
ORNL is managed by UT-Battelle
for the US Department of Energy

http://ft.ornl.gov

OpenACC to FPGA:
A Framework for
Directive-based
High-Performance
Reconfigurable
Computing

Seyong Lee, Jungwon Kim,
and Jeffrey S. Vetter

Future Technologies Group

Oak Ridge National Laboratory

IPDPS16

2 IPDPS16

Outline

• Motivation
–  FPGA-based high-performance reconfigurable computing

• OpenACC-to-FPGA translation framework
–  Baseline translation
–  FPGA-specific optimizations and pragma extensions

• Evaluation
• Conclusion

http://ft.ornl.gov/research/openarc

3 IPDPS16

Motivation

• Requirements for future exascale supercomputers
–  High performance on mission applications
– Wide flexibility to serve a diverse application workload
–  Efficient power usage
–  Effective reliability, etc.

• Heterogeneous computing as potential solutions to
this challenge
–  Current and upcoming petascale systems with GPUs or

Xeon Phis: Tianhe-2, Titan, Summit, Aurora, etc.
–  Next-generation supercomputers with FPGAs?

http://ft.ornl.gov/research/openarc

4 IPDPS16

Field Programmable Gate Array (FPGA)

• FPGAs
–  An integrated circuit designed to be re-configured by a

customer
•  “Field-programmable” means that different circuit designs can be

loaded.

–  Consist of a set of programmable logic blocks,
reconfigurable interconnects, dedicated memory blocks,
ALUs, and/or hard IP processors (e.g., ARM, PPC).

– Offer good performance and energy efficiency for specific
workloads.
•  Digital signal processing, medical imaging, computer vision,

speech recognition, cryptography, bioinformatics, radio astronomy,
etc.

http://ft.ornl.gov/research/openarc

5 IPDPS16

Challenges in FPGA Computing

• Programmability and Portability Issues
–  Best performance for FPGAs requires writing Hardware

Description Languages (HDLs) such as VHDL and
Verilog; too complex and low-level
•  HDL requires substantial knowledge on hardware (digital circuits).
•  Programmers must think in terms of a state machine.
•  HDL programming is a kind of digital circuit design.

–  High-Level Synthesis (HLS) to provide better FPGA
programmability
•  SRC platforms, Handel-C, Impulse C-to-FPGA compiler, Xilinx

Vivado (AutoPilot), FCUDA, etc.
•  None of these use a portable, open standard.

http://ft.ornl.gov/research/openarc

6 IPDPS16

Standard, Portable Programming Models
for Heterogeneous Computing

• OpenCL
– Open standard portable across diverse heterogeneous

platforms (e.g., CPUs, GPUs, DSPs, Xeon Phis, FPGAs,
etc.)

– Much higher than HDL, but still complex for typical
programmers.

• Directive-based accelerator programming models
– OpenACC, OpenMP4, etc.
–  Provide higher abstraction than OpenCL.
– Most of existing OpenACC/OpenMP4 compilers target

only specific architectures; none supports FPGAs.

http://ft.ornl.gov/research/openarc

7 IPDPS16

Contribution of This Work

• Design and implement an OpenACC-to-FPGA
translation framework, which is the first work to use
a standard and portable directive-based, high-level
programming system for FPGAs.

• Propose FPGA-specific optimizations and novel
pragma extensions to improve performance.

• Evaluate the functional and performance portability
of the framework across diverse architectures
(Altera FPGA, NVIDIA GPU, AMD GPU, and Intel
Xeon Phi).

http://ft.ornl.gov/research/openarc

8 IPDPS16

OpenARC: Baseline OpenACC
Translation Framework

• OpenARC: Open Accelerator Research Compiler
– Open-sourced, high-level Intermediate Representation

(HLIR)-based, extensible compiler framework.
–  Perform source-to-source translation from OpenACC C to

the output CUDA or OpenCL program, targeting diverse
devices such as NVIDIA/AMD GPUs and Intel Xeon Phis.

– OpenARC’s high-level representation (HLIR) allow to
generate human-readable output code, easy to
understand, debug, and optimize.

