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Data-Intensive Applications 
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Database 

Data Warehouse 

Taniar et al., High-Performance Parallel Database Processing and Grid Databases, Wiley, 11 Mar 2008. 

Knowledge 
Patterns 

 

 Mining Frequent Patterns , Association Rules 
 Classification  
 Clustering 
 Regression 
 Summarization 

Data cleaning 
Data integration, etc. Data mining 

Data mining 



Frequent Pattern Mining (FPM) 

  Find patterns  frequently occurring in a large database 

  Help to answer many useful questions 

-  Which genes are effected by a new drug ? 
 

 

 

6 



Applications 
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Text Mining Graph Mining Image Mining 

Market Analysis Query Recommendation 
 Product  Recommendation 



Problem Statement 

Transaction ID Items 
01 a b c 

02 a c 

03 a c 

04 a d 

  Database D with N tracsactions & M items: X={a, b, c, …}         

  Y (Y  X) is frequent pattern if its support is larger or equal to 
a minimum support threshold (minsup) 

         Support(Y) = Probability(Y)   ≥ minsup 

  Frequent Pattern Mining = find all possible frequent patterns 

  Example: a, c, ac are 3 frequent patterns if minsup = 50% 

  Sale               Web Document         Biological Data    
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How to mine frequent patterns ? 
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  Find all combinations of items  
  Check for their support to determine the frequent patterns 
 



How to mine frequent patterns ? 
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  Find all combinations of items  
  Check for their support to determine the frequent patterns 

  If N = 55 items  
 # of combinations is 255= 36,028,797,018,963,968 

  What if N ~ millions of items ? 
    à Brute force approach is infeasible for large database 

 



Popular Approaches 
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  Apriori 

  Eclat 

  FP-growth 

  Improvements of these methods 



Popular Approaches 
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Apriori Eclat FP-growth 
 Large I/O 

 Rescan data from disk  

 Candidate Gen. & Test 

 Breath-first 

 Small I/O 

 Vertical data format 

 Candidate Gen. & Test 

 Depth first 

 Small I/O 

 Horizontal data format 

 No Candidate Generation 

 Depth first  



Mining Frequent Pattern on Large Database 

  Large I/O  
  Huge Memory Consumption 
  Computationally Intensive 
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ShaFEM: A Novel Parallel Method  
for Mining Frequent Patterns on  

Multi-core Shared Memory Systems 



Motivation 

 Existing parallel FPM methods 
  Do not efficiently perform on both sparse & dense databases 
     Majority are based on Apriori, Eclat and FP-growth 
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Databases Type Minsup Apriori 
(sec.) 

Eclat 
(sec.) 

FP-growth 
(sec.) 

Chess Dense 20% 1924 77 89 
Connect Dense 30% 522 366 403 
Retail Sparse 0.003% 18 59 10 

Kosarak Sparse 0.08% 4332 385 144 



Motivation 

 Existing parallel FPM mining methods 
  Under-utilize the benefits of shared memory  
 Most are developed for distributed-memory systems 
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Core Core Core 

Memory 

Cache 

Core Core Core 

Core Core Core 

Cache 

Core Core Core 

A dual socket server 



ShaFEM algorithm 

New method for mining frequent patterns on 
shared memory multi-core systems 
  Self-adapt to data characteristics dynamically 

  Perform well on both sparse and dense databases 
 

  Efficiently utilize shared memory 
  Minimize the communication and synchronization need 
  Maximize data independence for scalability 
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ShaFEM algorithm 
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Two main stages: 
1.  XFP-tree Construction 

 An extension of FP-tree shared among cores 
 Compact data of all frequent patterns into memory 

2. Mining frequent patterns 
 Apply two mining strategies and dynamically 

switch between them based on characteristics of 
data during the execution 

 



Stage 1: XFP-tree construction 
20         P1               P2                P3 

Compute 
 local count lists 

Data Partition 

Compute the global count list 

Identify the frequent items 
based on minsup 

1st scan 



Stage 1: XFP-tree construction 
21         P1               P2                P3 

Construct  
local FP-trees 

Data Partition 

2nd scan 



Stage 1: XFP-tree construction 
22         P1               P2                P3 

Link local FP-trees 
   into XFP-tree 

Data Partition 
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Stage 2: Mining frequent patterns 

 Dynamic job scheduling for load 
balancing 

 Apply two mining strategies to 
work efficiently on both sparse and 
dense databases 

 Switching between MineFPtree and 
MineBitVector for each subset 
based on its characteristics 



Switching between two mining strategies 

XFP-tree 
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Switching between two mining strategies 
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Switching between two mining strategies 

Child FP-tree 

Bit Vector 

XFP-tree 



Switching between two mining strategies 

MineFPTree 



Switching between two mining strategies 

MineBitVector 



Compare to the related works 
34 

        P1                    P2                  P3 

Construct 
 XPF-tree 

Related methods:  Build FP-tree & need locks on nodes of the tree 

       Our method:   Build XFP-tree & NOT require locks 

  Minimize the communication and synchronization need 
  Maximize data independence for scalability 



Compare to the related works 
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Related methods:  Apply only one mining strategy based on vertical  
   or horizontal data format 

       Our method:  Apply two mining strategies  
   Utilize both FP-tree and Bit Vector structures 

Adapt better to data 
characteristics to perform 
efficiently on both dense 
and sparse databases. 
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Experimental Setup 

 Environment: 
 Altus Machine with dual six-core AMD Opteron 2747 

processors (12 cores), 24GB shared memory and 160GB 
hard drive.  

 Linux-based operating system (CentOS 5.8) 

 Benchmarks: 
  Parallel Benchmark: ShaFEM & FP-array 
  Implementations use C/C++ & OpenMP 
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Experimental Setup 

  Datasets: 
38 

Dataset Type # of  
Items 

Average  
Length 

# of  
Trans. 

Chess Dense 76 37 3196 
Connect Dense 129 43 67557 
Accidents Moderate 468 33.8 340183 

Retail Sparse 16470 10.3 88126 
Kosarak Sparse 41271 8.1 990002 



Time Comparison 

FP-array: an FPM method by Intel for  multicore shared-memory systems 

ShaFEM : our FPM method 

The lower the better 



Relative Speedup on 12 cores 



ShaFEM Speedup  
41 



Comparison with Sequential Algorithms 

The lower the better 



Conclusion 

  ShaFEM - a novel parallel method for FPM on 
shared memory systems 

  ShaFEM performs well on both sparse and dense 
databases 

  Test cases show savings of up to 4.9 days (1cores) 
and 12.8 hours (12 cores) of execution time over the 
compared competing method. 

43 



Outline 

44 

1.  Introduction 
2.  Frequent Pattern Mining Methods 
3.  Our Parallel Approach 
4.  Performance Evaluation 
5.  Future Work 

University of Colorado Denver 



Future Work 

  Integrate ShaFEM into our hybrid model of shared & 
distributed memory for multi-core cluster 

  Combine CPU-GPU for mining frequent patterns 

  Develop a high performance framework for FPM 

Core Core Core 

Memory 

Cache 
Core Core Core 

Core Core Core 

Cache 
Core Core Core 
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Memory 
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L. Vu, G. Alaghband, “High Performance Frequent Pattern Mining on Multi-core Cluster,” in CTS, 2012. 



Questions ? 
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Our contact 
Lan Vu - lan.vu@ucdenver.edu 

Gita Alaghband - gita.alaghband@ucdenver.edu 
Our Parallel Distributed System Lab: http://pds.ucdenver.edu  
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