
2012 DOE Exascale Research Conference - Working Session Position Paper: Track 2-2 (Productivity Tools and Programming Models)

Moving Heterogeneous GPU Computing into the
Mainstream with Directive-Based, High-Level

Programming Models (Position Paper)
DOE X-Stack Vancouver Project
http://ft.ornl.gov/trac/vancouver

Seyong Lee and Jeffrey S. Vetter
Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA

Email: {lees2,vetter}@ornl.gov

I. INTRODUCTION

Graphics Processing Units (GPUs)-based heterogeneous
systems have emerged as promising alternatives for high-
performance computing. However, their programming com-
plexity poses significant challenges for developers. Recently,
several directive-based, GPU programming models have been
proposed by both academia and industry ( [1], [2], [3], [4], [5],
[6]) to provide better productivity than existing ones, such as
CUDA and OpenCL. Directive-based models provide different
levels of abstraction, and programming efforts required to
conform to their models and optimize the performance also
vary. Understanding the differences in these new models
will give valuable insights on the general applicability and
performance of the directive-based GPU programming models.
This position paper evaluates the existing high-level GPU
programming models to identify current issues and future
directions that stimulate further discussion and research to
push the state of the art in productive GPU programming
models.

II. DIRECTIVE-BASED, HIGH-LEVEL GPU
PROGRAMMING MODELS

General directive-based programming systems consist of
directives, library routines, and designated compilers. In the
directive-based GPU programming models, a set of directives
are used to augment information available to the designated
compilers, such as guidance on mapping of loops onto GPU
and data sharing rules. The most important advantage of using
directive-based GPU programming models is that they provide
very high-level abstraction on GPU programming, since the
designated compiler hides most of the complex details specific
to the underlying GPU architectures. Another benefit is that
the directive approaches provide incremental parallelization
of applications, like OpenMP, so that a user can specify the
regions of a host program to be offloaded to a GPU device
in an incremental way, and then the compiler automatically
creates corresponding host+device programs.

Several directive-based, GPU programming models have
been proposed, such as OpenMPC [1], hiCUDA [2], PGI
Accelerator [3], HMPP [4], R-Stream [5], OpenACC [6], etc.

To understand the level of the abstraction that each directive-
based model gives, Table I summarizes the type of information
that GPU directives can provide. The table implies that R-
Stream offers the highest abstraction, and hiCUDA provides
the lowest abstraction among the compared models, since
in the R-Stream model, the compiler covers most features
implicitly without a programmer’s involvement, while pro-
grammers using hiCUDA should control most of the features
explicitly. However, lower level of abstraction is not always
bad, since low level of abstraction may allow enough control
over various optimizations and the features specific to the
underlying GPUs to achieve optimal performance. Moreover,
actual programming efforts required to use each model may
not be directly related to the level of abstraction that the model
offers, and high-level abstraction of a model sometimes puts
limits on its application coverage.

III. CURRENT ISSUES AND FUTURE DIRECTIONS

A. Functionality

The existing models target structured blocks with parallel
loops for offloading to a GPU device, but there exist several
limits on their applicability; first, most of the existing imple-
mentations work only on loops, but not on general structured
blocks, such as OpenMP’s parallel regions. Second, most of
them either do not provide reduction clauses or can handle
only scalar reductions. Third, none of existing models sup-
ports critical sections or atomic operations (OpenMPC accepts
OpenMP critical sections, but only if they have reduction
patterns.). Fourth, all existing models support only course-
grained synchronizations. Fifth, most of them do not allow
function calls in mappable regions, except for simple functions
that compilers can inline automatically. Sixth, all work on
array-based computations but support pointer operations in
very limited ways. Last, some compilers have limits on the
complexity of mappable regions, such as the shape and depth
of nested loops and memory allocation patterns.

Because each model has different limits on its applicability,
programming efforts required to conform to their models also
differ in each model, incurring portability problems. OpenACC
is the first step toward a single standard on directive-based

The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S.
Government purposes.



TABLE I
FEATURE TABLE, WHICH SHOWS THE TYPE OF INFORMATION THAT GPU DIRECTIVES CAN PROVIDE. IN THE TABLE, explicit MEANS THAT DIRECTIVES EXIST TO CONTROL THE

FEATURE EXPLICITLY, implicit INDICATES THAT A COMPILER IMPLICITLY HANDLES THE FEATURE, indirect IS THAT PROGRAMMERS CAN INDIRECTLY GUIDE THE WAY FOR THE

COMPILER TO HANDLE THE FEATURE USING DIRECTIVES, AND imp-dep MEANS THAT THE FEATURE IS IMPLEMENTATION-DEPENDENT.