–  Equipped with various advanced analysis/transformation
passes and built-in tuning tools.

http://ft.ornl.gov/research/openarc

9 IPDPS16

HeteroIR-based, functionally portable
OpenACC translation in OpenARC

• HeteroIR: high-level, architecture-independent
intermediate representation
–  Encapsulate the common accelerator operations into

high-level function calls, which are orchestrated on the
target architecture by the runtime system.

–  Allow to generate device-independent host code.
–  Allow to reuse many of existing compiler passes to port to

a new architecture.

http://ft.ornl.gov/research/openarc

10 IPDPS16

OpenARC System Architecture

http://ft.ornl.gov/research/openarc

OpenARC Runtime OpenARC Compiler
Output Codes OpenARC

Front-End OpenACC

OpenMP 4

NVL-C

C Parser

Directive
Parser

Preprocessor

General
Optimizer

OpenARC
Back-End
Kernels &

Host Program
Generator

Device
Specific

Optimizer

OpenARC
IR

LLVM
Back-End

Extended
LLVM IR

Generator

NVL
Passes

Standard
LLVM

Passes

Kernels for
Target Devices

Host Program

NVM NVM NVM NVM

NVL Runtime

pmem.io
NVM Library

Executable

OpenARC
Auto-Tuner

Tuning
Configuration

Generator

Search Space
Pruner

CUDA, OpenCL
Libraries

HeteroIR Common Runtime
with Tuning Engine

CUDA
GPU

GCN
GPU

Xeon
Phi

Input C Program

Feedback

Run

Run

Altera
FPGA

11 IPDPS16

Baseline Translation of OpenACC-to-
FPGA

• Use OpenCL as the output model and the Altera
Offline Compiler (AOC) as its backend compiler.

• Translates the input OpenACC program into a host
code containing HeteroIR constructs and device-
specific kernel codes.
–  Use the same HeteroIR runtime system of the existing

OpenCL backends, except for the device initialization.
–  Reuse most of compiler passes for kernel generation.

http://ft.ornl.gov/research/openarc

12 IPDPS16

OpenARC Extensions and Optimizations
for Efficient FPGA Programming

• Key benefit of using FPGAs is that they support
wide, heterogeneous, and deeply pipelined
parallelism customized for the input program.

•  In FPGA programming with OpenCL, the OpenCL
compiler synthesizes all the hardware logic for the
input program.
–  The efficiency of the compiler is critical.

• We extend OpenARC to generate output OpenCL
codes in a manner friendly to the underlying AOC
OpenCL backend compiler.

http://ft.ornl.gov/research/openarc

13 IPDPS16

FPGA OpenCL Architecture

FPGA

Memory

Local Memory
Interconnect

Local Memory
Interconnect

Local Memory
Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory
Controller and PHY

External Memory
Controller and PHY

H
ost P

rocessor

External DDR Memory External DDR Memory

Kernel
Pipeline Kernel

Pipeline Kernel
Pipeline Kernel

Pipeline

Kernel
Pipeline Kernel

Pipeline Kernel
Pipeline Kernel

Pipeline

Kernel
Pipeline Kernel

Pipeline Kernel
Pipeline Kernel

Pipeline

http://ft.ornl.gov/research/openarc

Pipeline
Depth

Vector
Width

Number of Replicated Compute Units

14 IPDPS16

Directive Extensions to Control Efficient
Hardware Logic Generation

•  Directives for Loop Unrolling
–  Decide pipeline depth and affect memory access coalescing.

•  Directives for Kernel Vectorization
–  Replicate the kernel datapath to allow SIMD operations share control

logics across each SIMD vector lane and might coalesce memory
accesses.
•  The whole kernel is executed in an SIMD mode; different from OpenACC

vector execution model.

•  Directives for Compute Unit Replication
–  Can achieve higher throughput.
–  Increase the bandwidth requests to the global memory.

http://ft.ornl.gov/research/openarc

15 IPDPS16

Directive Extensions to Enable Efficient
Hardware Logic Generation

• Directives for Kernel Configuration Boundary Check
Elimination
– Guarding statements (if statement) in OpenACC kernels

to prevent possible array-index-out-of-bounds errors
–  Performance effect caused by diverging control path
–  New directive to selectively apply the guarding statement

http://ft.ornl.gov/research/openarc

16 IPDPS16

Kernel-Pipelining Transformation
Optimization

•  Kernel execution model in
OpenACC
–  Device kernels can communicate

with each other only through the
device global memory.

