
LastingNVCache: Extending the Lifetime of Non-volatile Caches using Intra-set
Wear-leveling

Sparsh Mittal⋆, Jeffrey S. Vetter⋆§, Dong Li⋆
⋆Oak Ridge National Laboratory
§Georgia Institute of Technology

Oak Ridge, Tennessee, USA
Email: {mittals,vetter,lid1}@ornl.gov

Abstract—The limitations of SRAM viz. low-density and
high leakage power have motivated the researchers to explore
non-volatile memory (NVM) as an alternative. However, the
write-endurance of NVMs is orders of magnitude smaller than
that of SRAM, and existing cache management schemes may
introduce significant write-variation, and hence, the use of
NVMs for designing on-chip caches is challenging. In this
paper, we present LastingNVCache, a technique for improving
the cache lifetime by mitigating the intra-set write variation.
LastingNVCache works on the key idea that by periodically
flushing a frequently-written data-item, next time the block
can be made to load into a cold block in the set. Through
this, the future writes to that data-item can be redirected from
a hot block to a cold block, which leads to improvement in
the cache lifetime. Microarchitectural simulations have shown
that for single, dual and quad-core systems, LastingNVCache
provides 6.36X, 9.79X, and 10.94X improvement in lifetime,
respectively. Also, its implementation overhead is small and it
outperforms two recently proposed techniques for improving
the lifetime of NVM caches.

Keywords-Non-volatile memory (NVM), ReRAM, STT-RAM,
intra-set write variation, cache lifetime, write-endurance, wear-
leveling.

I. INTRODUCTION

Energy efficiency has now become the first order con-
straint in the design of all computing systems ranging from
supercomputers to embedded systems. Further, in recent
years, the number of cores on a chip have greatly increased
to offset the memory bandwidth-wall and power-wall prob-
lem. To feed data to these cores, the size of last level
caches (LLCs) has also increased [2], for example, Intel’s
Enterprise Xeon processor uses 30 MB LLC [3]. Since
SRAM provides high write endurance and performance, it
has been conventionally used for designing LLCs. However,
this has also led to increase in the contribution of LLCs
towards chip area and power consumption since SRAM

This technical report is an extension of our IEEE ISVLSI 2014 paper
[1]. The specific extensions made in this report are listed at the end of
Section 1.

consumes high leakage power and has low density. As an
example, L2 cache consumes 25% of the total processor
power in the Niagara-2 processor [4, 5]. In near future
the elevated levels of power consumption may necessitate
expensive cooling solutions (e.g. liquid cooling) and may
also severely restrict further performance scaling.

To address this issue, researchers have explored eDRAM
(embedded DRAM) and NVM (non-volatile memory) for
designing on-chip caches. Table I compares different mem-
ory technologies used for designing caches. While eDRAM
provides smaller leakage and higher density, its main limi-
tation is that its retention period is in the range of tens of
microseconds, compared to tens of milliseconds in commod-
ity DRAM [6]. Thus, eDRAMs spend a significant fraction
of energy in the form of refresh energy [2, 7–9]. Also,
with increasing cache size, an increasingly large number of
eDRAM memory cells need to be refreshed within the same
retention period. Furthermore, the retention period itself
reduces due to process variations and also with increasing
temperature. These factors lead to further increase in the
refresh energy consumed in the eDRAM caches.

NVMs such as ReRAM (resistive RAM), STT-RAM
(spin transfer torque RAM) and PCM (phase change RAM)
provide high density, low-leakage power and non-volatile
operation [13–18]. Several researchers have shown that the
near-zero leakge power consumption of NVMs can compen-
sate for their high write latency and energy [9, 19]. Thus,
the limited write-endurance of NVMs remains a critical
bottleneck in their use for designing on-chip caches, since
as can be seen from Table I, the write-endurance of NVMs
is orders of magnitude smaller than that of SRAM and
eDRAM [11, 20–22]. Process-variations may further reduce
these values by an order of magnitude [23].

Further, since existing cache management policies are
write-variation unaware, the large amount of write variation
introduced by them may significantly reduce the cache
lifetime compared to the expected lifetime assuming uniform

Table I: A comparison of memory technologies (SRAM, eDRAM and NVMs) used for cache design [10–13]
SRAM eDRAM STT-RAM ReRAM PCM

(NVM) (NVM) (NVM)
Cell-size (F 2) 120-200 60-100 6-50 4-10 4-12

Write Endurance > 1015 > 1015 4× 1012 1011 108

Speed Very fast Fast Fast read, slow write Fast read, slow write Slow read, very slow write
Leakage Power High Medium Low Low Low

Retention Period N/A 30-100 µs N/A (unless relaxed) N/A N/A

write distribution. For example, LRU (least recently used)
replacement policy keeps the recently accessed data in
the cache to leverage temporal locality, however, this may
significantly increase the number of writes to the blocks
storing those data-items. Similarly, cache reconfiguration
based approaches work by turning-off a portion of the cache
(e.g. [8, 24, 25]). Over time, these techniques may turn-off
the same portion (e.g. the same ways or the same sets) which
may increase the number of writes to that portion, leading
to large write-variation. Thus, effective architectural policies
are required for managing the NVM caches.

A. Contributions

In this paper, we present LastingNVCache, a microarchi-
tectural technique for improving lifetime of NVM caches
by mitigating the intra-set write variation. LastingNVCache
works on the following idea. In a cache with LRU (least
recently used) replacement policy, if a block is flushed
without updating the LRU-age information, the next time the
data will be loaded in the LRU block in the set. Also, due
to temporal locality, the LRU block is expected to have seen
access which is farthest in the past, and hence, it is expected
to be cold. Thus, if a frequently-written data-item is flushed,
the next time it will be loaded in a cold block. In this manner,
the future writes to the hot data-item can be redirected from
a hot block to a cold block, leading to intra-set wear-leveling.
Uniform distribution of writes reduces the worst-case writes
which improves the lifetime of the caches. In this paper,
we assume a ReRAM cache and based on the explanation,
LastingNVCache can be easily applied to LLCs designed
with other NVMs. For sake of convenience, we henceforth
use the terms ReRAM and NVM interchangeably.

