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Abstract

Population based heuristic search methods such as evolutionary algorithms (EA)
and particle swarm optimization (PSO) methods are widely used for solving optimiza-
tion problems especially when classical techniques are inadequate. A parallel optimiza-
tion framework using multiple concurrent particle swarms is developed and applied to
water distribution problems. Details of the enabling framework that couples the opti-
mization methods with a parallel simulator built around EPANET will be discussed.
In addition, algorithmic and computational performance results using ORNL’s and
ANL’s leadership class parallel architectures will be presented for leakage detection
and contaminant source characterization problems for two water distribution networks
with 1,834 and 12,457 nodes respectively.

1 Motivation

Urban water distribution systems (WDSs) form a critical infrastructure that is vulnerable to
accidental and intentional contamination incidents that could result in adverse human health
and safety impacts. When a contamination event is detected via the first line of defense,
e.g., data from a water quality surveillance sensor network and reports from consumers, the
municipal authorities need to rapidly predict the source characteristics (such as location, and
time of release and mass loading history), estimate the extent of the contamination in the
network through simulation and confirmatory sampling, and prescribe control actions (such
as flow controls using valves, hydrants and storage units, or injection of decontaminants)
to mitigate the event. These interrelated issues could be posed as optimization problems
in a simulation-optimization framework. This work is focused on development of a parallel
optimization framework to aid in solving problems in water distribution networks. The
rest of the paper is organized as follows: Section 2 introduces the optimization framework
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Figure 1: Basic architecture of the parallel optimization framework

and its major components. It also provides a brief overview of particle swarm optimization
algorithms. Section 3 discusses specific problems in water distribution systems and the
parallel EPANET(PEPANET) simulator used in this work.

2 Parallel Optimization Framework

This section describes the design of the parallel optimization framework that aids in coupling
a heuristic optimizer with a target application. It provides the communication middleware
between the optimizer and simulation components. This parallel framework facilitates seam-
less execution of the coupled optimization problem on high performance computing (HPC)
systems. This framework is designed with support for multiple islands or swarms as required
by the optimization algorithm and allows further experimentation with communication and
migration patterns among the islands.

The framework facilitates the manager-worker paradigm for parallel execution. In the
basic configuration, there would be one manager process and several associated workers. In
the multi-swarm optimization scenario, there would be several manager processes and their
corresponding workers. The manager processes execute the optimization component and the
workers would execute the simulation component for the target application. The framework
would provide support for periodic migration between swarms that can be handled by (a)
blocking(synchronous) or (b) non-blocking(asynchronous) communication mechanisms.



2.1 Design

The optimization framework comprises of the following major components as illustrated in
Figure 1:

e Optimizer Module: This encapsulates a supported optimization algorithm that in-
teracts with the driver program and parallel middleware.

e Evaluator Module: This provides a streamlined interface to the optimization prob-
lem. The functions within this module are invoked by the driver program to compute
the objective function value of the target application with given set of parameters.

e Parallel Middleware: The parallel middleware distributes the candidate solutions
across all available processing elements (PEs) and collects the results once the problem
evaluations are complete. It also provides additional communication operations in the
case of multi-population optimization algorithms. This utilizes the Message Passing
Interface(MPI)[Gropp et al., 1999] to provide support for parallelism.

e Driver Module: The driver module integrates the rest of the components together
and drives program execution while retaining overall control.

2.2 Evaluator Module

The Evaluator module provides an interface to the target application including methods
for initialization, termination and computing an evaluation of the test problem. The target
optimization problem could be either a single or multi-objective problem taking an arbitrary
number of real-valued and/or integer parameters and returning one or more real or integer
valued objective values for each problem evaluation. A problem-specific evaluator, WDS
(Water Distribution System) evaluator is used to model the leak detection and contamination
source characterization problems in municipal water distribution systems.

2.3 Optimizer Module

This is an interface provided to an arbitrary population-based optimization algorithm. It pro-
vides function entry points to perform algorithm initialization, generate a set of evaluations,
import results for a set of evaluations and termination at the end. This module interacts
with the parallel middleware to distribute the objective function (usually simulation) eval-
uations and later retrieve the results of such evaluations. It then performs post-processing
tasks specific to the optimization method and generates the population of candidate solu-
tions for the next iteration. The Optimizer is also responsible to signal completion based
on termination criteria either when a set number of iterations are completed or when the
objective function value matches a desired threshold.



2.3.1 Swarm optimizer

As part of this research, we developed a particle swarm optimizer and coupled it with the
Water Distribution Systems(WDS) simulator, EPANET. Presently, this optimizer imple-
ments a standard PSO algorithm [Kennedy et al., 2001b]. Additional efforts are underway
to incorporate problem-specific knowledge into this optimizer.

2.3.2 Canonical PSO

This section provides a brief introduction to Particle swarm optimization (PSO). PSO is a
swarm intelligence method wherein particles (representing candidate solutions) are ‘flown’
across parametric space to find optimal values [Kennedy et al., 2001a, Clerc, 2006]. It is a
global optimization technique that belongs to the class of direct search methods. This method
emulates the flocking or swarming behavior observed in nature among groups of birds or fish
[Kennedy and Eberhart, 1995]. Each candidate solution is represented as a particle in the
n-dimensional problem space and has an associated position and velocity attributes where
n is the number of parameters being optimized. During every iteration, the velocity and
position of a particle are updated using the information gleaned from that iteration to guide
the search process. Each particle’s position is influenced by the best position it has found so
far (cognitive component) as well as the best position found by other particles in the swarm
(social component). This method strives to find the optimal solution by learning and sharing
such information among particles in the problem space.

Algorithm 1 Pseudocode for a Particle Swarm Optimizer.

