
content search in p2p network. IEEE Trans. KDE, 16-7:813–
826, July 2004.

[15] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information
retrieval using self-organizing semantic overlay networks.
Technical Report, HP Labs, November 2002.

[16] S. K. Wong, W. Ziarko, V. V. Raghavan, and P. C. Wong. On
modeling of information retrieval concepts in vector spaces.
ACM Trans. TODS, 12-2:299–321, 1987.

[17] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How
to model an internetwork. Proc. IEEE Infocom, 2:594–602,
March 1996.

