
Technical Report, Department of Electrical and Computer Engineering, Iowa State University, Iowa, USA

MANAGER: A Multicore Shared Cache Energy

Saving Technique for QoS Systems

Sparsh Mittal and Zhao Zhang

Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa 50011, USA

Email: sparsh0mittal@gmail.com,zzhang@iastate.edu

Abstract

Last level caches (LLCs) contribute significantly to processor power consumption. Saving LLC energy in

multicore QoS systems is especially challenging, since aggressive energy saving techniques may lead to failure

in providing QoS. We present MANAGER, a multicore shared cache energy saving technique for quality-of-service

systems. Using dynamic profiling, MANAGER periodically predicts cache access activity for different configurations.

Then, cache is partitioned among running programs to fulfill the QoS requirement while saving memory subsystem

(LLC+DRAM) energy. Out-of-order simulations performed using dual-core workloads from SPEC2006 suite show

that for 4MB LLC, MANAGER saves 13.5% memory subsystem energy, over a statically, equally-partitioned baseline

cache.

I. INTRODUCTION

In recent years, energy efficiency has emerged as the fundamental bottleneck in scaling processor performance.

Moreover, cache energy consumption is becoming a significant fraction of processor power consumption [1, 2].

Several recent trends motivate this shift. Several e-learning and multimedia applications present high QoS and

performance demands [3]. Since LLC is the last line of defense against the memory wall and QoS (quality of

service) is crucially affected by the behavior of shared LLC [4, 5], modern processors use large LLC. With

each CMOS technology generation, leakage energy consumption has been drastically increasing and thus, energy

consumption of large LLCs is on rise. Hence, effective management of LLC in multicore processors is important

for achieving both QoS and energy efficiency.

The existing cache energy saving techniques have several limitations. Some techniques aim to aggressively save

energy and may lead to large performance loss [6, 7] and hence, for QoS systems they may lead to failure in meeting

the QoS requirements. Further, modern multicore processors may run arbitrary combinations of benchmarks and

This work is supported in part by the National Science Foundation under grants CNS-0834476 and CNS-1117604.

1



hence, offline-profiling based techniques (e.g. [8, 9]) become infeasible to use. Several energy saving techniques

are application-insensitive and rely only on locality of memory access streams, e.g. [6, 10]. However, since the

memory access streams from different applications exhibit different locality properties and memory sensitivity, a

co-scheduled workload can make it difficult to meet QoS of one program. Also, trying to meet QoS requirement of

one program may lead to starvation of the co-scheduled program. Thus, novel techniques are required for addressing

these challenges and achieving energy efficiency in multicore QoS systems.

In this paper, we present MANAGER, a multicore shared cache energy saving technique for quality-of-service

systems. MANAGER optimizes memory subsystem energy, while ensuring QoS for one program (called “target”

program) in best-effort manner (see the details in Section III). In several scenarios, different programs have different

importance; for example, a data-critical program has higher priority than a program performing system backup.

Similarly, in usage models such as server consolidation, SLAs (service level agreements) motivate performance

isolation for some applications. Further, in many real-world scenarios, the task deadlines are more relaxed than the

actual completion time of the task and if a task is completed by its deadline, the actual completion time is irrelevant

from users perspective. MANAGER is a useful technique for such systems. MANAGER is also expected to be

useful for real-time systems and other applications where high performance needs to be ensured to the running

applications while also providing high energy efficiency.

MANAGER uses a small reconfigurable cache emulator (RCE) to dynamically predict energy consumption of

multiple configurations (Section IV). Also, using the miss-rate estimates obtained from RCE, it decides the minimum

cache quota of the target program for meeting its QoS target. Finally, among configurations fulfilling this criterion,

the most energy efficient configuration is chosen for the next interval (Section V). Cache allocation is done using

cache coloring technique and cache is turned-off using gated Vdd technique [11].

MANAGER has several salient features. It does not require offline profiling and provides the ability to exercise a

delicate trade-off between performance loss and energy saving. For a 2-core system, MANAGER adds an overhead

of less than 0.4% of the LLC cache size (Section VI) and thus its overhead is small. MANAGER does not require

caches of large associativity (which have higher access time) or using per-block counters to track application-

ownership or cache-access intensity. Further, MANAGER uses software control to ensure QoS, which makes it

effective since the relative priorities of running programs are best known by the operating system.