–  Synchronizations between kernels
are at the granularity of a kernel
execution.

•  Altera OpenCL channels
–  Allows passing data between

kernels and synchronizing kernels
with high efficiency and low
latency

http://ft.ornl.gov/research/openarc

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through
global memory in OpenACC

Kernel communications with
Altera channels

17 IPDPS16

Kernel-Pipelining Transformation
Optimization (2)

http://ft.ornl.gov/research/openarc

#pragma acc data copyin (a) create (b) copyout (c)
{
 #pragma acc kernels loop gang worker present (a, b)
 for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
 #pragma acc kernels loop gang worker present (b, c)
 for(i=0; i<N; i++) {c[i] = b[i]; }
}

channel float pipe_b;
__kernel void kernel1(__global float* a) {
 int i = get_global_id(0);
 write_channel_altera(pipe_b, a[i]*a[i]);
}
__kernel void kernel2(__global float* c) {
 int i = get_global_id(0);
 c[i] = read_channel_altera(pipe_b);
}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

18 IPDPS16

Kernel-Pipelining Transformation
Optimization (3)

http://ft.ornl.gov/research/openarc

#pragma acc data copyin (a) create (b) copyout (c)
{
 #pragma acc kernels loop gang worker present (a, b)
 for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
 #pragma acc kernels loop gang worker present (b, c)
 for(i=0; i<N; i++) {c[i] = b[i]; }
}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)
{
 #pragma acc kernels loop gang worker pipeout (b) present (a)
 For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
 #pragma acc kernels loop gang worker pipein (b) present (c)
 For(i=0; i<N; i++) {c[i] = b[i];}
}

Kernel-pipelining
transformation

Valid under
specific conditions

19 IPDPS16

Kernel-Pipelining Transformation
Optimization (4)

• Conditions for kernel-pipelining transformation to
preserve the original execution semantics:
–  Kernels have sequential dependencies only in one

direction; no dependency cycles among kernels.
–  Temporary device buffers used for kernel communications

are accessed only by the involved kernels.
–  A kernel can either read or write the same temporary

buffer only once per loop iteration, but not both.
–  A consumer kernel should read a temporary buffer in the

same order that the producer kernel writes the buffer.

http://ft.ornl.gov/research/openarc

20 IPDPS16

Dynamic Memory-Transfer Alignment
Optimization

• Direct Memory Access (DMA) for data transfers
between the host and Altera FPGA
–  Allow higher throughput and lower latency.
–  Applicable only if both the start addresses of host-side

buffer and device-side buffer are 64-byte aligned.
–  Partial data transfer with not-aligned offsets cannot exploit

DMA, even if host-side buffer is aligned using a special
malloc function (e.g., posix_memalign() in Linux).

–  Not using DMA results in serious performance
degradation in Altera FPGA computing.

http://ft.ornl.gov/research/openarc

21 IPDPS16

Dynamic Memory-Transfer Alignment
Optimization (2)

Host Device HtoD
N-byte N-byte

(a) Aligned-host & Aligned-device

(b) Unaligned-host with Offset p (0 < p < 64)
& Aligned-device

Device

Host Copy

Host

64-byte

p

64-byte Aligned Address

http://ft.ornl.gov/research/openarc

(c) Unaligned-host & Unaligned-device
with the Same Offset p (0 < p < 64)

HtoD

HtoD

Host Device

64-byte

p p

64-byte

Unaligned Transfer Aligned Transfer (DMA)

22 IPDPS16

Dynamic Memory-Transfer Alignment
Optimization (3)

HtoD

HtoD

Host Device

Host Copy

p q

q

64-byte 64-byte

(d) Aligned- or Unaligned-host with Offset p (0 ≤ p < 64)
& Unaligned-device with Offset q (0 < q < 64)

http://ft.ornl.gov/research/openarc

23 IPDPS16

Evaluation

•  Target platforms
–  Altera Stratix V GS D5 FPGA

•  457K logic elements, 172600 ALMs, 690K register, 2014 M20K memory, and 8GB
DDR3 memory