Salient Features: LastingNVCache does not require
changing the set-decoding (unlike [15]), or extra swap-
buffers for in-cache data movement (unlike [26, 27]). Also, it
does not require compiler analysis (as in [28]) or including
tag bits as part of set-index (unlike [14]). Further, it can
also be used for improving lifetime of SRAM-NVM caches
and for reducing NBTI-induced aging-effects in SRAM. The
storage requirement of LastingNVCache is less than 0.8%

of the L2 cache size, which is very small.
Implementation and results: We perform microarchitec-

tural simulations using Sniper x86-64 simulator and bench-
marks from SPEC2006 suite and HPC (high-performance
computing) field (Section VI). Also, we compare Last-
ingNVCache with two recently proposed intra-set WLTs
(wear-leveling techniques), namely PoLF [20] and WriteS-
moothing [26]. Results have shown that LastingNVCache
provides higher improvement in lifetime than both PoLF and
WriteSmoothing and incurs small loss in performance and
energy. For single, dual and quad-core systems, the average
improvement in lifetime on using LastingNVCache is 6.36×,
9.79×, and 10.94×, respectively (Section VII). Additional
experiments confirm that LastingNVCache works well for a
wide range of system and algorithm parameters.

Extensions from previous version: This paper makes
the following extensions to the previous version [1].

1) We have now additionally compared our technique
with WriteSmoothing [26] technique, which is an
intra-set wear-leveling technique for improving cache
lifetime.

2) We have included the block-diagram to show exten-
sions to cache organization with LastingNVCache (see
Figure 1)

3) We have added Table I to compare the parameters of
different memory technologies.

4) We have discussed the limitations of LastingNVCache
(Section III-E) and discussed its energy overhead in
more detail (Section V).

5) We have discussed the method to extend LastingN-
VCache to account for process-variations in NVM.

6) We have discussed the application of LastingNVCache
in other scenarios such as SRAM-NVM hybrid caches
and SRAM caches.

7) We have presented detailed result and analysis to
provide more insights into the techniques (Section
VII-A).

8) We have also provided additional discussion and ex-
planations in several sections and added additional
references to support our claims.

II. BACKGROUND AND RELATED WORK

The raw lifetime of cache is determined by the first
memory-cell that wears out and thus, the lifetime of cache
can be maximized by minimizing the worst-case write count
to a cache line. This can be achieved by either minimiz-
ing the number of writes to the cache or by uniformly
distributing them over cache (called wear-leveling). Some
write-minimization techniques reduce the number of writes
at cache-access level by using buffers or additional level
of caches [17, 29], while others avoid redundant writes at
bit-level [16, 30]. Our technique uses wear-leveling and
can be synergistically integrated with write-minimization
techniques.

Wear-leveling can be performed either at the level of set,
way or memory-cell (i.e. within each cache block). Our
technique uses way-level wear-leveling, which unlike set-
level and color-level wear-leveling, does not require chang-
ing the set-decoding of the cache or flushing the contents of
cache on reconfiguration and thus, incurs smaller overhead.
Some wear-leveling techniques use in-cache data movement
while others use data-invalidation approach. Our technique
uses data invalidation. The limitation of data-invalidation
approach is that it increases off-chip accesses which lead
to loss of performance and energy. The limitation of in-
cache data movement is that it may require special hardware
(e.g. buffers) and software codes. Also, it may interfere with
cache coherence and may make the cache unavailable during
data movement.

Several researchers have proposed techniques for improv-
ing lifetime of main memory [12, 31, 32] and some of these
ideas may also be used in caches. Some researchers have
proposed techniques for improving the lifetime of SRAM-
NVM hybrid way-based caches [33, 34]. These hybrid
caches aim to leverage the best of both SRAM and NVM.
However, these caches also present design challenges due to
requirement of fabricating a cache composed of both SRAM
and NVM. Also, the latency of SRAM and NVM are quite
different and hence, depending on the way in which a data-
item is residing, the cache access latency may vary, which
makes the scheduling of dependent instructions difficult.

III. METHODOLOGY

Notations: Our notation is as follows. N shows the
number of cores. For L2 cache, S, A, B and G denote
the number of sets, associativity, cache block (line) size
and tag size, respectively. Let S, A, B and G denote the
number of cache sets, associativity, block-size and tag-size,
respectively. In this paper, we assume, B = 64B and G =
40bits. Also, let wi,j denote the number of writes on any

block at set i and way-index j. Further, let Wavg denote
the average number of writes on all the blocks. Then, the
coefficient of intra-set write variation (IntraV) for the entire
cache is defined as follows [20],

IntraV =
100

S ·Wavg

S∑
i=1

√√√√√ A∑
j=1

(
wi,j −

A∑
r=1

wi,r/A

)2

A− 1

(1)
Compared to [20], we express IntraV as percentage and

hence, multiply the value by 100. Note that LastingNVCache
does not require computation of IntraV, it is used only as a
figure of merit. In this paper, we use the terms cache ‘block’
and ‘line’ synonymously and similarly for ‘flushing’ and
‘invalidation’.

A. Main Idea

Caches work by exploiting the temporal locality principle,
by which frequently accessed data are kept in the cache
to improve the hit-rate. However, if few cache blocks are
repeatedly written, the number of writes to them may
become much larger than those to the remaining blocks in
the set. Using temporal locality, we consider a block as hot if
in its current “generation”, the data-item stored in this block
has accumulated at least a fixed number of writes (say Φ,
called flushing threshold). Here, the pth-‘generation’ is said
to begin immediately after the pth miss to that cache block,
when a new data-item is brought into that block [35].

Based on this, LastingNVCache works on the key idea
that if a hot data-item is flushed, without updating its LRU-
age information, then next time it will be loaded in the LRU
block which is expected to be cold, since it has seen access
farthest in past. Thus, its storage location in the set can be
changed, and the future writes can be redirected to a cold
block-location. This leads to wear-leveling which improves
the lifetime of the cache. Figure 1 shows the cache diagram
with LastingNVCache technique.

B. Implementation Details

Algorithm 1 shows the working of LastingNVCache. We
now describe it in detail.

With each cache block, we use a counter (termed nWrite),
which records the number of writes to the block in its current
generation, i.e. from the point of time when the existing
data-item was stored in that block-location. On each write-
hit to a block, its nWrite counter is incremented by one.
When on a write, the nWrite value reaches Φ, the write is
skipped and the data-item is directly written back to memory,
without updating the LRU information of the block. Thus,
any subsequent miss will invalidate the actual LRU block

0

1

T0

=

D0

TrueFalse
4a. Write

Normally

(D0 D4) ,

Update LRU

Write

counter

s

S-1

Cache sets

Associativity = 4

A single set

0 1 2 3

2. Increment

counter

4b. Invalidate way 0

Writeback D4

+1

1. Write D4

at address

T0

Legend:

Ti = Tags (corresponding to addresses)

Di = Data-items

3. Compare

T1 D1 T2 D2 T3 D3

Way

Figure 1: Cache block-diagram with LastingNVCache

Algorithm 1: LastingNVCache: algorithm for handling
a write-hit in set-index i

1 Let k be the index of the write-hit block
2 Increment nWrite[i][k] by 1
3 if nWrite[i][k] == Φ then
4 Write-back incoming data and invalidate cacheBlock[i][k]
5 for all blocks j in set i do
6 if j ̸= k AND nWrite[i][j]>0 then
7 Reduce nWrite[i][j] by λ
8 end
9 end

10 else
11 Write incoming data to cacheBlock[i][k], mark dirty and update

LRU-age information
12 end

and store the hot data in it, and not in the above mentioned
invalidated block. Effectively, the cache-block invalidation
induced by LastingNVCache changes the location of hot
block and thus, distribute the write-pressure uniformly.