We evaluate MANAGER using out-of-order simulations with an x86-64 simulator, and dual-core workloads

from SPEC2006 suite (Section VII). The results show that MANAGER saves large amount of memory subsystem

energy, while ensuring QoS for most workloads (Section VIII). For example, with 4MB LLC, 29 dual-core

workloads and 5% allowed performance loss of target program, the average energy saving over statically, equally-



partitioned baseline LLC is 13.5% and only one workload misses its QoS deadline. Additional experiments show

that MANAGER works well for a wide range of system and algorithm parameters.

The rest of the paper is organized as follows. Section II discusses the background and related work on techniques

for saving cache energy and ensuring QoS. Section III discusses the QoS formulation which is used in the paper.

Section IV discusses the system design of MANAGER and Section V discusses its energy saving algorithm. Section

VI and VII discuss the hardware implementation of MANAGER and experimental methodology, respectively. Section

VIII discusses the experimental results and finally, Section IX provides the conclusion.

II. BACKGROUND AND RELATED WORK

Several modern applications present high demands of performance and quality-of-service (QoS) [12–14]. Also,

due to increasing use of computing systems their energy consumption has increased, which has also emphasized the

need of improving their energy efficiency, while providing high performance [15, 16]. Iyer [17] discusses techniques

to assign and enforce priority for the applications and then allocate desired amount of cache using methods such

as way-partitioning. Iyer et al. [18] propose QoS-aware cache partitioning which aims to improve the performance

of the high priority application in the presence of other applications. In contrast to those works, our work aims

to minimize memory subsystem energy while ensuring a pre-defined QoS for a target (high priority) program (see

Section III).

It has been shown by Barroso et al. [19] that modern servers operate most of the time between 10% and 50%

of maximum utilization. Thus, several data processing applications, social networking media applications and other

real-time applications use large system resources to meet worst-case performance requirements, however, their

average resource utilization remains low, which leads to wastage of energy. MANAGER is expected to be very

useful for such applications and usage scenarios, since it uses dynamic cache resource management for improving

energy efficiency without harming performance.

Most existing cache energy saving techniques (e.g. [6, 20]) aim to aggressively save energy and hence, do not

provide flexibility to balance the energy savings and performance loss to ensure meeting a desired quality-of-service.

A few other QoS-based energy saving techniques (e.g. [21]) only work for single-core systems and hence, cannot

be directly used for ensuring QoS in multicore systems.

III. NOTATIONS AND QOS FORMULATION

We assume single-threaded cores and hence, use the words core and application interchangeably. The LLC is

assumed to be an L2 cache, although MANAGER can be extended to the case where LLC is an L3 cache. M



denotes the number of cache colors and N (= 2 in this paper) shows the number of cores. An arbitrary core index

is shown as n and an arbitrary interval index is shown as i.

The QoS requirement is formulated as follows. For a two-core workload, the first program is termed as the

“target” program and the second one as the “partner” program. Let IPC[nt] denote the IPC of core nt which

runs the target program. Baseline refers to the statically partitioned cache of the same total size with half of the

cache capacity allocated to each program. The QoS guarantee is to ensure that compared to baseline execution, the

performance loss of the target program is no more than Ω% [22], while the objective is to save overall memory

subsystem energy. Then, the QoS target is met if

IPCbaseline[nt]− IPCMANAGER[nt]

IPCbaseline[nt]
× 100 ≤ Ω (1)

The technique proposed by Lin et al. [22] requires offline specification of baseline IPC. In contrast, MANAGER

does not require offline specification of baseline IPC. Instead, MANAGER estimates baseline IPC also during

runtime by using RCE, as we show in Section IV-C. Thus, MANAGER provides significant improvement over

existing techniques.

Color 127

Color 1

Color 0

……

Offset<6>

RCE

Software/OS

Hardware

Counters

Storage

Remap

0

1

Mapping tables

for 2-cores 

Set # Inside

Color <6>

L2 Access

Address <36>

Energy 

Saving 

Algorithm

Region 

ID <7>

Page 

Number 

in Region

<17>

64 Sets 

Per Color

Set # Inside 

Color<6>

Color Index <7>

Offset <6>

L2 Tag <24>

L2 Cache Core

ID

L2

Tag

<24>

Fig. 1. Overall Flow Diagram (For N = 2 cores and M = 128 colors)

IV. SYSTEM ARCHITECTURE

The overall architecture of MANAGER is shown in Figure 1. We now describe each component of MANAGER

in detail.



