On the Core Affinity and
File Upload Performance of Hadoop

I LH =5 Konkuk University
Joong-Yeon Cho, Hyun-Wook Jin
Department of Computer Science and Engineering
Konkuk University

{ dynamicj, jinh }@konkuk.ac.kr

Georgialnstitutie .=!=.
’ off Technologyy -| cercs

(=]

Min Lee, Karsten Schwan
Center for Expreimental Research in Computer Systems
Georgia Institute of Technology
{ minlee, karsten.schwan }@cc.gatech.edu

Ccontents

Introduction

— Introduction

— Research Goals
— Background

Analysis of Impact of Core affinity

— Pure I/0O Performance

— HDFS File Upload Performance
Dynamic Core Affinity for HDFS

— Design

— Comparison of File Upload Throughput
Conclusions

Introduction

« Traditional parallel processing system

— Separation of computation node and data store node
« Computation node : more CPU power
- Data storage node : more storage
 Intra-node process scheduling is quite simple

 Inefficient to big data processing

Compute node Compute node Compute node

1 |

Network Interconnections

il |

Data store node Data store node Data store node

K KONKUK
UNIVERSITY

Introduction

 MapReduce
— Programming model for big-data processing
— Data is distributed and replicated over multiple data nodes
— Computation also takes place on these data nodes

Scheduler node

Network Interconnections

Compute and Compute and Compute and
data store node data store node data store node

K KONKUK
UNIVERSITY

Motivation

« Task scheduling issues
— Which cores are optimal to run computation tasks?
— Which cores are optimal to run data store tasks?

* Resource requirements of different tasks
— Computation tasks need more processor and disk resources
— Data store tasks need more network and disk resources

« Core Affinity

— A set of cores on which a given task can run
— Different performance depending on core affinity

K KONKUK
UNIVERSITY

Goals

v’ Target data store tasks as the first step of the research
— Consider computation tasks latter

v Analyze impact of core affinity on the performance of
data store tasks
— Which I/O component is more sensitive to core affinity?
— What is the trade-off between data locality and parallelism?

— What is a good device distribution over multiple I/O buses and
Interrupt distribution over multi-core processors?

v Suggest a framework for dynamic core affinity
— Decide optimal core affinity and schedule tasks

KU taversiry

Background

« Hadoop
— Software framework for distributed processing
— Common utilities, HDFS, job scheduler and MapReduce

« Hadoop Distributed File System(HDFS)

— Supports the MapReduce efficiently

— Provides data reliability by replicating the data across multiple
slave nodes

— Splits data into blocks 64MB

KU KONKUK
UNIVERSITY

Steps for File Upload to HDFS

1 Cluster

Exchange

[DataNode information Name Node

Replicate to next DataNode)
(pipeline manner)

[Start file upload L |
operation) I
Client p—>»!Data Node Of=»|Data Node 1f=>»{Data Node 2
® @
[Client : data transmission start <> <> ||

1
1
1
1
1
1
First DataNode : Run service thread for |! m m
received data and store to local disk I
1
1
1
1
1
1
1

« Receiving, storing and sending data operations concurrently run
 |nvolve both network and disk 1/O

K KONKUK
UNIVERSITY

Related Work

* 1/O performance with core-affinity
— Network device

« Performance tuning of applications in multi-core systems
— autopin and VTune

* Dynamic scheduling with core-affinity
— User-level library
— Adaptive scheme

* Not to my knowledge, there are no researches for both
network and disk 1/O in big-data processing environment

Process-Core Affinity Notation

« Notation to represent a process-core affinity as [All]

— A describes whether the interrupt-handling core is responsible
for disk or network device

— [1represent relationship to the interrupt-handling core

Symbols Description
D | The interrupt-handling core is responsible for
A : :
Disk device
N | The interrupt-handling core is responsible for
Network device
S | The Same core with the interrupt-handling
o core

The core shares the last-level Cache with the
interrupt-handling core

The core shares the Memory module with the
interrupt-handling core

The core shares None of resources with

the interrupt-handling core (i.e., a core on a
different package)

=2 g Q

K KONKUK
UNIVERSITY

K

KONKUK
UNIVERSITY

Notation Example : [DS]

Interrupt signal from disk device(D)

Core0

Task runs on the Same core
with the disk interrupt handling core

,_>

Corel Core?2 Core3 Core4d Coreb Coreb Core7
| | | | | | | | | | | |
L1 L1 L1 L1 L1 L1 L1
L2 L2 L2 L2 L2 L2 L2
L3 L3

Memory Controller

Memory Controller

Memory Module

Empty Memory Slot

K

KONKUK
UNIVERSITY

Notation Example : [NC]

Interrupt signal from network device(N)

Core0

:

—
[N

—
N

Corel Core?2 Core3 Core4d Coreb Coreb Core7
| | | | | | | | | |

g o L1 L1 L1 L1 L1 L1

('5 —

O 8 - X X X X X X

o

v c L2 L2 L2 L2 L2 L2

(U —

c -8 - X X X X X X

" ©

-

_‘Cj ~ L3 L3

o £ h I

S g

o = | Controller Memory Controller

£ <

g% l 1

n O

c < |y Module Empty Memory Slot

D C

é 2

|_

K

KONKUK
UNIVERSITY

Notation Example : [NC]

Interrupt signal from network device(N)

Core0 Corel Core?2 Core3 Core4d Coreb Coreb Core7
| | 7/\ 1 1 1 | |
2 » NS
L1 L1 § o L1 L1 L1 L1 L1
X X - O 8 X X X X X
o
L2 L2 v c L2 L2 L2 L2 L2
S35
¥ ¥ U) % ¥ ¥ ¥ | |
-
L3 _‘Cj = L3
| 9_3 g |
S g
Memory Cq o .S Memory Controller
£ <
l g% 1
n O
Memory N € < Empty Memory Slot
D C
-:‘U,U 2
|_

K

KONKUK
UNIVERSITY

Notation Example : [NC]

Interrupt signal from network device(N)

Core0 Corel Core?2 Core3 Core4d Coreb Coreb Core7
| | 1 7/\ 1 1 | |
. NS
L1 L1 L1 L1 L1 L1 L1
L2 L2 L2 L2 L2 L2 L2
L3 L3

Memory Controller

Memory Module

Task runs on the core that shares Cache
with network interrupt handling core

Memory Controller

Empty Memory Slot

Pure I/O Performance

« Analyze pure I/O performance with different core affinity
— Find out for trade-off between data locality and parallelism

* Disk I/O performance

— Samsung 830 series 128GB SSD
— Bonnie++

— File Size : 64MB (HDFS block size)
— O_DIRECT Flag

* Network I/O performance
— Chelsio 10Gbps Ethernet Controller
— ttcp benchmark

— Message Size : 64MB (HDFS block size)

Pure I/O Performance

8000

7000

6000

5000 |
4000 .

3000 |
2000

1000 i

0 . T 0

[DS] [DC] [DM] [NS] | [NC] | [NM]

[0s]

-~

7]

w

i

w

Disk Sequential Out (KB/s)
Network Bandwidth (Gb/s)

\S]

—_

* Disk : [DS] gives the best performance
* Network : [NC] and [NM] archive better throughput than [NS]

HDFS File Upload Performance

« Experimental system @ e

Client i Name Node | !

- C|USter CPU : AMD Opteron i CPU : Intel i7 3770 i
¢ 1 X NameNOde Disk6:1S2:m2?Jt|?g_,CSOSr% i Disk:S;%d_Core i

830 128GB ! Memory : 8GB !

2 x DataNode Memory : 8GB ! Kemel: 2.6.32 i

Kernel : 2.6.32 : !

— Hadoop 8 x 1GigE (Bonding) 1GigE !
» version1.2.1 Netgear GSM7328S 24-port 1GigE Switch | |

w/ 2 x 10GigE Module i

* Measurement methodology § 10 GigE 10 GigE |
— Upload file size : 2.7GB , |Data Node 0] |Data Node 1)
. . | |CPU : 4-way AMD CPU : 2-way Intel |

(& movie file) | osa || amt ||

— Two clients upload a file 7 saonanes | | asoizees | |
i [Memory : 16GB Memory : 4GB |

Concurrently ! |Kernel : 3.0.10 Kernel : 3.0.10 !

K KONKUK
UNIVERSITY

/O Device Configuration

 Different I/O Bus « Same I/O Bus

Package 3 Package 4 Package 3 Package 4

o 1] o o 1] o
[o o = [o o 9
SMENER] |EEPEES SMEAEE] EEPEIES
o _I[] o o _I[] o
55 %EEOC‘I_.I -|—|.|—|_| = $8 55 %EEOCEI_.I .|—|!—|_| = $8
———— disk device interrupt ———— disk device interrupt
Hype Tr;nsa{rtLinks Hype Tr;nsa{rtLinks

T— 1

T

==1|IS . . zz|]||¢ o ;
E5HN=8|[s network device interrupt gsll=5||F network device interrupt
c 3 S =0 o
s2]|l2] | il | I f o1 | s2]|l2] il | el | | s 1| Y

Q @ 0 [@] S ®»
=M% s (e [es]f] [2 5 8 gzl sl (el el][5 E[U 22
c S A [al= ° = 33 [a = 5

Package 1 Package 2 Package 1 Package 2

1/0 Bus 2

(Disk) (Network o (vetwork)