In LastingNVCache, when a block is invalidated, writes
to it may not happen in a short window of time. This
is because the write counters accumulate writes over a
complete generation of a block. In such a case, when a block
is actually invalidated, it may not “currently” be a hot block.
To address this, and actually capture the temporal locality,
we proceed as follows. When a cache block is invalidated,
the write-counter of all the other blocks in the set is reduced
by λ, which is a tunable parameter. Typical values of λ are
0, 1 and 2. By using λ > 0, we ensure that all or most
of the write operations to a block have taken place in a
‘recent’ window of time. This is because, if another block
in the set has been recently flushed, then the write-counter
of this block would be reduced by λ, and hence, more writes
need to happen to this block to reach the Φ limit. By virtue

of this, we ensure that we invalidate based on the number
of writes relative to other blocks (which actually indicates
high intra-set write variation) and not based on the absolute
number of writes alone. A value of λ = 0 indicates that
the writes to a block are accounted over its one complete
generation, irrespective of the writes to other blocks in the
set. The higher the value of λ, the higher are chances that a
block being invalidated has seen large number of writes in
recent interval. Our choice of these values of λ is motivated
by the fact that these values are reasonable and small and
thus help us in exercising moderate control in aggressiveness
of cache flushing and wear-leveling.

C. Illustration of techniques for an example access pattern

In this section, we first discuss the working of a recently
proposed technique, named PoLF (probabilistic set-line
flush). We then illustrate the working of LastingNVCache,
PoLF [20] and the baseline scheme using an example access
pattern to highlight their differences.

Working of PoLF: In PoLF, after a fixed number of
write hits (called flush threshold FT) in the entire cache, a
write-operation is skipped; instead, the data item is directly
written-back to memory and the cache-block is invalidated,
without updating the LRU-age information. Probabilistically,
the flushed block is expected to be hot and hence, the hot
data-item will be loaded in another cold block which leads
to intra-set wear-leveling.

We now refer to Table II. Data-item B is frequently
written, thus it is a hot data-item. With baseline scheme
using LRU replacement policy, this data-item is stored in
the same block in its entire generation. Also, due to repeated

Table II: The behavior of a 4-way cache set for an access pattern under LRU, PoLF and LastingNVCache schemes. A to F are valid
data-items, ‘X’ shows invalid data-item. The numbers after data-items show LRU-age (Age), 0 being the MRU and 3 being the LRU;

for example F0 shows that the age of F is 0, i.e. it is an MRU block. Cache block being written is marked in bold. Note that
LastingNVCache distributes write more uniformly than PoLF (see ‘# writes’ row).

Baseline Scheme (LRU) PoLF Scheme (FT=3) LastingNVCache Scheme (Φ=3, λ=0)
Command (Data Age)4 Result (Data Age)4 Result (Data Age)4 Result

1 Initial status A0 B1 C2 D3 A0 B1 C2 D3 A0 B1 C2 D3
2 Write B A1 B0 C2 D3 Hit A1 B0 C2 D3 Hit A1 B0 C2 D3 Hit
3 Write B A1 B0 C2 D3 Hit A1 B0 C2 D3 Hit A1 B0 C2 D3 Hit
4 Read E A2 B1 C3 E0 Miss A2 B1 C3 E0 Miss A2 B1 C3 E0 Miss
5 Write E A2 B1 C3 E0 Hit A2 B1 C3 X0 Hit, Flush E A2 B1 C3 E0 Hit
6 Read F A3 B2 F0 E1 Miss A3 B2 F0 X1 Miss A3 B2 F0 E1 Miss
7 Write B A3 B0 F1 E2 Hit A3 B0 F1 X2 Hit A3 X2 F0 E1 Hit, Flush B
8 Write B A3 B0 F1 E2 Hit A3 B0 F1 X2 Hit B0 X3 F1 E2 Miss
9 Read F A3 B1 F0 E2 Hit A3 B1 F0 X2 Hit B1 X3 F0 E2 Hit
10 Write B A3 B0 F1 E2 Hit A3 X1 F0 X2 Hit, Flush B B0 X3 F1 E2 Hit
11 Write B A3 B0 F1 E2 Hit B0 X2 F1 X3 Miss X0 X3 F1 E2 Hit, Flush B

writes 0 6 1 2 1 4 1 1 2 2 1 2
Summary 8 hits, 2 misses, 9 writes 7 hits, 3 misses, 7 writes, 2 flushes 7 hits, 3 misses, 7 writes, 2 flushes

access, the block storing B remains at MRU or near-MRU
location in the LRU-chain and hence, it is not likely to be
replaced until the end of its generation. This increases the
number of writes to the block storing B.

With PoLF, a block is periodically flushed after a fixed
number of writes in the entire cache. However, this may not
always select a hot-block, for example in command number
5 (Write E), the data-item E is flushed. This is due to
probabilistic working of PoLF. PoLF does provide better
write-distribution than the baseline, since hot data-item is
likely to be selected for flushing. LastingNVCache records
number of writes to each cache block and thus, it can detect
the hot block accurately and flush it, see command numbers
7 and 11. Thus, it provides more uniform write-distribution
than both baseline and PoLF.

D. Extension of LastingNVCache Algorithm to Account for
Process-variation

Due to process variation, the write-endurance of different
blocks may vary [23]. We now discuss a simple method to
extend LastingNVCache to account for process-variation.

As in previous works [?], we assume that the write-
endurance of different blocks is profiled using manufacturing
testing procedures. Further, since LastingNVCache is an
intra-set write-variation mitigation technique, it only needs
to consider the relative variation in write-endurance at intra-
set level. Hence, the write-endurance value of each block
can be subtracted from the smallest value in that set (this
also has the benefit of reducing the number of bits required
to store these values) and then stored in a counter for that

block. We refer to these counters as relativeWriteEndurance
counters.

Afterwards, in Algorithm 1, whenever there is a write
to a block, if the relativeWriteEndurance counter is zero,
Algorithm 1 is followed without any change. However, if
its relativeWriteEndurance counter is more than zero, then
instead of incrementing its nWrite counter, we decrement
its relativeWriteEndurance counter. In due time, the rela-
tiveWriteEndurance counter of all blocks will reach zero
and the Algorithm 1 can be followed as such. Before that
happens, the blocks with higher write-endurance will receive
more writes and their flushing will be delayed. In this way,
more writes can be directed to the blocks with higher write-
endurance.