GeneratelnitialPopulation(pop)
for particle «+ 1 to numParticles do
FEvaluate(particle) // Compute Objective function value
end for
while ! StopCondition() do
GetGlobalBest(pop)
for particle «+ 1 to numParticles do
neighbors « Calculate Neighborhood (topology, Position(particle))
optional GetNeighborhoodBest(neighbors)
Update Velocity(particle)
UpdatePosition(particle)
end for
for particle < 1 to numParticles do
14: Fvaluate(particle) // Compute Objective function value
15:  end for
16: end while
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Algorithm 1 illustrates the steps in a standard particle swarm optimizer. The PSO
algorithm starts with swarm of particles S whose positions are initialized to random locations



in the search space. During each iteration, the objective function value is computed for each
particle.
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)_if and 7§ represent the position and velocity vectors respectively of particle ¢ during
iteration t. Equation la illustrates the Update Velocity operation that is performed every
iteration. p; denotes the personal best position found so far by a particle and E)g represents
the neighborhood best position. 1; and 5 are random variables drawn from a uniform
random distribution U (0,1). Equation 1b in turn shows how UpdatePosition operation
is performed. w' is known as the inertial weight responsible for the inertial component
of a particle’s velocity. It limits the rate at which particles congregate in problem space
promoting better exploration. Larger values of w! facilitate global exploration at the expense
of convergence time, while smaller values of w! result in shorter convergence time, but could
result in convergence to a local optimum. w! is gradually reduced over iterations to reduce
the search space that a particle explores. To prevent scattering in problem space, Clerc
[Clerc, 2006] introduced constriction coefficient (x) to constrain the buildup of a particle’s
velocity. ¢ represents the cognitive coefficient that influences the pace at which a particle
learns from its own experience so far. ¢y denotes the social efficient that determines how
quickly information from other particles are incorporated in a particle’s velocity.

3 Water Distribution Systems Applications

This section describes the contaminant source characterization and leak detection problems
in water distribution systems and elaborates upon the problem formulation.

3.1 Water Distribution Systems Simulator

Our simulation component is based on EPANET [EPA, 2011], a freely available and widely
used water distribution network hydraulic and water quality modeling tool from EPA. This
model uses known pipe network topology, link/node physical characteristics (significantly,
the water consumption rates over time), and network boundary and initial conditions, to
simulate the space-time variation of flows, pressures, and water quality concentrations. The
EPANET engine is available as a C language library with a well-defined API [Rossman,
1999].

Recently we have incorporated the multi-species version of EPANET (EPANET-MSX)
into our parallel simulation-optimization toolkit [Sreepathi et al., 2007]. In addition to the
functionalities offered by regular EPANET, EPANET-MSX can model complex reactions
and transport of common contaminants and reagents in a water distribution system. In



this project, EPANET-MSX will be used as it can be used in the standard mode (regular
EPANET) and multi-species mode. A typical EPANET simulation involves hydraulic steps
(solve for nodal pressures and link flows) and water quality steps (solve for nodal concentra-
tions). Each hydraulic step is typically followed by many water quality steps as the water
quality time step is generally smaller than the hydraulic time step. Each hydraulic step
entails a solution of nonlinear algebraic equations the size of nodes in the system.

As part of the first author’s thesis work [Sreepathi, 2006, Sreepathi et al., 2007], he
developed PEPANET to enable parallel execution of a large number of EPANET evaluations
in an efficient manner in a high performance computing environment. PEPANET aggregates
the EPANET (or MSX-EPANET) simulations into a single parallel execution for multiple sets
of source characteristics to amortize the startup costs and minimize redundant computation.
The MPT library [Gropp et al., 1999] was used for parallelizing PEPANET.

3.1.1 Problem formulation

The contaminant source characterization problem can be posed as parameter estimation
for an inverse problem. The goal is to use the time-series of sensor data to recover the
likely locations of the contaminant sources and their release histories (temporal mass loading
history) that minimize the error between the predictions and the observations.

Minimize {||cobs - C(ﬁ)”z} 2)
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Equations 2 and 3 describe the objective function formulations for the contaminant source
characterization and leak detection problems respectively. Where C,s, q,,, and p,,, are
vectors of concentration, flow and pressure measurements at the sensors obtained at various
sampling times, respectively and m is the parameter vector being optimized. The weighting
factors wy, wo, w3 can be used to configure the relative importance of the various factors.

We built the functionality to solve the contaminant source characterization and leak
detection problems using the PEPANET wrapper. The PEPANET module is linked to the
optimization module either using (a) intermediate input/output files or (b) MPI-2 functions
or (c) an Evaluator interface. The PEPANET program takes the decision variable sets (or
parameter sets) from the optimization module and returns the objective values in an iterative
fashion by running the simulations on parallel architectures.
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Figure 2: Multi-swarm optimizer framework displaying algorithmic and system architectural
mapping

3.2 Multi-Swarm Optimization framework

Figure 2 illustrates the proposed multiswarm optimizer framework coupled with EPANET
simulator. Periodically, swarms communicate information regarding the best parameter set
found so far to each other. To the left, the diagram shows the system architecture of an
IBM BlueGene supercomputer and the corresponding mapping of optimization algorithm
components is shown on the right. The architecture of any modern supercomputer displays
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Figure 3: Water Distribution System network (Network2) used in this study



similar multi-level parallelism as illustrated here in the case of IBM BlueGene. Hence this
kind of algorithm-system mapping would be feasible on other supercomputing architectures
too.

4 Results

Performance results for the parallel multi-swarm optimization framework coupled with the
water distribution systems simulator on the leadership class supercomputers at Oak Ridge
National Laboratory will be presented at the conference. Figure 3 shows one of the water
networks used in this study.
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