A. Cache Coloring

For selective cache allocation, MANAGER uses cache coloring technique [22, 23], which works as follows. We

logically divide the cache into M parts called “cache colors”. Let SizeL2 denote the size of L2 in bytes. Let G

denote the system page size (= 4KB in this paper) and A denote the L2 associativity; then M is given by

M =
SizeL2

G×A
(2)

Further, we logically divide the physical pages into groups such that the physical pages of a core that share the

log2(M) least significant bits of the physical page number are in the same “memory region”. Thus, the number

of memory regions for each core is M . Cache coloring technique allocates a given cache color to one or more

memory regions of a single core, such that all physical pages in those memory regions are mapped to the same

cache color. To record the mapping of memory regions to colors, for each core, a mapping table is used, which

has M entries, each log2(M)-bit wide. At any instance, if core n has cn colors, then its mapping table would store

the mapping of its M regions to cn colors. In this way, the cache quota of different cores can be enforced and the

unused colors can be turned off for saving leakage energy.

From Eq. 2, a 4MB, 8-way cache has 128 cache colors. For such case, in an interval, a possible cache allocation

could be (47, 39), where 47 and 39 colors are allocated to core 0 and 1, respectively and the remaining 42 colors

are turned off. In such a case, all the memory regions of core 0 are mapped to its 47 colors and all the memory

regions of core 1 are mapped to its 39 colors. Note that MANAGER provides finer granularity of reconfiguration

(1/128 for the above example) than that provided by several existing techniques e.g. [8, 9, 20]. Further, using cache

coloring, MANAGER can allocate cache at granularity of non-power-of-two cache colors also, in contrast with

selective-sets technique which allocate cache only at granularity of power-of-two sets.

B. Reconfigurable Cache Emulator (RCE)

To estimate cache miss-rate under different possible cache color values, we use auxiliary tags for each core.

Each such unit is referred to as a profiling unit and is denoted by the cache size it profiles. To keep the size of the

profiling unit small, we use set-sampling technique [20, 24].

A single profiling unit cannot provide profiling information for different cache sizes, hence, for each cache

configuration1 which is profiled, a different profiling unit would be required. To keep the overhead of profiling

small, we use only six profiling units for each core, which are 2(j−1)X/32, where X refers to number of total

cache colors (or, equivalently L2 cache size) and j = {1, 2, . . . , 6}. For other cache sizes (i.e. those which are not

1Since MANAGER does not dynamically change the associativity and block size, change in configuration simply refers to change in
number of cache colors.



profiled), we use piece-wise linear interpolation to get miss-rate values [20]. For example, the miss-rate for cache

size 24X/32 is obtained by interpolating miss-rate values obtained from profiling units corresponding to 16X/32

and 32X/32.

The complete profiling structure consisting of all profiling units of all the cores is referred to as “reconfigurable

cache emulator” (RCE). The RCE works as follows (Figure 2). Each L2 address is first sampled using a sampling

filter which uses a large sampling ratio (RS). In this paper, the sampling ratio has been set to 64, which has been

shown to provide reasonable accuracy [23, 25], as confirmed by our experiments also (see Section VIII-B).

L2 Access

(Address and

Core ID) 

Queue

Storage

for core 0
A1

A2

A3

A4

A5

A6

MUX

Address 

Mappers

RS

Sampling

Filter

Finite 

State

Control

32X/32

16X/32

8X/32

4X/32

2X/32

X/32

Storage

for core 1

32X/32

16X/32

8X/32

4X/32

2X/32

X/32

Fig. 2. RCE Design

The addresses which pass the filter are then passed through a queue to avoid congestion. Then, the addresses are

fed to address mappers, which compute the tag and set (index) location and also add an offset to map the address

to a suitable profiling unit. Afterwards, using a MUX, the addresses are fed to the profiling units of the originating

core.

