
LARGE DATA & LARGE COMPUTING IN A HAZARD

ANALYSIS WORKFLOW

Rohit Shivaswami, Abani K. Patra, Vipin Chaudhari

University at Buffalo, Buffalo, NY14260

abani@buffalo.edu

.

DISCS @ SC13

Denver, CO, November 18, 2013

November 18, 2013
Rohit Shivaswami, Abani K. Patra, Vipin Chaudhari University at Buffalo, Buffalo, NY14260 abani@buffalo.edu . DISCS @ SC13 Denver, CO, November 18, 2013November 18, 2013 1 / 41



The Problem

Figure : Example flow simulation of

Montserrat volcano using the TITAN2D

toolkit.

Good simulators of complex multi-scale

hazard physics are available.

They have uncertain data, large compute

needs and massive data output.

Decision making requires uncertainty

quantification!
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Hazard map with probability of inundation exceeding threshold.
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OVERVIEW

Uncertainty Quantification⇒ a) Ensembles; b) Reasoning with the

outcomes (e.g. full flow fields)

Twin computational challenges of managing large data and performing

cpu intensive processing.

A more accurate construction of emulator by replacing Tessellaton with

Trees for neighbor searching.

We present a new approach which uses a mix of hardware viz. IBM’s

Netezza database and cluster based supercomputer- in an integrated

workflow.
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OUTLINE

Introduction

Background - Application of Uncertainty Quantification to Hazard Map

generation for Debris Flows

Emulator and its construction

Computational challenges in Hazard Map Generation

Layout of Integrated Wokflow and its details

Results
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INTRODUCTION

Hazard mapa is a predictive map for a region which provides a probabilistic measure of a

hazard (geophysical flows in this case). e.g. 100 year flood map

Hazard map generation require large data movement and complex computations.

Massive data leads to problem of storing data, data mining and I/O bottlenecks (I/O

bandwidths are significantly lower than processor speeds.)

High Performance Clusters, Parallel high level I/O libraries, Parallel file systems, Active

disksb, MapReducec, Databasesd etc.

a Dalbey et al ’09, ’11, Stefanescu et al ’12
b Acharya et al’98, Riedel et al,’01
c Dean et al’08
d Kouzes,et al’09, Oguchi et al ’01
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Background

Hazard Map⇐ O(106) ensemble of flow simulations – Months of supercomputing!!.

Limited O(103) simulator runs used to create an emulator which can then be sampled.

Simulator
A simulator for our purpose is Titan2Da , a computational fluid dynamics code which solves a

system of hyperbolic equations equations (shallow water like equations) to simulate large

geophysical flows using depth averaged model.

a Patra et al(2004)

Emulator
A fast surrogate for simulator - would otherwise take several days using a Titan2D.
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Emulator : Mathematical Background

Bayesian Regression

s(x) = βG(x)+ ε (1)

ε∼ N(0,σ2)

Bayes Linear Equations

E(s(y)|s(x)) = E [s(y)]+Cov [s(x),s(y)]Var [s(x)]−1(s(x)−E [s(x)]) (2a)

Var [s(y)|s(x)] = Var [s(y)]+Cov [s(y),s(x)]Var [s(x)]−1Cov [s(x),s(y)] (2b)

s(x) is the response function.

β is the vector of least square co-efficients.

ε is the the error model.

G(x) is the matrix of basis functions evaluated at the sample points.

E[s(y)|s(x)] is the Bayes Linear Mean and Var[s(y)|s(x)] is the Bayes Linear Variance.
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Bayes Linear Emulator

E(s(y)|s(x)) = g(y)β+ r(y)T R−1
ε (3a)

Var [s(y)|s(x)] = σ
2(1− r(y)T R−1r(y)) (3b)

ri(y) = exp

(
−

Ndim

∑
n=1

θn(yn− xi,n)
2

)
(4)

g(y) is the matrix of basis functions evaluated at the resample points

R is the matrix of the correlation functions at x such that Ri,j = ri (xj ) = rj (yi ).

