
SDAFT: A Novel Scalable Data Access
Framework for Parallel BLAST

Jiangling Yin, Junyao Zhang, Jun Wang

University of Central Florida, Orlando

Wu-chun Feng

Virginia Tech, Blacksburg

Outline

Background

 Parallel BLAST, mpiBLAST.

Problems and Motivations

 Data movement, Locality Computation.

A Proposed Framework for Parallel BLAST

 Data-centric Scheduling, Distributed I/O.

Experiments

 Experimental Setting and Results.

Conclusion

1

BLAST

Basic Local Alignment Sequence Tool

 Sequence database search tool used in molecular
biology.

Given a query DNA or amino-acid (AA) sequence

 BLAST finds similar sequences in the database.

2

Parallel BLAST

Partitions the database into small segments, and
stores them in shared storage.

The search for query sequence is initialized to a list
of tasks corresponding to the number of
fragments.

Multiple threads/processes are spawned on multi-
core machines or cluster nodes.

Searches each segment in parallel.

MPI-based Parallel BLAST

Parallel BLAST, based on MPI implementation,
adopts a compute-centric model.

 i.e. moving data to compute processes.

mpiBLAST

 An MPI process assigns tasks to other process,
which access databases from the shared storage
over a network.

4

mpiBLAST Workflow

mpiBLAST workers load data fragments over a
network.

Workers perform BLAST tasks in parallel.

Data Movement Overhead

 The rapidly growing datasets pose a great
challenge for parallel BLAST.

 Long network wait time leads to performance
degradation.

Current, 1000 Genomes
Project @ Amazon: 200 TB
Data Volume increases
to 10 PB in FY21

Motivations

 Store the shared database into distributed file
systems.

 scale with the problem size and number of nodes

Co-locate compute processes with storage.

 Achieve Scalable Data Access through distributed I/O.

Schedule computation tasks to or close the needed
data.

 Enable data locality computation.

Challenges

I/O imcompatibility

 POSIX I/O, MPI I/O couldn’t directly run on DFS

Uneven data distribution.
 DFS (i.e HDFS) distributes data unevenly over all cluster

nodes and leaves some nodes with more data fragments
than others.

Task execution time .

 is difficult to track according to the input data size and
different computing capacities per node.

8

Scalable Data Access Framework for
Parallel BLAST

 The DC-scheduler employs a Fragment Location Monitor to
find the fragments location and dispatches unassigned
fragments to computation processes such that each
process can read the fragments locally, i.e. SDAFT-I/O.

9

Data-centric Scheduler

 is a dynamic scheduler.

assigns task to the node holding its requested
fragments.

balances the unassigned fragments over all cluster
nodes.

10

Data-centric Scheduler

main steps

1. Receives a task request from an idle process;

2. Checks the local unprocessed fragments related to
the process.

3. Finds the fragment x, such that it could make the
number of unassigned fragments on all other nodes as
balanced as possible.

4. Assign the fragment x to the idle process.

11

I/O incompatibility

I/O incompatibility between POSIX/MPI I/O and
DFS I/O

 MPI I/O: MPI_File_open(), MPI_File_read_at()…

 POSIX I/O: open(), read()…

 HDFS I/O: hdfsOpenFile(), hdfsRead()…

12

A Translation Layer

SDAFT-I/O

 translates parallel I/O operations into DFS I/O.

 was prototyped with FUSE.

 the flow of I/O call from mpiBLAST to DFS through
SDAFT-I/O

13

Experimental setting

Nucleotide sequence database 'nt'

 Contains the GenBank, EMB L.D, and PDB sequences (45
GB)

 Number of sequences: 17,611,492

File systems:

 Network file system: PVFS and NFS

 Distributed file system: HDFS

14

Experimental Results

 Aggregate Bandwidth (total data/load time)

15

Experimental Results

 Improvement = 1 -
Overall execution time of BLAST SDPFT-based
Overall execution time of BLAST NFS/PVFS-based

16

Experimental Results

 Degree of data locality computation

17

Conclusion

By testing our SDAFT prototype system with real-
world data, we observed a significant
performance increases over traditional compute-
centric architecture.

By allowing for the integration of data locality into
an MPI-based applications, we believe that these
data-intensive applications can efficiently run on
commodity clusters.

18

Thank you!

19