We now compute the size of RCE. Let Z and S be the number of sets in L2 and RCE, respectively. Let A, W

and L denote the cache associativity, tag size and block size, respectively and Θ denote the percentage overhead

of RCE, compared to L2. Then, we have

S =
(
∑6

j=1 2
j−1)

32
× NZ

RS
=

63NZ

32RS
<

2NZ

RS
(3)

SizeRCE = S ×W ×A (4)

SizeL2 = Z × (W + L)×A (5)

Θ =
SizeRCE

SizeL2
=

(SWA)

(Z(W + L)A)
=

2NW

RS(L+W )
(6)

In this paper, W = 24 bits and L = 64B and thus, we obtain Θ = 0.0028 or 0.28%. To cross check, we have



used CACTI 6.5 [26] to compute the area of RCE and L2 for the cache sizes used in experiments (see Section

VII-A and VII-C) and have observed the value of Θ in the same range. Thus, the overhead of RCE is small. We

account for the overhead of RCE in our energy model in Section VII-C.

C. Execution Time Estimation

To estimate the effect of cache misses on program execution time, MANAGER uses CPI stack technique [25, 27].

The CPI stack shows the contribution of different components (e.g. base CPI, lost cycles due to events such as

memory stalls etc.) to overall performance, taking into account the possible overlaps between different events.

Cache misses affect program execution time through memory stall cycles. We assume that, in any interval, memory

stall cycles vary linearly with the number of load misses [20], and hence, their ratio, called SPM (Stall cycles

Per load Miss), is same for different number of load misses (i.e. different configurations ). This assumption holds

reasonably well in our experiments, since in an interval, ESA only searches for configurations which differ from

existing configuration in a small number of active colors (Section V).

The RCE uses extra counters to estimate load misses under different configurations and by multiplying these

values with SPM, stall cycles under different configurations are estimated. Using these stall cycles and base CPI

obtained from the CPI stack, the total execution cycles (and hence execution time) are estimated. These values

are used for computing memory subsystem energy (Section VII-C). Also, for the target program, the estimated

execution time under different configurations is used to meet its QoS target (Section V).

Note that the profiling unit 16X/32 profiles a cache size, which is half of the total cache size; which is exactly the

same size allocated to the program in the baseline configuration. Thus, the execution time estimate obtained from

16X/32 at runtime can be used to predict the execution time for the target program in the baseline configuration.

This is an important observation, and using this, MANAGER computes the percentage degradation in performance

of target program at runtime and avoids the need of offline specification of IPC of target program in baseline.

D. Marginal Gain

The energy saving algorithm (ESA) of MANAGER uses marginal gain values to find candidate color values. We

now show the computation of marginal gain and discuss its use in Section V. Marginal gain (MGn(x)) for core

n with color value x is defined as the reduction in cache misses per extra unit cache color. As in previous works

[23], we assume that between two profiling points, the number of misses vary linearly with cache size and thus,

MGn remains constant between those profiling points. Thus, MGn is defined as:



MGn(cn) =


Missn(Dj)− Missn(Dj+1)

Dj+1 −Dj
Dj ≤ cn < Dj+1

Missn(D5)− Missn(D6)

D6 −D5
cn = D6

(7)

Here D1 to D6 refer to the 6 profiling points mentioned above (viz. D1 = X/32 . . . D6 = 32X/32) and Missn(Dj)

refer to the cache misses of core n at color value Dj .

V. ENERGY SAVING ALGORITHM (ESA)

We now describe our energy saving algorithm (ESA), which can be part of the OS kernel module. The decision

to start ESA is taken as follows. A Boolean flag is initially set to FALSE. After every K (e.g. 10M) instructions

of target program, the flag is set to TRUE. After every 1000 cycles, the flag is checked and whenever the flag is

found to be TRUE, ESA starts working. When the ESA completes its execution, the flag is again set to FALSE.

We use “color-value” to refer to the colors of each core and configuration to refer to the color-value combination

for 2 cores. Let c⋆n denote the current color value of core n in interval i. At the end of an interval i, the algorithm

executes the following steps.

Step 1: We first define a quantify ti as follows. At the end of each interval, ESA estimates the extra time (τ )

that the current configuration of target program has taken over and above its baseline configuration, i.e. M /2 colors,

for that interval (Here the estimates for baseline configuration are also obtained in runtime from 16X/32 profiling

unit of RCE and not from offline profiling, as shown in Section IV-C). Over all the intervals, ESA accumulates τ

values to get ti. Thus, ti gives the estimated increased execution time due to working of ESA, up to that interval.