ε = s(x) - G(x)β is the true error evaluated at the sample points.

θn is the vector of hyper-parameters or roughness parameters.
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Localization and Parallelization

The computational effort in R−1 in (3) dominates the workflow and for the very

large data sets becomes infeasible.

To make it computationally feasible R−1 is approximated as

R−1 ≈
N

∑
i=1

R−1
i (5)

where each Ri is a restriction of R defined as below:

R : Ω→R,Ω = ∪N
i=1Ωi ,Ri : Ωi →R

dia( Ωi ) is related to the local strength of the correlations. Schemes of this type

widely used in weather forecasting – Gneiting ’99, ...
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Tessellation vs Trees

For Ωi points Dalbey’09 proposed a tessellation based approach wherein the input parameter space

is tessellated and correlations further away than n (n=2,3 ...) hops in the tessellation are disregarded.

We propose here an alternate methodology based on a simple scaled distance metric(Ds) and a tree

based organization of the data.

Ds =
2

√√√√Cdim

∑
n=1

(xn− yn)2 (6)

where Cdim is the number of dimensions.

Rohit Shivaswami, Abani K. Patra, Vipin Chaudhari University at Buffalo, Buffalo, NY14260 abani@buffalo.edu . DISCS @ SC13 Denver, CO, November 18, 2013November 18, 2013 11 / 41



Tessellation vs Trees

Implemented R+ type tree data structure for storing and searching of multi-dimensional point objects. Test

case 4 input parameters – 2 parameters for pile centre and iinternal friction) and 2 spatial parameters.

Tessellation (using delaunay triagulation) results in more simplices than the sample points and

requires more search time. Searching for 217 points, of 4 dimensions, among the 55874 simplices

generated using 2048 samples took 3049 seconds or close to 51 minutes.

Using tree, the search was performed in under a minute.

Trees allow more flexibility in selection of neighbours than tessellation.

For higher dimensions tessellation based method takes longer and even breaks down in some cases.
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Hazard Map Generation

Titan2D simulations are performed for 2048 sets of input parameters sampled using

LatinHypercubeDesign resulting in ≈ 2GB of flowdata.

108 samples from the tensor product of the input parametrs and 2 space dimensions have

to be downsized/downsampled to ≈ 106.

Neighbour search involving ≈ 4x106 samples and close to 1010 resamples.

Construction Millions of emulators (one emulator about each sample).

Emulator construction is dominated by matrix operations performed through an iterative

non linear optimization technique.

Scanning of massive dataset from emulator for computing barycentric weights and for

aggregation.
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Challenges

Data storage and data mining operations for downsampling and neighbour

search - These require few cpu cycles but rapid and repeated passes through

dataset.

Construction of millions of emulators - Requires less data movement but highly

CPU intensive.

Aggregation of data - Scanning and grouping very large dataset.

Problem of large number of computations is intertwined with the problem of

data mining and massive data movement. We introduce a divide and conquer

model that separates data mining operation from complex computations.
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Netezza Data Warehouse[1]

Massively Parallel Processing architecture

enabled through a high speed network fabric.

Netezza is equipped with snippet processing units

(spu). Each spu is contains multi-core CPUs,

multi-engine FPGAs and gigabytes of RAM

FPGAs uncompress and filter out extraneous data

early in the data stream to be processed by

CPUs. – "in-database analytics"

Rohit Shivaswami, Abani K. Patra, Vipin Chaudhari University at Buffalo, Buffalo, NY14260 abani@buffalo.edu . DISCS @ SC13 Denver, CO, November 18, 2013November 18, 2013 15 / 41



Downsampling and Neighbour search

Downsampling was achieved through a single SQL query in much simpler and

straightforward implementation compared to the previous work.

Tesselation based method was replaced with a more accurate distance based search.

Neighbor search based on euclidean distance. Searching for samples of the order of 1010

(≈ 4 million ) from among themselves and from a collection of resamples of the order of

1010 (≈ 10 billion).

