OpenMPC: Extended OpenMP for Efficient Programming and Tuning on GPUs

TitleOpenMPC: Extended OpenMP for Efficient Programming and Tuning on GPUs
Publication TypeJournal Article
Year of Publication2013
AuthorsLee, Seyong, and Eigenmann Rudolf
JournalInternational Journal of Computational Science and Engineering
Start Page4

General-purpose graphics processing units (GPGPUs) provide inexpensive, high performance platforms for compute-intensive applications. However, their programming complexity poses a significant challenge to developers. Even though the compute unified device architecture (CUDA) programming model offers better abstraction, developing efficient GPGPU code is still complex and error-prone. This paper proposes a directive-based, high-level programming model, called OpenMPC, which addresses both programmability and tunability issues on GPGPUs. We have developed a fully automatic compilation and user-assisted tuning system supporting OpenMPC. In addition to a range of compiler transformations and optimisations, the system includes tuning capabilities for generating, pruning, and navigating the search space of compilation variants. Evaluation using 14 applications shows that our system achieves 75% of the performance of the hand-coded CUDA programmes (92% if excluding one exceptional case).