
On the Core Affinity and

File Upload Performance of Hadoop

Joong-Yeon Cho, Hyun-Wook Jin

Department of Computer Science and Engineering

Konkuk University

{ dynamicj, jinh }@konkuk.ac.kr

Min Lee, Karsten Schwan

Center for Expreimental Research in Computer Systems

Georgia Institute of Technology

{ minlee, karsten.schwan }@cc.gatech.edu

Contents

• Introduction

– Introduction

– Research Goals

– Background

• Analysis of Impact of Core affinity

– Pure I/O Performance

– HDFS File Upload Performance

• Dynamic Core Affinity for HDFS

– Design

– Comparison of File Upload Throughput

• Conclusions

Introduction

• Traditional parallel processing system

– Separation of computation node and data store node

• Computation node : more CPU power

• Data storage node : more storage

• Intra-node process scheduling is quite simple

• Inefficient to big data processing

Compute node Compute node Compute node

Data store node Data store node Data store node

Network Interconnections

Introduction

• MapReduce

– Programming model for big-data processing

– Data is distributed and replicated over multiple data nodes

– Computation also takes place on these data nodes

Scheduler node

Compute and

data store node

Compute and

data store node

Compute and

data store node

Network Interconnections

Motivation

• Task scheduling issues

– Which cores are optimal to run computation tasks?

– Which cores are optimal to run data store tasks?

• Resource requirements of different tasks

– Computation tasks need more processor and disk resources

– Data store tasks need more network and disk resources

• Core Affinity

– A set of cores on which a given task can run

– Different performance depending on core affinity

Goals

 Target data store tasks as the first step of the research

– Consider computation tasks latter

 Analyze impact of core affinity on the performance of

data store tasks

– Which I/O component is more sensitive to core affinity?

– What is the trade-off between data locality and parallelism?

– What is a good device distribution over multiple I/O buses and

interrupt distribution over multi-core processors?

 Suggest a framework for dynamic core affinity

– Decide optimal core affinity and schedule tasks

Background

• Hadoop

– Software framework for distributed processing

– Common utilities, HDFS, job scheduler and MapReduce

• Hadoop Distributed File System(HDFS)

– Supports the MapReduce efficiently

– Provides data reliability by replicating the data across multiple

slave nodes

– Splits data into blocks 64MB

Steps for File Upload to HDFS

Client

Name Node

Data Node 0 Data Node 1 Data Node 2

Disk

Cluster

③

④

Disk

⑤

⑥

Disk

⑦

⑧

①

②

Start file upload

operation

Exchange

DataNode information

Client : data transmission start

First DataNode : Run service thread for

received data and store to local disk

Replicate to next DataNode

(pipeline manner)

Replicate to next DataNode

(pipeline manner)

• Receiving, storing and sending data operations concurrently run

• Involve both network and disk I/O

Related Work

• I/O performance with core-affinity

– Network device

• Performance tuning of applications in multi-core systems

– autopin and VTune

• Dynamic scheduling with core-affinity

– User-level library

– Adaptive scheme

• Not to my knowledge, there are no researches for both

network and disk I/O in big-data processing environment

• They not consider both network and disk I/O in the big-

data processing environments

Process-Core Affinity Notation

• Notation to represent a process-core affinity as [ΔΠ]

– Δ describes whether the interrupt-handling core is responsible

for disk or network device

– Π represent relationship to the interrupt-handling core

 Notation Example : [DS]

L1

L2

L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2

Interrupt signal from disk device(D)

L3 L3

Memory Controller Memory Controller

Core0 Core1 Core6 Core5 Core4 Core3 Core2 Core7

Memory Module Empty Memory Slot T
a

s
k
 r

u
n

s
 o

n
 t
h

e
 S

a
m

e
 c

o
re

w
it
h

 t
h

e
 d

is
k
 i
n

te
rr

u
p

t
h

a
n

d
lin

g
 c

o
re

 Notation Example : [NC]

L1

L2

L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2

Interrupt signal from network device(N)

L3 L3

Memory Controller Memory Controller

Core0 Core1 Core6 Core5 Core4 Core3 Core2 Core7

Memory Module Empty Memory Slot

T
a

s
k
 r

u
n

s
 o

n
 t
h

e
 c

o
re

 t
h

a
t
s

h
a

re
s

 C
a

c
h

e

w
it
h

 n
e

tw
o

rk
 i
n

te
rr

u
p

t
h

a
n

d
lin

g
 c

o
re

 Notation Example : [NC]

