
Novel Parallel Method for Mining
Frequent Patterns on Multi-core

Shared Memory Systems
DISCS - 2013

Lan Vu, Gita Alaghband

University of Colorado Denver

University of Colorado Denver

Outline

2

1.  Introduction
2.  Frequent Pattern Mining Methods
3.  Our Parallel Approach
4.  Performance Evaluation
5.  Future Work

2

Outline

3

1.  Introduction
2.  Frequent Pattern Mining Methods
3.  Our Parallel Approach
4.  Performance Evaluation
5.  Future Work

3

University of Colorado Denver

Data-Intensive Applications
4

Database

Data Warehouse

Taniar et al., High-Performance Parallel Database Processing and Grid Databases, Wiley, 11 Mar 2008.

Knowledge
Patterns

 Mining Frequent Patterns , Association Rules
 Classification
 Clustering
 Regression
 Summarization

Data cleaning
Data integration, etc. Data mining

Data mining

Frequent Pattern Mining (FPM)

  Find patterns frequently occurring in a large database

  Help to answer many useful questions

-  Which genes are effected by a new drug ?

6

Applications
6

Text Mining Graph Mining Image Mining

Market Analysis Query Recommendation
 Product Recommendation

Problem Statement

Transaction ID Items
01 a b c

02 a c

03 a c

04 a d

  Database D with N tracsactions & M items: X={a, b, c, …}

  Y (Y X) is frequent pattern if its support is larger or equal to
a minimum support threshold (minsup)

 Support(Y) = Probability(Y) ≥ minsup

  Frequent Pattern Mining = find all possible frequent patterns

  Example: a, c, ac are 3 frequent patterns if minsup = 50%

 Sale Web Document Biological Data

Outline

8

1.  Introduction
2.  Frequent Pattern Mining Methods
3.  Our Parallel Approach
4.  Performance Evaluation
5.  Future Work

University of Colorado Denver

How to mine frequent patterns ?
9

  Find all combinations of items
  Check for their support to determine the frequent patterns

How to mine frequent patterns ?
10

  Find all combinations of items
  Check for their support to determine the frequent patterns

  If N = 55 items
 # of combinations is 255= 36,028,797,018,963,968

  What if N ~ millions of items ?
 à Brute force approach is infeasible for large database

Popular Approaches
11

  Apriori

  Eclat

  FP-growth

  Improvements of these methods

Popular Approaches
12

Apriori Eclat FP-growth
 Large I/O

 Rescan data from disk

 Candidate Gen. & Test

 Breath-first

 Small I/O

 Vertical data format

 Candidate Gen. & Test

 Depth first

 Small I/O

 Horizontal data format

 No Candidate Generation

 Depth first

Mining Frequent Pattern on Large Database

  Large I/O
  Huge Memory Consumption
  Computationally Intensive

13

Outline

14

1.  Introduction
2.  Frequent Pattern Mining Methods
3.  Our Parallel Approach
4.  Performance Evaluation
5.  Future Work

University of Colorado Denver

15

ShaFEM: A Novel Parallel Method
for Mining Frequent Patterns on

Multi-core Shared Memory Systems

Motivation

 Existing parallel FPM methods
  Do not efficiently perform on both sparse & dense databases
 Majority are based on Apriori, Eclat and FP-growth

16

Databases Type Minsup Apriori
(sec.)

Eclat
(sec.)

FP-growth
(sec.)

Chess Dense 20% 1924 77 89
Connect Dense 30% 522 366 403
Retail Sparse 0.003% 18 59 10

Kosarak Sparse 0.08% 4332 385 144

Motivation

 Existing parallel FPM mining methods
  Under-utilize the benefits of shared memory
 Most are developed for distributed-memory systems

17

Core Core Core

Memory

Cache

Core Core Core

Core Core Core

Cache

Core Core Core

A dual socket server

ShaFEM algorithm

New method for mining frequent patterns on
shared memory multi-core systems
  Self-adapt to data characteristics dynamically

  Perform well on both sparse and dense databases

  Efficiently utilize shared memory
  Minimize the communication and synchronization need
  Maximize data independence for scalability

18

ShaFEM algorithm
19

Two main stages:
1.  XFP-tree Construction

 An extension of FP-tree shared among cores
 Compact data of all frequent patterns into memory