Features OpenMPC hiCUDA PGI HMPP R-Stream OpenACC
Code regions to be offloaded structured

blocks
structured
blocks

loops loops loops loops

Loop mapping parallel parallel parallel
vector

parallel parallel parallel
vector

Data management GPU memory allocation and free explicit
implicit

explicit explicit
implicit

explicit
implicit

implicit explicit
implicit

Data movement between CPU and GPU explicit
implicit

explicit explicit
implicit

explicit
implicit

implicit explicit
implicit

Compiler optimizations Loop transformations explicit implicit explicit implicit imp-dep
Data management optimizations explicit

implicit
implicit explicit

implicit
explicit
implicit

implicit imp-dep

GPU-specific features Thread batching explicit
implicit

explicit indirect
implicit

explicit
implicit

explicit
implicit

indirect
implicit

Utilization of special memories explicit
implicit

explicit indirect
implicit

explicit implicit indirect
imp-dep

GPU programming, but many technical details are still left
unspecified. Therefore, in-depth evaluation and research on
existing models will be essential to address these issues.

B. Scalability

All existing models assume host+accelerator systems where
one or small number of GPUs are attached to the host CPU.
However, these models will be applicable only to small scale.
To program systems consisting of clusters of GPUs, hybrid ap-
proaches such as MPI + X will be needed. To enable seamless
porting to large scale systems, research on unified, directive-
based programming models, which integrate data distribution,
parallelization, synchronization, and other additional features,
will be needed.

C. Tunability

Tuning GPU programs is known to be difficult, due to
the complex relationship between programs and performance.
Directive-based GPU programming models may enable an
easy tuning environment that assists users in generating GPU
programs in many optimization variants without detailed
knowledge of the complex GPU programming and memory
models. However, most of the existing models do not provide
enough control over various compiler-optimizations and GPU-
specific features, posing a limit on their tunability. To achieve
the best performance on some applications, research on alter-
native, but still high-level interface to express GPU-specific
programming model and memory model will be necessary.

D. Debuggability

The high-level abstraction offered by directive models puts
significant burdens on debugging. The existing models do
not give users an idea on how the translation works, and
some implementations either do not always observe directives
inserted by programmers or translate them incorrectly, if
they conflict with internal compiler analyses, adding more
dimensions to the complex debugging space. For debugging
purpose, all existing models can generate CUDA codes as
outputs, but most of existing compilers generate CUDA codes

by unparsing low-level intermediate representation (IR), which
contain implementation-specific code structures and thus are
very difficult to understand. More research on traceability
mechanisms and high-level IR-based compiler-transformation
techniques will be needed for better debuggability.

IV. SUMMARY

This paper evaluates directive-based GPU programming
models. The directive-based models provide very high-level
abstraction on GPU programming, since the designated com-
pilers hide most of the complex details specific to the un-
derlying GPU architectures. The evaluation of the existing
directive-based GPU programming models shows that these
models provide different levels of abstraction, and program-
ming efforts required to conform to their models and optimize
the performance also vary. The evaluation also reveals that the
current high-level GPU programming models may need to be
further extended to support an alternative way to express GPU-
specific programming model and memory model to achieve the
best performance in some applications.

ACKNOWLEDGMENT

This position paper was developed with funding from the
Vancouver project, X-Stack program, U.S. Department of
Energy Office of Advanced Scientific Computing Research.

REFERENCES

[1] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP programming
and tuning for GPUs,” in SC’10: Proceedings of the 2010 ACM/IEEE
conference on Supercomputing. IEEE press, 2010.

[2] T. D. Han and T. S. Abdelrahman, “hicuda: High-level gpgpu program-
ming,” IEEE Transactions on Parallel and Distributed Systems, vol. 22,
pp. 78–90, 2011.

[3] “The Portland Group, PGI Fortran and C Accelarator Programming Model
[Online]. Available: http://www.pgroup.com/resources/accel.htm.”

[4] “HMPP Workbench, a directive-based compiler for hybrid computing
[Online]. Available: http://www.caps-entreprise.com/hmpp.html.”

[5] “R-Stream, a High Level Compiler for embedded signal/-
knowledge processing and HPC algorithms [Online]. Available:
https://www.reservoir.com/rstream.”

[6] “OpenACC: Directives for Accelerators [Online]. Available:
http://www.openacc-standard.org.”


	Introduction
	Directive-Based, High-Level GPU Programming Models
	Current Issues and Future Directions
	Functionality
	Scalability
	Tunability
	Debuggability

	Summary
	References