L1

L2

L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2

Interrupt signal from network device(N)

L3 L3

Memory Controller Memory Controller

Core0 Core1 Core6 Core5 Core4 Core3 Core2 Core7

Memory Module Empty Memory Slot

T
a

s
k
 r

u
n

s
 o

n
 t
h

e
 c

o
re

 t
h

a
t
s

h
a

re
s

 C
a

c
h

e

w
it
h

 n
e

tw
o

rk
 i
n

te
rr

u
p

t
h

a
n

d
lin

g
 c

o
re

 Notation Example : [NC]

L1

L2

L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2

Interrupt signal from network device(N)

L3 L3

Memory Controller Memory Controller

Core0 Core1 Core6 Core5 Core4 Core3 Core2 Core7

Memory Module Empty Memory Slot

T
a

s
k
 r

u
n

s
 o

n
 t
h

e
 c

o
re

 t
h

a
t
s

h
a

re
s

 C
a

c
h

e

w
it
h

 n
e

tw
o

rk
 i
n

te
rr

u
p

t
h

a
n

d
lin

g
 c

o
re

Pure I/O Performance

• Analyze pure I/O performance with different core affinity

– Find out for trade-off between data locality and parallelism

• Disk I/O performance

– Samsung 830 series 128GB SSD

– Bonnie++

– File Size : 64MB (HDFS block size)

– O_DIRECT Flag

• Network I/O performance

– Chelsio 10Gbps Ethernet Controller

– ttcp benchmark

– Message Size : 64MB (HDFS block size)

Pure I/O Performance

• Disk : [DS] gives the best performance

• Network : [NC] and [NM] archive better throughput than [NS]

HDFS File Upload Performance

• Experimental system

– Cluster

• 1 x NameNode

• 2 x DataNode

– Hadoop

• version 1.2.1

• Measurement methodology

– Upload file size : 2.7GB

(a movie file)

– Two clients upload a file

concurrently

I/O Device Configuration

• Different I/O Bus • Same I/O Bus

disk device interrupt

network device interrupt

disk device interrupt

network device interrupt

(Disk) (Network)

(Disk)

(Network)

I/O Device Configuration

• Different I/O Bus • Same I/O Bus

disk device interrupt

network device interrupt

disk device interrupt

network device

interrupt

(Disk) (Network)

(Disk)

(Network)

HDFS File Upload Performance

• Disk I/O is more sensitive to process-core affinity

• Importance of parallelism

• Distribution of interrupt handling into different package

provides better performance

Dynamic Core Affinity for HDFS :

Overall Design

• Components

– Architectural Information

Collector

• Collects system information

from /proc file system

– Load Monitor

• Collects run-time information

– Core Affinity Manager

• Decides the core affinity

• Service thread sets its core

affinity when it is created

Decision of Core Affinity

• Basic Policy

1. If the disk interrupt handling core is idle,

schedule a service thread to the disk interrupt handling core

2. If the disk interrupt handling core is busy,

check cores in [DC], [DM], [DN], [NC], [NM], [NN] order

3. If the idle core is founded in step 2,

schedule a service thread to that core

4. Do not schedule on [NS]

Comparisons of

HDFS File Upload Throughput

Framework can improve upload throughput up to 43% and

provide better scalability

Data Locality

Overall cache system shows better utilization

L3 Cache Requests L3 Cache Misses

Parallelism

Framework can reduce wait-time for locking up to 58%

Processor Utilization Wait-time for Locking

Conclusions and Future work

• Analyze impact of core affinity on the performance of

data store tasks

– Proves importance of core affinity on disk I/O

• Design and implement dynamic core affinity framework

– Improves HDFS file upload throughput up to 43% and provide

better scalability

• Future work

– Analyze resource requirements for the MapReduce computing

– Schedule threads for HDFS and MapReduce in an integrated

manner on multi-core system

Thank you!

System Software Laboratory

Konkuk University
http://sslab.konkuk.ac.kr

Center for Experimental Research in Computer Systems

Georgia Institute of Technology
http://www.cercs.gatech.edu/

