Introduction
Big Data
Existing
Solutions
Outline

Motivation

Distributed and
Out-of-core
Computing
Insights
BDMPI
Overview
Usage
Implementation
Results

Experiments
Single Node
Cluster
Scaling

Conclusion

Dominique LaSalle and George Karypis
University of Minnesota, Minneapolis, MN, USA

November 18, 2013

1/20

ﬁ Big Data

Big Data

What is Big Data?

@ Depends on your compute system:

Laptop/PC
o Server
o Cluster
o Data Center

e Data > DRAM

N

20

ﬁ Existing Solutions

Existing
Solutions

Big Data Solutions
MapReduce/Hadoop
GraphChi

Giraph

Hama

Custom Solution

20

ﬁ Outline

Outline

@ Introduction

@ Motivation
© BDMPI

@ Overview
@ Usage
© Implementation

Q Results

@ Conclusion

20

ﬁ Distributed and Out-of-core Computing

Distributed Algorithms

@ Minimize communication between processes.

Distributed and
Out-of-core

e @ Extract independent tasks to perform in parallel.

@ Organized into a series of compute and
collective/point-to-point communication steps.

Out-of-Core Algorithms
@ Minimize reads and writes to disk.
@ Extract independent tasks to perform serially.

@ Organized into a series of compute and disk read/write
steps.

20

ﬁ Insights

Insights

The Graph Ordering Problem
@ How can a graph be efficiently re-order in an out-of-core
fashion?
@ How can a graph be efficiently re-order in a distributed
fashion?
General Applications
@ How can we treat a remote process as a disk?

e Already supported by MPI's one sided communication
(exchange fread/fwrite for MPI_get/MPI put).

@ Can we treat the disk as a remote process?
o Need to handle remote computations/data movement.

6

20

ﬁ How it Works

BDMPI

@ Transparent layer between an MPI program and an MPI
runtime.
@ For a problem of size n and a compute cluster with p
Overview processing nodes each with m memory:
@ Divide the data into t = n/m blocks.
@ Spawn a master process on each compute node.
© Spawn t/p slave processes on each compute node.
@ Allow only one slave process to run at a time on each
compute node.

o That process will run until it blocks on a communication
operation.

~

20

ﬁ Why it Works

Node-Level Cooperative Multi-Tasking

@ Processes run until blocking for a collective
communication or receive operation.

Overview

@ Cost of loading data from disk is amortized over large
blocks of computation.

@ Since only one process runs at a time, the thrashing
associated with multiple processes attempting to gain
residency is avoided.

20

ﬁ BDMPI Usage

Usage

Usage

@ bdmpiexec

mpiexec —np 80
progname [argl]

[arg2]

progname [argl]

bdmpiexec —np 4 [—nr 2] —ns 20

[arg2]

o Executes mpi program on a cluster with four nodes as if it

were on a cluster of 80 computes nodes.

@ libbdmpi
o Provides MPI_X functions.

@ Replace #include <mpi.h> with #include <bdmpi.h>.

9

20

ﬁ BDMPI API

Usage

MPI Subset Implemented by BDMPI
BDMPI_Init, BDMPI_Finalize

BDMPI_Comm_size, BDMPI_Comm_rank, BDMPI_Comm_dup,
BDMPI_Comm_free, BDMPI_Comm_split

BDMPI_Send, BDMPI_Ilsend, BDMPI_Recv, BDMPI_lrecv ,
BDMPI_Sendrecv

BDMPI_Probe, BDMPI_Iprobe, BDMPI_Test, BDMPI_Wait,
BDMPI_Get_count

BDMPI_Barrier

BDMPI_Bcast, BDMPI_Reduce, BDMPI_Allreduce ,
BDMPI_Scan, BDMPI_Gather[v], BDMPI_Scatter[v],
BDMPI_Allgather[v], BDMPI_Alltoall[v]

10/20

ﬁ Implementation

Implementation

Communication Model

Node 1

Master

v

v

Slave

Slave

A

A\ 4

Node 2
Master
Slave| |Slave

11/20

ﬁ Implementation Cont.