E. Salient Features and Limitations of LastingNVCache

LastingNVCache provides several important advantages
over PoLF. LastingNVCache records the number of writes to
each cache block in its current generation and flushes a block
only if the block alone has accumulated Φ number of writes.
If due to change in working set of the application, the block
is evicted, another block will be installed which will have
nWrite initialized to 0 and its flushing will be postponed.
By contrast, PoLF blindly flushes 1/FT fraction of write hits
and hence, with PoLF, even a newly-installed block may be
flushed (see Table II) since PoLF flushes in a probabilistic
manner. Thus, there is no guarantee that the block chosen
for invalidation currently stores a hot data-item. By virtue of
this, for workloads with high write-intensity and low write-
variation, PoLF may lead to unnecessarily large number
of invalidations leading to performance and energy loss.

The limitation of LastingNVCache is that it requires higher
storage overhead than the PoLF.

An intra-set WLT reduces the worst-case writes to a block
in the set. However, it does not reduce the total number of
writes to any set. If before the failure of a block, it can be
marked as INVALID so that data-loss does not happen, the
cache can still function although the associativity of the set
is reduced by one. However, when all the blocks in a set
fail, no cache block can be mapped to that set and hence,
cache needs be marked as failed. If the lifetime is defined
by the time taken for all the blocks in a set to fail (instead of
only the first block), then an intra-set WLT cannot improve
this lifetime. This limitation applies to all intra-set WLTs.
To address this, the intra-set WLT need to be integrated with
an inter-set WLT or write-minimization technique.

IV. APPLICATIONS OF LASTINGNVCACHE IN OTHER

SCENARIOS

In addition to NVM caches, LastingNVCache can also be
used in other scenarios, as follows

For SRAM-NVM hybrid caches: Some researchers have
proposed way-based SRAM-NVM hybrid caches, where a
few ways are designed using SRAM and the remaining
ways are designed using NVM [36]. The design goals in
these caches is to place frequently used data-item in SRAM
ways and the remaining data-items in NVM ways. Last-
ingNVCache can be used for NVM ways in these caches.
LastingNVCache would flush the hot data-item from NVM
ways, which will lead to wear-leveling within NVM ways.
The hot data-item is also likely to be moved to SRAM ways
which is beneficial. Since LastingNVCache is not applied to
SRAM ways, the hot data-item residing in SRAM ways is
not flushed.

For SRAM caches: While SRAM caches do not have
write-endurance limitation, they do show NBTI(negative
bias temperature instability)-induced aging [37]. An intra-
set wear-leveling technique such as LastingNVCache can
more uniformly spread the accesses to different blocks of
the cache and thus reduce the worst-case aging of blocks.

V. HARDWARE IMPLEMENTATION AND OVERHEAD

ASSESSMENT

Storage Overhead: LastingNVCache records writes on
a block in a single generation and not during the entire
execution of the application. Hence, the storage requirement
of counters is small. For each cache block, we use ⌈log2(Φ)⌉
bits to store the number of writes on it. Thus, the percentage
overhead of LastingNVCache, compared to the L2 cache can

be computed as

Overhead =
S ×A× log2(Φ)

S ×A× (B +G)
× 100 (2)

For Φ = 16, we obtain Overhead = 0.72%, and thus, the
storage overhead of LastingNVCache is small.

Latency Overhead: For both PoLF and LastingN-
VCache, we assume that on each write-hit, comparison of
write-counter with threshold value takes 3 cycles, since
the write-counter has only few (e.g. 4-5) bits. Note that
due to instruction-level parallelism (ILP), a small increase
in latency of LLC can be easily hidden, as confirmed
by the results. For LastingNVCache, when a data-item
is flushed, the latency of reducing the write-counters of
remaining blocks is hidden by the latency of write-back
operation. The performance overhead of LastingNVCache
comes from extra writebacks to the memory, which we
model in our experiments. For further optimization, we
assume that the overhead of writebacks can be hidden by
using write-back buffers and MSHR (miss-status holding
registers) techniques. The counters used for measuring the
number of writes are not designed NVM and hence, they
do not have write-endurance issues. If required, to minimize
the dynamic power consumption of counters, Gray counters
can be utilized.

Energy overhead: From [38] and [39], we find the
energy in accessing a 5-bit counter (since Φ < 32) to
be 0.96pJ and 0.25pJ, respetively, which are in the same
ballpark. A counter is incremented on a write to cache block,
which for a 4MB cache consumes 0.36nJ energy (refer Table
IV). Clearly, the energy consumed by the counter is 3 orders
of magnitude smaller. On taking the energy of cache read
and memory access, the relative contribution of counters
decreases even further. For this reason, we ignore the energy
overhead of counters.

VI. EXPERIMENTAL METHODOLOGY

A. Simulation Infrastructure

We use interval-core model in Sniper x86-64 simulator
[40] for performing the simulations. The processor fre-
quency is 2GHz. Both L1-I and L1-D caches are 4-way
32KB caches and have a latency of 2 cycles. We assume
that L1 caches are designed using SRAM for performance
reasons, while the L2 cache (which is the last level cache)
is designed using ReRAM. L2 cache parameters are shown
in Table IV, which are obtained using NVSim [41].

Here, we have assumed 32nm process, write energy-delay
product (EDP) optimized cache design and sequential cache
access. Also, we assume area-optimized buffer design, H-

Table III: Workloads used in the experiments

Single-core workloads and their acronyms
As(astar), Bw(bwaves), Bz(bzip2), Cd(cactusADM), Ca(calculix), Dl(dealII), Ga(gamess), Gc(gcc), Gm(gemsFDTD)

Gk(gobmk), Gr(gromacs), H2(h264ref), Hm(hmmer), Lb(lbm), Ls(leslie3d), Lq(libquantum), Mc(mcf), Mi(milc)
Nd(namd), Om(omnetpp), Pe(perlbench), Po(povray), Sj(sjeng), So(soplex), Sp(sphinx), To(tonto), Wr(wrf),
Xa(xalancbmk), Ze(zeusmp), Co(CoMD), Lu(lulesh), Mk(mcck), Ne(nekbone), Am(amg2013), Xb(xsbench)

Dual-core workloads (Using acronyms shown above)
AsDl, GcBw, GmGr, SoXa, BzMc, OmLb, NdCd, CaTo, SpPo
LqMi, SjWr, LsZe, HmGa, GkH2, PePo, NeLu, MkXb, CoAm

Quad-core workloads (Using acronyms shown above)
AsGaXaLu, GcBzGrTo, CaWrMkMi, LqCoMcBw, LsSoSjH2, PeZeHmDl, GkPoGmNd, LbOmCdSp, AmXbNeGa