All the operation performed using less than 60 SQL queries a significant improvement

over thousands of lines of matlab implemntation.

Netezza’s datawarehousing ability allowed storage of all the data in one place as opposed

to storing on several thousand ascii files on the cluster.
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Netezza Database

Compute intensive Tasks - Not suited for

Netezza
Complex algorithms can’t be easily translated into a

declarative language (SQL).

The number of SPUs puts a limit on the available

processors.

Explicit use of high performance libraries like BLAS and

LAPACK is difficult .

Emulator construction would have required days to finish.

Plot of number of matrix multiplication

operations of square matrices of size

200x200 against time.
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High Performance Cluster

Large data requirements by the cluster leads to I/O bottlenecks.

Resolved by creating a hierarchy at the cluster level.

A few of the processors are identified as the I/O proessors perform the task of

managing I/O - I/O forwarding

I/O processors extract sufficient amount data from Netezza using pipes to feed

the compute processors.

An MPI job scheduler distributes the work to compute processors.

The resulting data which requires aggregation is tranferred to Netezza via I/O

processors using named pipes.
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Computing Model
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Integrated Workflow Diagram

Upload data to Netezza Database for Analytics and Data mining

                                          

NETEZZA                                                                           DATABASE

N Pileheight record
files

data.txt 

DOWNSAMPLED
Every 5th points is 
selected from Titan

to reduce the size through
a single SQL query

FLOWDATA
(sample,id,x,y,h,h,uniq_id)

INPUT_LIST
Table of uncertain
Input paramters

MACRO_NEIGHBOURS
Stores macro-neighbours 
of every input parameter
within a given euclidean

distance

Inner join of 
MACRO-NEIGHBOURS

And
FLOWDATA

Uncertain_input_list.txt Macro-Resamples 
generated by matlab code

Phm points generated
by matlab code using 

LatinHypercube Design

PROXIMITY
Every spatial neighbour from within a sample 

and from neighbouring macro-samples is listed 
against every point of FLOWDATA. Table 

lists sample number and spatial and unique id 
of every point and its every neighbour along 
with the macro-sample number to which the 

neighbour belongs.

RESAMPLES
Table stores a list of 
parameters for which 

Titan output is not available

NEEDED_RESAMPLES
Every macro_sample's distance is 

computed against every resample and 
only those resmaples which are within 
a given euclidean distance are selected 

and stored in the Table

RESAMPLE_NEIGHBOURS
NEEDED_RESAMPLES are searched
for neighbours among macro_samples.

The table stores macro_sample 
neighboursalong with the barycentric
 weight for every needed_resample

PHM
Spatial id denoted by uniq_id 
Of every point with north and 

east co-ordinates

Inner Join of PHM
And 

FLOWDATA

PHM_NEIGHBOURS
All neighbours selected above

are further filtered to select only 
3 closest neighbours and of 

only those points which have 
3 or more neighbours

Euclidean distance 
of every Phm point against 

only unique* Downsampled 
Points. Only points within

 200 metres distance
are selected

extract.py    
extract_data.py

TITAN 
max pileheight
Of every point  
of every sample

Cluster of nodes to compute co-variance matrix from the neighborhood data obtained from Netezza and 
stored in 2048 files in Panasas filesystem. For every point the neighbors from resamples are also available 

from Netezza to evaluate mean and variance. The mean and variance data is returned back to Netezza.

Aggregation nodes return data to Netezza using nzload through pipes
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Integrated Workflow Diagram
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Integrated Workflow Diagram – Phase 1
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Integrated Workflow Diagram – Phase 2
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Integrated Workflow Diagram – Phase 3
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Results

Downsampling and neighbour search time 30 minutes.

Computation time on High Performance Cluster 9 hours

Number of neighbourhood records on table - ∼ 2 Billion records.

504 processors functioning as 18 independent groups were responsible for

emulator construction and the evaluation of mean and variance.

Each group had 1 I/O processor and atmost 27 compute processors.