Step 2: At the end of an interval i, if the actual execution time is Ti, then (Ti − ti) shows the estimate of

baseline execution time for the same execution window. Let βi be the current percentage loss in performance of

target program over baseline, then we have βi =
ti

(Ti − ti)
×100%. ESA always attempts to conservatively keep βi

below the actual allowed percentage slack (Ω), by a small margin χ (0.4% in our experiments). Thus, βi ≤ Ω−χ.

For example, if Ω = 5%, then βi ≤ 4.6%.

Step 3: To save energy while still meeting QoS requirement of target program, in each interval, ESA allows

a certain percentage loss (say ∆i) in performance to save energy, such that the overall performance loss of target

program is less than Ω%. The value of ∆i is chosen based on βi and Ω. Since our technique controls cache

allocation, specifying ∆i, in turn, implies specifying the minimum amount of cache size (i.e. number of cache

colors) that must be allocated to the target program. Let Min denote this color limit.

Step 4: For both target program and partner program, four candidate color-values are selected using marginal

color values, as follows. Intuitively, for a program with large marginal gain, color values with smaller number



of active colors are likely to be energy efficient and vice versa. Hence, ESA uses four application-independent

thresholds (viz. 50, 200, 300, 1000) to decide the range of MGn and based on it, suitable candidate color values

are chosen in vicinity of c⋆n. These candidate color values should also fulfill the following criterion.

C1 To avoid thrashing, each core receives at least M/32 colors; thus a candidate color value must have at least

M/32 colors.

C2 In any interval, at most 12 colors can be given to a program or taken from it.

C3 For the target program, all color values should have Min or more colors.

Note that if allocating at-least Min colors to target program requires transferring more than 12 colors in an

interval (which may happen due to sudden change in working set size of the target program), condition C3 is

relaxed. This avoids oscillation and high reconfiguration overheads. Moreover, since ESA aims to meet a global

(and not per-interval) QoS requirement; a positive or negative deviation from the allowed slack is compensated by

feedback adjustment.

Step 5: From per-core color values, sixteen (=4×4) combinations are formed which denote 2-core configurations.

Of these, the configurations with sum of active colors greater than M are discarded, since this represents an invalid

configuration.

Step 6: From the remaining configurations, the one with minimum estimated memory subsystem energy is

selected to be used in the next interval.

Note that in each interval, ESA examines at most 16 color values and thus, its overhead is small. ESA allocates

at least M /32 colors to each program and thus, it reduces the possibility of cache thrashing and keeps the

reconfiguration overhead small. The use of marginal gain values helps in quickly finding the suitable cache size

for a program and use of application-independent thresholds avoids the need of per-application tuning.

Scalability: MANAGER can be extended to systems with larger than 2 cores where the QoS deadline is

specified for a target program. For this, we select color values for all the cores, then ensure that at least Min colors

are allocated to the target program, then make N -core combinations and finally select the most energy efficient

configuration. Since number of combinations increase rapidly with number of cores, the number of color values

can be kept small and further heuristics can be developed for achieving search space reduction.

VI. IMPLEMENTATION

For hardware implementation of cache block switching, we use a specific implementation of gated Vdd (NMOS

gated Vdd, dual Vt, wide, with charge pump), which reduces leakage power by 97%, while increasing the access

latency by 8% and cell area by 5% [11]. We account for these overheads below and in Section VII-C.



With MANAGER, block switching happens only at the end of an interval and hence, change in mapping tables

happens infrequently. For a 2-core system with 8-way, 4MB L2, the total size of mapping tables is 1792 bits

(=2× 128× 7), which is merely 0.005% of the L2 storage (tag+data). Thus, the size and access time of mapping

tables are negligible and access to them can be folded into the address decode tree of the cache’s tag and data

arrays. Also, RCE is accessed in parallel to L2. Thus, these activities do not lie on critical access path. Gated Vdd

scheme increases access time by 8%. Hence, with baseline L2 latency as 12 cycles, the L2 latency with MANAGER

is taken as 13 cycles. Taking together both RCE (Section IV-B) and mapping tables, we conservatively assume the

overhead of MANAGER as 0.4% of L2 cache.

L2 cache reconfigurations are handled as follows. When a color is taken away from a core, the blocks of its

owner core are flushed from it (i.e. dirty data are written back to memory and other blocks are discarded). When a

color is allocated to a core (say n), one or more regions of n, which were mapped to some other color, are mapped

to the new color. The blocks of remapped regions in previous colors are flushed. Change in region mapping is

achieved using the mapping table.