Table IV: Parameters for 16-way ReRAM L2 cache
2MB 4MB 8MB 16MB 32MB

Hit Latency (ns) 5.059 5.120 5.904 5.974 8.100
Miss Latency (ns) 1.732 1.653 1.680 1.738 2.025
Write Latency (ns) 22.105 22.175 22.665 22.530 22.141

Hit energy (nJ) 0.542 0.537 0.602 0.662 0.709
Miss energy (nJ) 0.232 0.187 0.188 0.190 0.199
Write energy (nJ) 0.876 0.827 0.882 0.957 1.020

Leakage Power (W) 0.019 0.037 0.083 0.123 0.197

tree routing, internal sensing and 350K temperature. All
caches use LRU (least recently used) replacement policy,
write-back and write-allocate policy. L1 caches are private
to each core and L2 cache is shared among cores and is
inclusive of L1 caches. Main memory latency is 220 cycles.
Memory bandwidth for 1-core, 2-core and 4-core systems
is 10, 15 and 25GB/s, respectively and queue contention is
also modeled.

B. Workloads

We use all 29 benchmarks from SPEC CPU2006 suite
with ref inputs and 6 benchmarks from HPC field (shown
in italics in Table III). These benchmarks are used as single-
core workloads. Using these, we create 18 dual-core and
9 quad-core multiprogrammed workloads such that each
benchmark is used exactly once in the workloads except for
completing the left-over group. These workloads are shown
in Table III.

C. Evaluation Metrics

Our baseline is a ReRAM L2 cache, which uses LRU
replacement policy, but does not use any wear-leveling
technique. We show the results on a) relative cache lifetime
where the lifetime is defined as the inverse of maximum
writes on any cache block b) IntraV (see Section III), c)
percentage energy loss d) weighted speedup [25], e) absolute
increase in MPKI (miss-per-kilo-instructions) [24] and f) the
number of flush operations (nFlush).

We present the results on both IntraV and the maximum
number of writes on any block. The former considers the
average writes and accounts for writes on all the blocks of
the cache. The latter considers the worst-case writes on any
block. Taken together, they give good characterization of any
technique. These metrics have been used in prior research
works also [14, 16, 20, 26].

We fast-forward the benchmarks for 10B instructions
and simulate each workload till all application executes
at least 300M instructions. In multi-core workloads, the
benchmarks which complete early are allowed to run but
their IPC is recorded only for their initial 300M instructions,
following well-established simulation methodology [25, 42].
Remaining metrics are computed for the entire execution,
since they are system-wide metrics (while IPC is a per-
core metric) [24]. Relative lifetime and speedup values are
averaged using geometric mean and the remaining metrics
are averaged using arithmetic mean, since they can be zero
or negative. In the following discussion, we refer weighted
speedup as the relative performance. For dual and quad-core
systems, we have also computed fair speedup [24, 25] and
found their values to be nearly same as weighted speedup
and thus, LastingNVCache does not cause unfairness. For
sake of brevity, we omit these results.

We model the energy of L2 and main memory. The
leakage power and dynamic energy of main memory are
taken as 0.18W and 70nJ/access, respectively [15, 24] and

 1
 3
 5
 7
 9

 11
 13
 15
 17

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

Relative Lifetime (More is better) LastingNVCache PoLF WriteSmoothing

0%
50%

100%
150%
200%
250%
300%
350%
400%
450%

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

IntraV (Less is better) Baseline LastingNVCache PoLF WriteSmoothing

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

 Relative Performance (More is better) LastingNVCache PoLF WriteSmoothing

 0

 10

 20

 30

 40

 50

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

 Percentage Loss in Energy (Less is better) LastingNVCache PoLF WriteSmoothing

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

As Bw Bz Cd Ca Dl Ga Gc Gm Gk Gr H2 Hm Lb Ls Lq Mc Mi Nd Om Pe Po Sj So Sp To Wr Xa Ze Co Lu Mk Ne Am Xb Avg

Absolute Increase in MPKI (Less is better) LastingNVCache PoLF WriteSmoothing

Figure 2: Results for Single-core System

the energy parameters for L2 are shown in Table IV. We
ignore the overhead of counters and buffers, as discussed in
Section V.

D. Comparison with other techniques

We compare LastingNVCache with PoLF and WriteS-
moothing. PoLF has been discussed in the previous sections.
WriteSmoothing [26] is a recently proposed intra-set WLT.
It logically divides the cache-sets into multiple ‘modules’,
for example in a cache with 4096 sets and 32 modules,
each module contains 128 sets. WriteSmoothing works by
computing the coefficient of intra-set write-variation for each
module and making a way unavailable if the coefficient
exceeds a threshold. This shifts the write-pressure to other
ways in the sets of the module and leads to wear-leveling.
Since WriteSmoothing is an in-cache data-movement tech-
nique while LastingNVCache and PoLF are data-invalidation
techniques, on using the default parameters shown in the

original work [26], WriteSmoothing incurs smaller energy
loss than other techniques. For fair comparison, we set the
parameters of WriteSmoothing for achieving high lifetime
improvement, such that energy loss is comparable with other
techniques. Specifically, we test with 4 times the number of
modules shown in [26] and use the threshold as 5%, instead
of 15% as used in [26].

VII. RESULTS AND ANALYSIS

A. Main Results

Figures 2, 3 and 4 show the results. Here, the size of L2
for N =1, 2, and 4 are 4MB, 8MB and 16MB, respectively
and Φ (for LastingNVCache) and FT (for PoLF) are both 16.
For nFlush, we omit the per-workload figures for brevity and
only discuss the average below. We now analyze the results.

Results with WriteSmoothing: For single, dual and
quad-core systems, WriteSmoothing improves cache lifetime
by 2.90×, 4.52× and 4.72×, respectively. The energy and

 1
 3
 5
 7
 9

 11
 13
 15
 17

AsDl GcBw GmGr SoXa BzMc OmLb NdCd CaTo SpPo LqMi SjWr LsZe HmGa GkH2 PePo NeLu MkXb CoAm Avg

Relative Lifetime (More is better) LastingNVCache PoLF WriteSmoothing

0%

50%

100%

150%

200%

250%

300%

350%

AsDl GcBw GmGr SoXa BzMc OmLb NdCd CaTo SpPo LqMi SjWr LsZe HmGa GkH2 PePo NeLu MkXb CoAm Avg

IntraV (Less is better) Baseline LastingNVCache PoLF WriteSmoothing

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

AsDl GcBw GmGr SoXa BzMc OmLb NdCd CaTo SpPo LqMi SjWr LsZe HmGa GkH2 PePo NeLu MkXb CoAm Avg