/O Device Configuration

 Different I/O Bus « Same I/O Bus

Package 3 Package 4 Package 3 Package 4

=5 LIE][] BIIEE =5 LIS s][e]feed o] [eol [e[][22l 58
€3 s Allo =l =S 33 2 s Aflo al|8 € 33
= W (=] = W (=]
SRS [EE SRS j[EE
I i AEEEE BRI
Eo'"éiﬂo alle &1 53 Eo'"éiﬂo alle &1 &3
el ||| S ! 22 el ||| A S ER b 2S
———— disk device interrupt ——— disk device interrupt
Hype Tr;ns'ort Links Hype Tr;nsQ Links

—=1ll — — = — =l r—n
HERS . . g .
SEMEZ —124-|| network device interrupt 3 —4-|| network device
< I} _ - . .
| —] _
rrupt
Q] 0 Q - .
g lllles i [esf] [5| [5 € gelllse sl [e s &2
IS e = 1o & S IS = 1o & 5
E 5 g X O c & O) c A 3 c & 8
s2|[lE2 ik |EE | || | |
Package 1 Package 2 Package 1 Package 2

1/0 Bus 2

(Disk) (Network o (vetwork)

K KONKUK

UNIVERSITY

HDFS File Upload Performance

Process- | Different I/O Buses Same [/O Bus
Core Different Same Different Same
Affinity | Packages | Pakage | Packages | Package

(DBDP) | (DBSP) | (SBDP) | (SBSP)
DS, DS] 92 87 92 87
DS, DC] 131 127 131 124
DS, DM] 126 121 124 120
DS, DN] 126 119 126 119
INC, NS] 82 83 82 82
INC, NC] 85 88 87 88
INC, NM] 120 120 117 121
[INC, NN] 121 119 119 119

« Disk I/O is more sensitive to process-core affinity
* Importance of parallelism

 Distribution of interrupt handling into different package
provides better performance

K KONKUK
UNIVERSITY

Dynamic Core Affinity for HDFS :
Overall Design

 Components

— Architectural Information user | kernel
Collector HDFS Server Daemon
] : Architectural rchitectura
« Collects system information nformation | momaien —T LI
from /proc file system Collector T [—
Run-time Load —
— Load Monitor | Load - mfmmaﬁy//
« Collects run-time information —— Hinux
.. \| Core Affinity |~ Affinity
— Core Affinity Manager Manager
« Decides the core affinity S —
Service Se}r‘vice Service
Thread Thread Thread
« Service thread sets its core ~—

affinity when it is created

K KONKUK
UNIVERSITY

Decision of Core Affinity

« Basic Policy

1. If the disk interrupt handling core is idle,
schedule a service thread to the disk interrupt handling core

2. If the disk interrupt handling core is busy,
check cores in [DC], [DM], [DN], [NC], [NM], [NN] order

3. If the idle core is founded in step 2,
schedule a service thread to that core

4. Do not schedule on [NS]

R
Comparisons of
HDFS File Upload Throughput

. -
e

1 2 4 8
Number of Clients

File Upload Throughput (MB/s)

50

——Default Linux
-B-Dynamic Core Affinity

0

Framework can improve upload throughput up to 43% and
provide better scalability

L3 Cache Request (Count)

10,000,000,000

8,000,000,000

6,000,000,000

4,000,000,000

2,000,000,000

Data Locality

L3 Cache Requests

—+—Dynamic Core Affinity

—-Default Linux

1 2 4 8
Number of Clients

L3 Cache Miss (Count)

1,600,000,000

1,400,000,000

1,200,000,000

1,000,000,000

800,000,000

600,000,000

400,000,000

200,000,000

L3 Cache Misses

—+—Dynamic Core Affinity
-m-Default Linux

Number of Clients

Overall cache system shows better utilization

120,000

100,000

80,000

60,000

40,000

Wait-Time Total Average (us)

20,000

Parallelism

Wait-time for Locking

m Default Linux
m Dynamic Core Affinity

n

Number of Clients

Processor Utilization (%)

600

Processor Utilization

500

m Default Linux
m Dynamic Core Affinity

400

300

200

100 -

1 2 4 8
Number of Clients

Framework can reduce wait-time for locking up to 58%

Conclusions and Future work

« Analyze impact of core affinity on the performance of
data store tasks

— Proves importance of core affinity on disk I1/O

« Design and implement dynamic core affinity framework

— Improves HDFS file upload throughput up to 43% and provide
better scalability

 Future work

— Analyze resource requirements for the MapReduce computing

— Schedule threads for HDFS and MapReduce in an integrated
manner on multi-core system

Thank you!

System Software Laboratory
Konkuk University
http://sslab.konkuk.ac.kr

Georgianstfitute -=!=-
W oiTechnclogy @fcercs

Center for Experimental Research in Computer Systems
Georgia Institute of Technology
http://www.cercs.gatech.edu/