2. Mining frequent patterns
 Apply two mining strategies and dynamically

switch between them based on characteristics of
data during the execution

Stage 1: XFP-tree construction
20 P1 P2 P3

Compute
 local count lists

Data Partition

Compute the global count list

Identify the frequent items
based on minsup

1st scan

Stage 1: XFP-tree construction
21 P1 P2 P3

Construct
local FP-trees

Data Partition

2nd scan

Stage 1: XFP-tree construction
22 P1 P2 P3

Link local FP-trees
 into XFP-tree

Data Partition

Stage 2: Mining frequent patterns
23 P1 P2 P3

Link local FP-trees
 into XFP-tree

Data Partition

Mining Mining Mining
Each process
mines freq. patterns
independently

Stage 2: Mining frequent patterns
24 P1 P2 P3

Link local FP-trees
 into XFP-tree

Data Partition

Each process
mines freq. patterns
independently

Stage 2: Mining frequent patterns

 Dynamic job scheduling for load
balancing

 Apply two mining strategies to
work efficiently on both sparse and
dense databases

 Switching between MineFPtree and
MineBitVector for each subset
based on its characteristics

Switching between two mining strategies

XFP-tree

Switching between two mining strategies

Child FP-tree

XFP-tree

Switching between two mining strategies

Child FP-tree

XFP-tree

Switching between two mining strategies

Child FP-tree

XFP-tree

Switching between two mining strategies

Child FP-tree

Bit Vector

XFP-tree

Switching between two mining strategies

Child FP-tree

Bit Vector

XFP-tree

Switching between two mining strategies

MineFPTree

Switching between two mining strategies

MineBitVector

Compare to the related works
34

 P1 P2 P3

Construct
 XPF-tree

Related methods: Build FP-tree & need locks on nodes of the tree

 Our method: Build XFP-tree & NOT require locks

  Minimize the communication and synchronization need
  Maximize data independence for scalability

Compare to the related works
35

Related methods: Apply only one mining strategy based on vertical
 or horizontal data format

 Our method: Apply two mining strategies
 Utilize both FP-tree and Bit Vector structures

Adapt better to data
characteristics to perform
efficiently on both dense
and sparse databases.

Outline

36

1.  Introduction
2.  Frequent Pattern Mining Methods
3.  Our Parallel Approach
4.  Performance Evaluation
5.  Future Work

University of Colorado Denver

Experimental Setup

 Environment:
 Altus Machine with dual six-core AMD Opteron 2747

processors (12 cores), 24GB shared memory and 160GB
hard drive.

 Linux-based operating system (CentOS 5.8)

 Benchmarks:
  Parallel Benchmark: ShaFEM & FP-array
  Implementations use C/C++ & OpenMP

37

Experimental Setup

  Datasets:
38

Dataset Type # of
Items

Average
Length

of
Trans.

Chess Dense 76 37 3196
Connect Dense 129 43 67557
Accidents Moderate 468 33.8 340183

Retail Sparse 16470 10.3 88126
Kosarak Sparse 41271 8.1 990002

Time Comparison

FP-array: an FPM method by Intel for multicore shared-memory systems

ShaFEM : our FPM method

The lower the better

Relative Speedup on 12 cores

ShaFEM Speedup
41

Comparison with Sequential Algorithms

The lower the better

Conclusion

  ShaFEM - a novel parallel method for FPM on
shared memory systems

  ShaFEM performs well on both sparse and dense
databases

  Test cases show savings of up to 4.9 days (1cores)
and 12.8 hours (12 cores) of execution time over the
compared competing method.

43

Outline

44

1.  Introduction
2.  Frequent Pattern Mining Methods
3.  Our Parallel Approach
4.  Performance Evaluation
5.  Future Work

University of Colorado Denver

Future Work

  Integrate ShaFEM into our hybrid model of shared &
distributed memory for multi-core cluster

  Combine CPU-GPU for mining frequent patterns

  Develop a high performance framework for FPM

Core Core Core

Memory

Cache
Core Core Core

Core Core Core

Cache
Core Core Core

Core Core Core

Memory

Cache
Core Core Core

Core Core Core

Cache
Core Core Core

 Node 0 Node 1 Node N-1
Core Core Core

Memory

Cache
Core Core Core

Core Core Core

Cache
Core Core Core

Network
L. Vu, G. Alaghband, “High Performance Frequent Pattern Mining on Multi-core Cluster,” in CTS, 2012.

Questions ?
46

Our contact
Lan Vu - lan.vu@ucdenver.edu

Gita Alaghband - gita.alaghband@ucdenver.edu
Our Parallel Distributed System Lab: http://pds.ucdenver.edu

University of Colorado Denver