 Relative Performance (More is better) LastingNVCache PoLF WriteSmoothing

 0

 10

 20

 30

 40

 50

 60

 70

AsDl GcBw GmGr SoXa BzMc OmLb NdCd CaTo SpPo LqMi SjWr LsZe HmGa GkH2 PePo NeLu MkXb CoAm Avg

 Percentage Loss in Energy (Less is better)

LastingNVCache PoLF WriteSmoothing

-0.5

 0

 0.5

 1

 1.5

 2

AsDl GcBw GmGr SoXa BzMc OmLb NdCd CaTo SpPo LqMi SjWr LsZe HmGa GkH2 PePo NeLu MkXb CoAm Avg

Absolute Increase in MPKI (Less is better) LastingNVCache PoLF WriteSmoothing

Figure 3: Results for Dual-core System

performance loss with WriteSmoothing is comparable with
that of LastingNVCache. The reason LastingNVCache pro-
vides smaller lifetime than LastingNVCache is that WriteS-
moothing performs wear-leveling at the coarse granularity
of modules and not per-set. Also, it takes the decision after
every few million cycles, thus, it works at coarse granularity
of time. For these reasons, it is slow to adapt to changes
in working set of the application. Since despite using ag-
gressive parameters, the effectiveness of WriteSmoothing
is much lower than other techniques, we do not discuss it
further.

Results on lifetime and IntraV: For all configurations,
LastingNVCache provides higher improvement in lifetime
than PoLF with much smaller number of invalidations
and also smaller performance and energy loss. For several
workloads, LastingNVCache improves the lifetime by more
than 10×, for example, Po, Ga, Nd, Sj, BzMc, CoAm,
AsGaXaLu, GkPoGmNd etc.

For N = 1, 2 and 4, LastingNVCache (resp. PoLF) re-
duces the IntraV from 139.6% to 38.1% (resp. 52.6%), from
137.0% to 36.0% (resp. 44.2%) and from 122.7% to 28.6%
(resp. 34.2%), respectively. Clearly, LastingNVCache re-
duces intra-set write variation more effectively with smaller
number of invalidations. The lifetime enhancement achieved
with a workload also depends on the write-variation orig-
inally present in the workload baseline execution. Thus,
the highest amount of lifetime improvement is achieved for
workloads which show the highest amount of write-variation
and vice-versa. Hence, for workloads such as Lq, Mi, Xb
etc. which have small write variation, the improvement in
lifetime can be achieved by other methods such as write-
minimization (see Section II).

Results on miss-rate and nFlush: Increase in MPKI
for N = 1, 2 and 4 for LastingNVCache (resp. PoLF) are
0.14 (resp. 0.30), 0.15 (resp. 0.31) and 0.15 (resp. 0.29)
respectively. The value for nFlush for N = 1, 2 and 4

 1
 3
 5
 7
 9

 11
 13
 15
 17

AsGaXaLu GcBzGrTo CaWrMkMi LqCoMcBw LsSoSjH2 PeZeHmDl GkPoGmNd LbOmCdSp AmXbNeGa Avg

Relative Lifetime (More is better) LastingNVCache PoLF WriteSmoothing

0%

50%

100%

150%

200%

250%

300%

350%

AsGaXaLu GcBzGrTo CaWrMkMi LqCoMcBw LsSoSjH2 PeZeHmDl GkPoGmNd LbOmCdSp AmXbNeGa Avg

IntraV (Less is better) Baseline LastingNVCache PoLF WriteSmoothing

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

AsGaXaLu GcBzGrTo CaWrMkMi LqCoMcBw LsSoSjH2 PeZeHmDl GkPoGmNd LbOmCdSp AmXbNeGa Avg

 Relative Performance (More is better) LastingNVCache PoLF WriteSmoothing

 0

 10

 20

 30

 40

 50

 60

AsGaXaLu GcBzGrTo CaWrMkMi LqCoMcBw LsSoSjH2 PeZeHmDl GkPoGmNd LbOmCdSp AmXbNeGa Avg

 Percentage Loss in Energy (Less is better) LastingNVCache PoLF WriteSmoothing

-0.5

 0

 0.5

 1

 1.5

 2

AsGaXaLu GcBzGrTo CaWrMkMi LqCoMcBw LsSoSjH2 PeZeHmDl GkPoGmNd LbOmCdSp AmXbNeGa Avg

Absolute Increase in MPKI (Less is better) LastingNVCache PoLF WriteSmoothing

Figure 4: Results for Quad-core System

for LastingNVCache (resp. PoLF) are 25K (resp. 95K),
69K (resp. 219K) and 163K (resp. 533K), respectively. On
average, PoLF flushes more than 3× the number of blocks as
LastingNVCache and increases MPKI by nearly the double.
For workloads such as Lb, which have high write-intensity
but low write-variation, the advantage of LastingNVCache
can be clearly seen. For these workloads, PoLF flushes
much more number of blocks for achieving nearly the same
improvement in lifetime as LastingNVCache. This clearly
shows the advantage of LastingNVCache. The advantage of
PoLF is that it only requires one global counter.

Results on energy saving and performance: Both Last-
ingNVCache and PoLF incur loss in energy due to flushing
operations which increase the number of off-chip accesses
and the energy consumed in main memory. However, note
that due to their high-density and low-leakage, NVMs facil-
itate use of larger sized LLCs than SRAM, which in general
leads to better energy efficiency. For these reasons, a small

loss in energy due to the use of LastingNVCache may be
acceptable, since our technique addresses the most crucial
bottleneck of NVMs, namely the small device-lifetime due
to limited write-endurance. Further, as we show in Sections
VII-B and VII-C, by choosing a suitable value of Φ and λ, an
application designer can trade-off the desired improvement
in performance and acceptable energy and performance loss.

B. Results with different flush thresholds

Table V shows the results with LastingNVCache and
PoLF for different flushing threshold values. We observe
that LastingNVCache provides better results than PoLF on
all configurations and parameters evaluated. From the table,
we also conclude that the higher the value of Φ (or FT),
the smaller is the improvement in lifetime and the energy
overhead of the technique. Conversely, for smaller value
of flushing thresholds, higher improvement in lifetime is
obtained at the cost of higher energy loss.