Master-Slave Communication

Implementation

MPI Process
int main() {

MPI Init()

MPI_Isend()

MPI_Recv()

MPI_Finalize()]

>

libbdmpi.a bdmprun
Shared Memory

| Message Queues | | Disk |

12/20

ﬁ Point-to-point Communication

Message Buffering
@ Small messages buffered in memory.
@ Large messages buffered on disk.
Send and ISend

@ Message buffering allows sending process to continue
executing without blocking.

Implementation

Recv and IRecv

@ If the master has already buffered the message, no
blocking occurs.

@ Otherwise the process becomes blocked, and another
process is allowed to run.

13 /20

ﬁ Benchmarks

PageRank

@ Memory heavy operation.

@ Multiplying a sparse matrix by a vector.
KMeans Clustering

e Multiplying a sparse matrix by a dense matrix (100
clusters).

=i SGD
e Matrix factorization A = UV (20 factors).

@ Element-wise random traversal.
@ SGD-row

o Row-wise traversal.
o Better locality than regular SGD.

14 /20

ﬁ Test Codes

Serial-O0C - Custom out-of-core solutions.
MPI - MPI codes ran using MPICH.

GraphChi - Kyrola et. al. 2012.
Hadoop

e Mahout for KMeans.
e Pegasus for PageRank - Kang et. al. 2009.

e BDMPI
o BDMPI - MPI codes ran using the BDMPI runtime.

Experiments

o BDMPI-mlock - MPI codes + munlock() /mlock().

o BDMPI-OO0C - MPI codes + fread() /furite().

20

ﬁ Experiment Setup

Our Cluster
@ Four machine cluster:

o Intel i7 @ 3.4 GHz
e 4 GB of DRAM
o Seagate Barracuda 7200 RPM 1.0 TB (300GB swap and

/scratch partitions)
Our Datasets
@ PageRank - 6.6B edges, ordered randomly (50GB CSR).
e KMeans - 30M x83K with 7.3B non-zeros (56GB CSR).
@ SGD - 3.8M x284K with 12.8B non-zeros (50GB CSR).

Experiments

16 /20

ﬁ Single Node Results

S S
A P&
200 T T
Serial-O0OC mm BDMPI 3
GraphChi BDMPI-mlock T
MPI =3 BDMPI-00C [J
150 b
C
L
p=]
o
[
= L
~ 100 B
(%]
0}
1
3
Single Node c
=
50 B
0 I
PageRank KMeans SGD SGD-row

17 /20

Introduction

Big Data
Existing
Solutions
Outline

Motivation

Distributed and
Out-of-core
Computing
Insights
BDMPI
Overview
Usage
Implementation
Results

Experiments
Single Node
Cluster
Scaling

Conclusion

Minutes / Iteration

80

70

60

50

40

30

20

10

PageRank

Hadoop
MPI
BDMPI
BDMPI-mlock
BDMPI-O0C

oooom

KMeans

SGD

18/20

ﬁ Scaling Results

T T
MP| BDMPI 1 BDMPI-mlock 1 BDMPI-OOC [

Speedup on Four Nodes

Scaling

PageRank KMeans SGD

19/20

ﬁ Conclusion

BDMPI
@ Utilizes existing MPI interface.

o Turns existing MPI applications into distributed
out-of-core applications.
o Leverages 20 years worth of experience.

@ Achieves speeds comparable to custom out-of-core
solutions.

@ Scales well across multiple machines.

20/20

	Introduction
	Big Data
	Existing Solutions
	Outline

	Motivation
	Distributed and Out-of-core Computing
	Insights

	BDMPI
	Overview
	Usage
	Implementation

	Results
	Experiments
	Single Node
	Cluster
	Scaling

	Conclusion

