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Introduction 

• Traditional parallel processing system 

– Separation of computation node and data store node 

• Computation node : more CPU power 

• Data storage node : more storage 

• Intra-node process scheduling is quite simple 

• Inefficient to big data processing 
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Introduction 

• MapReduce 

– Programming model for big-data processing 

– Data is distributed and replicated over multiple data nodes 

– Computation also takes place on these data nodes 
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Motivation 

• Task scheduling issues 

– Which cores are optimal to run computation tasks? 

– Which cores are optimal to run data store tasks? 

 

• Resource requirements of different tasks 

– Computation tasks need more processor and disk resources 

– Data store tasks need more network and disk resources 

 

• Core Affinity 

– A set of cores on which a given task can run 

– Different performance depending on core affinity 

 

 



Goals 

 Target data store tasks as the first step of the research 

– Consider computation tasks latter 

 

 Analyze impact of core affinity on the performance of 

data store tasks 

– Which I/O component is more sensitive to core affinity? 

– What is the trade-off between data locality and parallelism? 

– What is a good device distribution over multiple I/O buses and 

interrupt distribution over multi-core processors? 

 

 Suggest a framework for dynamic core affinity 

– Decide optimal core affinity and schedule tasks 



Background 

• Hadoop 

– Software framework for distributed processing 

– Common utilities, HDFS, job scheduler and MapReduce 

 

• Hadoop Distributed File System(HDFS) 

– Supports the MapReduce efficiently 

– Provides data reliability by replicating the data across multiple 

slave nodes 

– Splits data into blocks 64MB 

 

 



Steps for File Upload to HDFS 
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• Receiving, storing and sending data operations concurrently run 

• Involve both network and disk I/O 



Related Work 

• I/O performance with core-affinity 

– Network device 

 

• Performance tuning of applications in multi-core systems 

– autopin and VTune 

 

• Dynamic scheduling with core-affinity 

– User-level library 

– Adaptive scheme 

 

• Not to my knowledge, there are no researches for both 

network and disk I/O in big-data processing environment 

 

 

 

• They not consider both network and disk I/O in the big-

data processing environments 



Process-Core Affinity Notation 

• Notation to represent a process-core affinity as [ΔΠ] 

– Δ describes whether the interrupt-handling core is responsible 

for disk or network device 

– Π represent relationship to the interrupt-handling core 



 Notation Example : [DS] 
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 Notation Example : [NC] 
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Pure I/O Performance 

• Analyze pure I/O performance with different core affinity 

– Find out for trade-off between data locality and parallelism 

 

• Disk I/O performance 

– Samsung 830 series 128GB SSD 

– Bonnie++ 

– File Size : 64MB (HDFS block size) 

– O_DIRECT Flag 

 

• Network I/O performance 

– Chelsio 10Gbps Ethernet Controller 

– ttcp benchmark 

– Message Size : 64MB (HDFS block size) 



Pure I/O Performance 

 

 

 

 

 

 

 

 

 

• Disk : [DS] gives the best performance 

• Network : [NC] and [NM] archive better throughput than [NS] 



HDFS File Upload Performance 

• Experimental system 

– Cluster 

• 1 x NameNode 

• 2 x DataNode 

– Hadoop 

• version 1.2.1 

 

• Measurement methodology 

– Upload file size : 2.7GB         

(a movie file) 

– Two clients upload a file 

concurrently 

 



I/O Device Configuration 

• Different I/O Bus • Same I/O Bus 

disk device interrupt 

network device interrupt 
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HDFS File Upload Performance 

 

 

 

 

 

 

 

 

• Disk I/O is more sensitive to process-core affinity 

• Importance of parallelism 

• Distribution of interrupt handling into different package 

provides better performance 



Dynamic Core Affinity for HDFS : 

Overall Design 

• Components 

– Architectural Information 

Collector 

• Collects system information 

from /proc file system 

– Load Monitor 

• Collects run-time information 

– Core Affinity Manager 

• Decides the core affinity 

 

• Service thread sets its core 

affinity when it is created 
 

 



Decision of Core Affinity 

• Basic Policy 

1. If  the disk interrupt handling core is idle,                                  

schedule a service thread to the disk interrupt handling core 

2. If  the disk interrupt handling core is busy,                             

check cores in [DC], [DM], [DN], [NC], [NM], [NN] order 

3. If  the idle core is founded in step 2,                                  

schedule a service thread to that core 

4. Do not schedule on [NS] 

 



Comparisons of 

HDFS File Upload Throughput 

 

 

 

 
 

 

 

 

 

Framework can improve upload throughput up to 43% and 

provide better scalability 



Data Locality 

 

 

 

 

 

 

 

 

 

Overall cache system shows better utilization 

 

L3 Cache Requests L3 Cache Misses 



Parallelism 

 

 

 

 

 

 

 

 

 

Framework can reduce wait-time for locking up to 58% 

Processor Utilization Wait-time for Locking 



Conclusions and Future work 

• Analyze impact of core affinity on the performance of 

data store tasks 

– Proves importance of core affinity on disk I/O 

 

• Design and implement dynamic core affinity framework 

– Improves HDFS file upload throughput up to 43% and provide 

better scalability 

 

• Future work 

– Analyze resource requirements for the MapReduce computing 

– Schedule threads for HDFS and MapReduce in an integrated 

manner on multi-core system 
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