Table V: Comparison of LastingNVCache and PoLF
Relative Energy Relative nFlush ∆
Lifetime Loss % Performance MPKI

Single-core System
LastingNVCache Φ=12 6.65 10.65 0.99 34K 0.20

PoLF FT=12 4.83 14.84 0.99 127K 0.39
LastingNVCache Φ=20 6.10 5.94 1.00 19K 0.11

PoLF FT=20 4.29 8.98 0.99 76K 0.24
Dual-core System

LastingNVCache Φ=12 10.08 12.03 0.99 95K 0.21
PoLF FT=12 8.74 16.88 0.99 285K 0.42

LastingNVCache Φ=20 9.55 6.87 1.00 51K 0.11
PoLF FT=20 8.32 10.12 0.99 171K 0.25

Quad-core System
LastingNVCache Φ=12 11.23 16.4 0.99 225K 0.20

PoLF FT=12 9.93 23.66 0.99 711K 0.38
LastingNVCache Φ=20 10.62 9.34 1.00 125K 0.11

PoLF FT=20 8.99 14.41 0.99 427K 0.23

Table VI: LastingNVCache Parameter Sensitivity Study
Relative IntraV IntraV Energy Relative nFlushLifetime Base LastingNVCache Loss % Performance

Single-core System
Default 6.36 139.6 38.1 7.88 1.00 25K
λ = 0 6.43 139.6 37.6 8.26 1.00 26K
λ = 2 6.35 139.6 38.7 7.64 1.00 24K
8-way 4.17 110.3 32.3 8.13 1.00 25K
32-way 8.54 170.4 43.0 6.95 1.00 24K
2MB 4.61 108.2 26.7 7.33 1.00 23K
8MB 7.65 179.3 60.6 7.38 0.99 28K

Dual-core System
Default 9.79 137.0 36.0 8.76 1.00 69K
λ = 0 9.92 137.0 35.4 9.10 1.00 70K
λ = 2 9.82 137.0 36.6 8.56 1.00 68K
8-way 5.79 106.1 30.3 8.97 1.00 69K
32-way 15.77 174.4 41.2 8.27 1.00 66K
4MB 6.86 100.2 23.0 8.85 1.00 63K
16MB 11.04 171.6 53.1 9.79 1.00 83K

Quad-core System
Default 10.87 122.7 28.8 12.05 0.99 161K
λ = 0 10.92 122.7 28.4 12.79 0.99 167K
λ = 2 10.87 122.7 28.8 12.05 0.99 161K
8-way 5.91 96.6 25.1 12.28 0.99 164K
32-way 19.96 152.9 31.1 11.31 0.99 155K
8MB 9.17 97.8 22.1 10.16 0.99 138K
32MB 12.83 154.1 39.7 12.39 0.99 200K

C. Parameter Sensitivity Results

We now focus exclusively on LastingNVCache and evalu-
ate it for different parameters. Each time we only change one
parameter compared to those mentioned in Section VII-A
and summarize the results in Table VI.

Change in λ: On decreasing λ, the aggressiveness
of cache flushing and wear-leveling is increased. For this
reason, for smaller λ the lifetime enhancement is slightly
increased at the cost of a small increase in the loss in
performance and energy. The opposite is seen on increasing
the λ.

Change in associativity: With increasing cache as-
sociativity, the intra-set write-variation also increases, as
evident from the value of IntraV in Table VI. This can be
easily understood by considering two extreme cases, viz. a
direct-mapped cache and a fully-associative cache. Clearly,
LastingNVCache provides large improvement in lifetime,
in proportion to IntraV and is especially important for the
caches of large associativity.

Change in cache size: With increasing cache size, the
hit-rate also increases since workloads have fixed working
set size. This increases the IntraV, since a few blocks see
repeated hits. Hence, the lifetime improvement provided by
LastingNVCache also increases. Since future systems are
expected to have large LLCs, the importance of LastingN-
VCache will grow even further in next-generation systems.

The experiments presented in the section confirm that
LastingNVCache works well for a wide range of system
and algorithm parameters.

VIII. CONCLUSION

In this paper, we presented LastingNVCache, a technique
for improving the lifetime of NVM caches by reducing
the intra-set write-variation. LastingNVCache provides large
improvement in cache lifetime and also outperforms two
recently proposed techniques. Also, its implementation over-
head is small and it can also be used for SRAM-NVM
hybrid caches and SRAM caches. Our future work will focus
on integrating LastingNVCache with the write-minimizatino
techniques for further improving the cache lifetime. Further,
recently researchers have proposed using NVMs for FPGAs
and GPUs also. We also plan to explore the effectiveness of
our technique for NVM caches used in GPUs.

ACKNOWLEDGMENT

Support for this work was provided by U.S. Department
of Energy, Office of Science, Advanced Scientific Comput-
ing Research. The work was performed at the Oak Ridge
National Laboratory, which is managed by UT-Battelle,

LLC under Contract No. DE-AC05-00OR22725 to the U.S.
Government. Accordingly, the U.S. Government retains a
non-exclusive, royalty-free license to publish or reproduce
the published form of this contribution, or allow others to
do so, for U.S. Government purposes.

REFERENCES

[1] S. Mittal, J. S. Vetter, and D. Li, “LastingNVCache: A
Technique for Improving the Lifetime of Non-volatile
Caches,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2014.

[2] S. Mittal, J. S. Vetter, and D. Li, “Improving energy
efficiency of Embedded DRAM Caches for High-end
Computing Systems,” in 23rd International ACM Sym-
posium on High Performance Parallel and Distributing
Computing (HPDC), 2014, pp. 99–110.

[3] Intel, http://ark.intel.com/products/53580/.
[4] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman,

D. M. Tullsen, and N. P. Jouppi, “McPAT: an inte-
grated power, area, and timing modeling framework for
multicore and manycore architectures,” in International
Symposium on Microarchitecture (MICRO), 2009, pp.
469–480.

[5] S. Mittal, “A survey of architectural techniques for im-
proving cache power efficiency,” Elsevier Sustainable
Computing: Informatics and Systems, vol. 4, no. 1, pp.
33–43, 2014.

[6] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu,
D. Somasekhar, and S.-l. Lu, “Reducing cache power
with low-cost, multi-bit error-correcting codes,” ACM
SIGARCH Computer Architecture News, vol. 38, no. 3,
pp. 83–93, 2010.

[7] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas, “Re-
frint: Intelligent refresh to minimize power in on-chip
multiprocessor cache hierarchies,” International Sym-
posium on High-Performance Computer Architecture
(HPCA), 2013.

[8] S. Mittal, “A Cache Reconfiguration Approach for
Saving Leakage and Refresh Energy in Embedded
DRAM Caches,” Iowa State University, Tech. Rep.,
2013.

[9] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob,
“Technology Comparison for Large Last-Level Caches
(L3Cs): Low-Leakage SRAM, Low Write-Energy STT-
RAM, and Refresh-Optimized eDRAM,” International
Symposium on High-Performance Computer Architec-
ture (HPCA), 2013.

[10] S. Mittal, Architectural Techniques For Managing Non-

volatile Caches. Germany: Lambert Academic Pub-
lishing(LAP), 2013.