•  Variable precision DSP blocks up to 600 MHz, memory bandwidth: up to 100 GB/s

–  Intel Xeon Phi coprocessor 5110P
•  60 cores (240 logical cores) with 8 GB DDR5 memory
•  Processor clock: 1.053 GHz, memory bandwidth: 320 GB/s

–  NVIDIA Tesla K40c GPU
•  2880 thread processors with 12GB DDR5 device memory.
•  GPU clock: 745 MHz, memory bandwidth: 288.4 GB/s

–  AMD Radeon R9 290X GPU
•  2816 stream processors with 4 GB DDR5 memory
•  Processor clock: 1 GHz, memory bandwidth: 320 GB/s

http://ft.ornl.gov/research/openarc

24 IPDPS16

Application Used

Applica
tion Description Input A B C D E

Jacobi Jacobi iterative method 8192x8192,
10 iters X X

MatMul Dense matrix multiplication 2048x2048 X X

SpMul Sparse matrix multiplication 2063494 x
2063494 X X

HotSpot Compact thermal modeling 1024x1024,
1000 iters X

NW Needleman-Wunsch algorithm 8192x8192

SRAD Speckle reducing anisotropic diffusion 8192x8192 X

FFT-1D 1D radix-4 complex fast Fourier transform 4096,
100 iters X X

FFT-2D 2D radix-4 complex fast Fourier transform 256x256 X X X

http://ft.ornl.gov/research/openarc

A: Boundary check elimination, B: Work-item ID-dependent backward
branching, C: Loop unrolling, D: Single work-item kernel, E: Kernel pipelining

OpenARC Compiler Suite Rodinia Benchmark Suite Altera SDK for OpenCL

25 IPDPS16

Hardware Resource Utilization (%)

App
Number of the replicated CUs, SIMD width in the kernel vectorization

1,1 1,2 1,4 1,8 1,16 2,1 2,2 2,4 2,8 2,16 4.1 4,2 4,4 4,8 4,16 8,1 8,2

Jacobi 29 33 37 41 49 36 43 51 59 74 48 62 78 95 124 73 101

MatMul 28 34 45 67 109 35 46 68 110 195 48 69 112 197 367 72 115

SpMul 35 - - - - 46 - - - - 69 - - - - 114 -

HotSpot 56 79 124 214 443 89 134 224 445 863 154 245 467 866 1704 285 518

NW 35 46 68 112 200 46 68 112 200 377 69 113 201 377 730 115 202

SRAD 54 65 80 110 170 84 106 136 197 317 145 189 249 370 621 266 354

FFT-1D 80 - - - - - - - - - - - - - - - -

FFT-2D 56 - - - - - - - - - - - - - - - -

http://ft.ornl.gov/research/openarc

Hardware resource utilization (%) depending on the number of the replicated
compute units (CUs) and SIMD width in the kernel vectorization

of CU affects the resource utilization more than the SIMD width.

If a resource utilization is larger than 100%, the compiler cannot generate kernel
execution file.

26 IPDPS16

Performance Variation Depending on
Worker Size

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Jacobi MatMul SpMul HotSpot NW SRAD

S
p

e
e

d
u

p

(a) Altera Stratix V GS D5 FPGA

32 workers 128 workers 512 workers

0.0

0.5

1.0

1.5

Jacobi MatMul SpMul HotSpot NW SRAD

S
p

e
e

d
u

p

(b) Intel Xeon Phi coprocessor 5110P

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Jacobi MatMul SpMul HotSpot NW SRAD

S
p

e
e

d
u

p

(c) NVIDIA Tesla K40c GPU

0.0

0.5

1.0

1.5

Jacobi MatMul SpMul HotSpot NW SRAD

S
p

e
e

d
u

p

(d) AMD Radeon R9 290X GPU

32 workers 128 workers 256 workers

http://ft.ornl.gov/research/openarc

NVIDIA GPU shows the biggest
performance variation depending
on the worker size.

FPGA is the least sensitive to the
worker size; FPGA transforms a
kernel to deeply pipelined
hardware circuit, and thus
multiple work-groups can co-exist
in the pipeline.