Approximately 4 million covariance matrices of size 300x300 were computed

through an iterative process and the moments were computed for several billion

resample points.
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Results

cont..
1.5 TB of data was transferred over the network to Netezza server over 18

different pipes.

This data was stored on 18 different tables occupying a little more than a total of

50 billion rows.

The final step which required scanning billions of rows of data to evaluate the

barycentric weights and aggregate the results was also per formed on the

Netezza server and took 2.5 hours of time.

The hazard map was generated in 12 hours of time.
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Hazard Map

Image of the Montserrat Island with and without the Hazard Map. The Hazard Map shown here was

generated using larger euclidean distance of serach.
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Results

Improving the computation time
Reduce the number of write sessions per load session. A write session involves writing data to the

pipe. A load session is complete when pipe opened for writing is closed.

Communications between I/O processors and server were made less frequent.

I/O processors could now disseminate data to compute processors with fewer interruptions.

Avoid simultaneous aggregation of data on server while loading the tables which put severe strain on

the server.

Block writing of data to server.
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Results

New Hazard map generated in less than 6 hours time with cluster time reduced to 2.5

hours.

512 processors on 43 nodes of 12 cores each and by keeping 16 connections open

between Netezza and the cluster. Each group had 1 I/O and atmost 32 compute

processors.

A maximum limit of 120 was enforced on the size of the covariance matrices.

dimensions(scaled).

The operations prior to emulator construction took 10 minutes and the final aggregation

was completed in 2.5 hours, both of which were performed entirely on Netezza server.
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Hazard Map

Hazard Map generated using more localized emulators (through smaller euclidean distance of search).

Rohit Shivaswami, Abani K. Patra, Vipin Chaudhari University at Buffalo, Buffalo, NY14260 abani@buffalo.edu . DISCS @ SC13 Denver, CO, November 18, 2013November 18, 2013 30 / 41



Map Reduce Framework

Hadoop
Hadoop is a popular open source implementation of the Map-Reduce

concept.

Cheap alternative to Netezza database.

Offers a fault tolerant scheduler.

Hadoop streaming - can be used in conjunction with scripts in a variety of

languages.
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Hadoop

Motivation for using Hadoop
Could be set up on the same cluster that performs emulator construction.

This obviates the need to move data as data mining and computation can

be performed on the same nodes.

Good scalability. Netezza database’s scalability is constrained because of

a limit on the number of pipes and the number of processors on its rack.

Easy to develop scripts in python and use them with Hadoop streaming.
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Integrated Workflow Diagram
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Integrated Workflow Diagram – Phase 1
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Integrated Workflow Diagram – Phase 2
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Integrated Workflow Diagram – Phase 3
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Hadoop

Implementation Details
Downsampling and Neighbor search were performed with ease on

Hadoop.

Mapper computes the distances between two sets of data (X and Y) and

prints out the result as key- value pair.

Reduce operation only involved printing out the output from mapper.

Emulator construction on cluster - Wrap Phase 2 in mapper and Phase 3

in reducer.
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Hadoop

Challenges
Emulator Construction being compute intensive necessitates utilizing all processors of a multi-core

machine.

Only 2 mappers could be spawned on each multi-core node which was a severe limitation.

Possible reasons for the above beahviour could be small input data and complexity of mapper

operation.

Emulator construction as such had to be performed without using hadoop and the output was stored

on panasas filesystem.

Phase 3 was performed using Hadoop using two reduce operations. Data had to be copied from

panasas to Hadoop’s distributed filesystem which consumed considerable time.
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Hadoop

Results
Completion Times:

Phase 1 : 20 minutes

Phase 2 : 5 hours

Phase 3 : 9.5 hours

The above number do not include the time taken to copy data from panasas to

HDFS. Phase 3 was the most dominant phase utilizing Hadoop and reduced

800GB of data to 190GB through 100 reduce tasks spread over 20 nodes.
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Hadoop

Results
The aggregation of data is a typical reduce operation.

Phase 3 that was performed on Netezza was now performed using two

reduce operations.

Data had to once again copied from panasas to Hadoop’s distributed

filesystem.
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