[11] M. K. Qureshi, S. Gurumurthi, and B. Rajendran,
“Phase change memory: From devices to systems,”
Synthesis Lectures on Computer Architecture, vol. 6,
no. 4, pp. 1–134, 2011.

[12] S. Mittal, “Energy Saving Techniques for Phase
Change Memory (PCM),” Iowa State University, Tech.
Rep., 2013.

[13] S. Mittal, J. S. Vetter, and D. Li, “A Survey Of Archi-
tectural Approaches for Managing Embedded DRAM
and Non-volatile On-chip Caches,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), 2014.

[14] Y. Chen, W.-F. Wong, H. Li, C.-K. Koh, Y. Zhang,
and W. Wen, “On-chip caches built on multilevel spin-
transfer torque RAM cells and its optimizations,” J.
Emerg. Technol. Comput. Syst., vol. 9, no. 2, pp. 16:1–
16:22, May 2013.

[15] S. Mittal, “Using cache-coloring to mitigate inter-
set write variation in non-volatile caches,” Iowa State
University, Tech. Rep., 2013.

[16] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie,
“Energy-and endurance-aware design of phase change
memory caches,” in Conference on Design, Automation
and Test in Europe. European Design and Automation
Association, 2010, pp. 136–141.

[17] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A
novel architecture of the 3D stacked MRAM L2 cache
for CMPs,” in IEEE 15th International Symposium
on High Performance Computer Architecture (HPCA),
2009, pp. 239–249.

[18] S. Mittal and J. S. Vetter, “EqualChance: Address-
ing Intra-set Write Variation to Increase Lifetime of
Non-volatile Caches,” in 2nd USENIX Workshop on
Interactions of NVM/Flash with Operating Systems and
Workloads (INFLOW), 2014.

[19] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan,
R. Iyer, and C. R. Das, “Cache revive: architecting
volatile STT-RAM caches for enhanced performance
in CMPs,” in 49th Annual Design Automation Confer-
ence, 2012, pp. 243–252.

[20] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i2WAP:
Improving non-volatile cache lifetime by reducing
inter-and intra-set write variations,” in HPCA, 2013,
pp. 234–245.

[21] Y. Huai, “Spin-transfer torque MRAM (STT-MRAM):
Challenges and prospects,” AAPPS Bulletin, vol. 18,
no. 6, pp. 33–40, 2008.

[22] Y.-B. Kim, S. R. Lee, D. Lee, C. B. Lee, M. Chang,

J. H. Hur, M.-J. Lee, G.-S. Park, C. J. Kim, U.-I. Chung
et al., “Bi-layered RRAM with unlimited endurance
and extremely uniform switching,” in Symposium on
VLSI Technology (VLSIT). IEEE, 2011, pp. 52–53.

[23] W. Zhang and T. Li, “Characterizing and mitigating
the impact of process variations on phase change based
memory systems,” in MICRO, 2009, pp. 2–13.

[24] S. Mittal, Z. Zhang, and J. Vetter, “FlexiWay: A
Cache Energy Saving Technique Using Fine-grained
Cache Reconfiguration,” in 31st IEEE International
Conference on Computer Design (ICCD), 2013, pp.
100–107.

[25] S. Mittal, Y. Cao, and Z. Zhang, “MASTER: A Multi-
core Cache Energy Saving Technique using Dynamic
Cache Reconfiguration,” IEEE Transactions on VLSI
Systems, vol. 22, pp. 1653–1665, 2014.

[26] S. Mittal, J. S. Vetter, and D. Li, “WriteSmoothing: Im-
proving Lifetime of Non-volatile Caches Using Intra-
set Wear-leveling ,” in ACM GLSVLSI, 2014, pp. 139–
144.

[27] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony,
and Y. Xie, “Hybrid cache architecture with disparate
memory technologies,” in ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, 2009, pp. 34–45.

[28] Q. Li, M. Zhao, C. J. Xue, and Y. He, “Compiler-
assisted preferred caching for embedded systems with
STT-RAM based hybrid cache,” ACM SIGPLAN No-
tices, vol. 47, no. 5, pp. 109–118, 2012.

[29] J. Ahn and K. Choi, “Lower-bits cache for low power
STT-RAM caches,” in IEEE International Symposium
on Circuits and Systems (ISCAS), 2012, pp. 480–483.

[30] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy
reduction for STT-RAM using early write termination,”
in IEEE/ACM International Conference o Computer-
Aided Design-Digest of Technical Papers (ICCAD),
2009, pp. 264–268.

[31] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srini-
vasan, L. Lastras, and B. Abali, “Enhancing lifetime
and security of pcm-based main memory with start-
gap wear leveling,” in MICRO, 2009, pp. 14–23.

[32] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable
and energy efficient main memory using phase change
memory technology,” in ISCA, 2009, pp. 14–23.

[33] S. Mittal and J. S. Vetter, “AYUSH: A Technique for
Extending Lifetime of SRAM-NVM Hybrid Caches,”
IEEE Computer Architecture Letters (CAL), 2014.

[34] B. Quan, T. Zhang, T. Chen, and J. Wu, “Prediction
Table based Management Policy for STT-RAM and
SRAM Hybrid Cache,” 7th International Conference

on Computing and Convergence Technology (ICCCT),
pp. 1092 – 1097, 2012.

[35] D. A. Wood, M. D. Hill, and R. E. Kessler, “A model
for estimating trace-sample miss ratios,” in ACM SIG-
METRICS conference on Measurement and modeling
of computer systems, ser. SIGMETRICS ’91, 1991, pp.
79–89.

[36] Y. Li, Y. Chen, and A. K. Jones, “A software approach
for combating asymmetries of non-volatile memories,”
in ACM/IEEE international symposium on Low power
electronics and design, 2012, pp. 191–196.

[37] A. Calimera, M. Loghi, E. Macii, and M. Poncino,
“Dynamic indexing: Leakage-aging co-optimization
for caches,” Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on, vol. 33, no. 2,
pp. 251–264, 2014.

[38] J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin,
and M. Kandemir, “Exploiting program hotspots and
code sequentiality for instruction cache leakage man-

agement,” in ISLPED, 2003, pp. 402–407.
[39] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay:

exploiting generational behavior to reduce cache leak-
age power,” in 28th annual international symposium on
Computer architecture (ISCA). New York, NY, USA:
ACM, 2001, pp. 240–251.

[40] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper:
Exploring the level of abstraction for scalable and
accurate parallel multi-core simulations,” in Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2011.

[41] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVsim:
A circuit-level performance, energy, and area model
for emerging nonvolatile memory,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[42] R. Manikantan, K. Rajan, and R. Govindarajan, “Prob-
abilistic shared cache management (PriSM),” in ISCA,
2012, pp. 428–439.