27 IPDPS16

Speedup over CU, SIMD (1,1)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

1,
1

1,
2

1,
4

1,
8

1,
16

2,

1
2,

2
2,

4
2,

8
2,

16

4,
1

4,
2

4,
4

4,
8

8,
1

1,
1

1,
2

1,
4

1,
8

2,
1

2,
2

2,
4

4,
1

4,
2

8,
1

1,
1

2,
1

4,
1

1,
1

1,
2

2,
1

1,
1

1,
2

1,
4

2,
1

2,
2

4,
1

1,
1

1,
2

1,
4

2,
1

Jacobi MatMul SpMul HotSpot NW SRAD

S
pe

ed
up

http://ft.ornl.gov/research/openarc

Jacobi and MatMul show better
performance with increase in CU
and SIMD, thanks to regular
memory accesses.

SpMul and SRAD perform worse
with multiple CUs, mainly due to
memory contentions.

Performance of HotSpot and NW
increases with multiple CUs, but
decreases with vectorization.

28 IPDPS16

Loop Unrolling and Pipelining

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Jacobi MatMul

S
p
e
e
d
u
p

(a) Loop Unrolling

No Unroll
Unroll Factor 4

Unroll Factor 8

0.0

0.5

1.0

1.5

2.0

FFT-2D

(b) Kernel Pipelining

Global Memory
Pipelining

http://ft.ornl.gov/research/openarc

Loop unrolling is important
optimization since it expands the
pipeline depth and may enable
coalescing memory operations.

Kernel pipelining
increases data transfer
efficiency between kernels
and enables fine-grained
synchronization between
kernels.

29 IPDPS16

Memory Transfer Bandwidth

1E-03

1E-02

1E-01

1E+00

1E+01

1
6

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

2
5
6
K

1
M

4
M

1
6
M

6
4
M

2
5
6
M 1
G

B
a
n
d
w

id
th

(G
B

/s
e
c)

Buffer size (bytes)

(a) Host-to-Device

Case a Case b Case c Case d Naive

1E-03

1E-02

1E-01

1E+00

1E+01

1
6

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

2
5
6
K

1
M

4
M

1
6
M

6
4
M

2
5
6
M 1
G

Buffer size (bytes)

(b) Device-to-Host

http://ft.ornl.gov/research/openarc

Case a: Aligned host & Aligned device Case b: Unaligned host & Aligned device
Case c: Unaligned host and device with the same offset
Case d: Unaligned host and device with different offset
Naïve: Unaligned host and device + no dynamic alignment optimization

Dynamic memory-transfer alignment technique achieves up to 532 times higher
bandwidth for host-to-device and 193 times higher for device-to-host than that of
naïve memory transfers.

30 IPDPS16

Overall Performance

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

Jacobi MatMul SpMul HotSpot NW SRAD FFT-1D FFT-2D

S
p

e
e

d
u

p

CPU Sequential
CPU OpenMP

Altera FPGA
Xeon Phi

NVIDIA GPU
AMD GPU

http://ft.ornl.gov/research/openarc

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and
FFT-2D), performing much higher than other accelerators.
For traditional HPC applications with abundant parallel floating-point operations,
it seems to be difficult for FPGAs to beat the performance of other accelerators,
even though FPGAs can be much more power-efficient.

•  Tested FPGA does not contain dedicated, embedded floating-point
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators,
while remaining power-efficient.

31 IPDPS16

Conclusion

• We present a directive-based, high-level
programming system for high-performance
reconfigurable computing.

• Porting eight OpenACC benchmarks onto four
representative accelerator architectures (Altera
FPGA, NVIDIA GPU, AMD GPU, and Intel Xeon
Phi) demonstrates the functional and performance
portability of directive-based programming models
like OpenACC.

• Reconfigurability of existing hardware resources in
FPGA exposes a new type of trade-offs between the
hardware resources versus throughput.

32 IPDPS16

Acknowledgements

•  Contributors and Sponsors
–  Future Technologies Group:

http://ft.ornl.gov
–  US Department of Energy,

Office of Science
•  DOE ARES Project:

http://ft.ornl.gov/research/
ares

–  Philip Roth (ORNL) for his
help in administrating the
evaluation test bed.

–  Altera/Nallatech for
providing our FPGA board.

Questions ??
http://ft.ornl.gov/research/openarc