Time overhead of running MANAGER energy saving algorithm is taken as 500 cycles, since the algorithm does

not need to scan per-block counters and we assume that using some parallelism and pipelining the overhead of

algorithm can be kept small. When the L2 cache is reconfigured, an additional 600 cycles average overhead is

incurred.

VII. EXPERIMENTATION METHODOLOGY

A. Simulation Platform and Workload

We perform out-of-order simulations using interval core model from Sniper x86-64 multi-core simulator [27].

Each core has a frequency of 2.8GHz and a dispatch width of 4 micro-operations. L1I and L1D caches are private

to each core and L2 cache is shared. All caches use LRU replacement policy. Both L1D and L1I are 32KB, 4-way

caches and have 2 cycle latency. The unified L2 is an 8-way associative cache with 4MB size. L2 latency for

baseline simulations is 12 cycles and for MANAGER, it is 13 cycles. Main memory latency is 196 cycles; peak

memory bandwidth is 12.8 GB/s and memory queue contention is also modeled.

We use all 29 SPEC CPU2006 benchmarks with ref input. We constructed 29 two-core multiprogrammed

workloads by randomly combining different benchmarks. Each benchmark is a target program and partner program

in exactly one workload. The workloads are shown in Table I. For all workloads, first program is the “target”

program and second program is the “partner” program.



TABLE I
WORKLOADS USED IN PAPER

T1 astar dealII T2 bwaves bzip2
T3 bzip2 povray T4 cactusADM gemsFDTD
T5 calculix tonto T6 dealII cactusADM
T7 gamess astar T8 gcc leslie3d
T9 gemsFDTD gromacs T10 gobmk omnetpp
T11 gromacs gamess T12 h264ref wrf
T13 hmmer mcf T14 lbm hmmer
T15 leslie3d sjeng T16 libquantum soplex
T17 mcf gobmk T18 milc calculix
T19 namd zeusmp T20 omnetpp libquantum
T21 perlbench lbm T22 povray perlbench
T23 sjeng, gcc T24 soplex milc
T25 sphinx xalancbmk T26 tonto h264ref
T27 wrf bwaves T28 xalancbmk namd
T29 zeusmp sphinx

B. Evaluation Metrics

We use the following metrics. The first one is the percentage saving in memory subsystem energy, which is

computed as shown in the next subsection (Eq. 8). Further, we use weighted speedup (WS) and fair speedup (FS)

[22, 28] metrics, which are defined as

WS = (Σn(IPCn(MANAGER)/IPCn(baseline)))/N

FS = N/(Σn(IPCn(baseline)/IPCn(MANAGER)))

Also, we show cache active ratio [6] (active cache area fraction, averaged over the entire simulation length)

and absolute increase in DRAM access per kilo instruction (APKI), which is computed as (APKI(MANAGER)−

APKI(base)). We present absolute change in APKI and not percentage change, since for workloads with small APKI

values, even a small change is shown as a large percentage change, which distorts its contribution to performance

[20].

Across the workload, weighted speedup and fair speedup are averaged using geometric mean of per-workload

improvements. For averaging percentage energy saving, DRAM APKI increase, cache active ratio and percentage

performance degradation, we use arithmetic mean.

We fast-forwarded each benchmark for 10B instructions. The simulation is run till each benchmark in the workload

completes its 500M instructions, following well-established simulation methodology [29]. IPC of a program is only

computed for its first 500M instructions. Energy is computed for the entire simulation length since this allows us to



comprehensively account for the effect of loss of performance due to cache turnoff on energy consumption. Another

benefit of this methodology is that for meeting QoS deadline of target program, the partner program cannot be

arbitrarily slowed-down, since that will increase the overall simulation time which will reflect in increased energy

consumption. The values of DRAM APKI and active ratio are also computed for the entire simulation length. K

is taken as 10M instructions.

C. Energy Model

We model the energy spent in L2 cache (EL2), DRAM (EMem) and the energy cost of execution of MANAGER

algorithm (EAlgo), since other components are minimally affected by MANAGER technique. The energy consump-

tion of counters is negligible compared to that of memory subsystem and hence, is ignored. Our notation is shown

in Table II.

TABLE II
THE NOTATION USED IN THE ENERGY MODEL

E Total energy consumed
DEL2 Total dynamic energy consumed in L2
LEL2 Total leakage energy consumed in L2
P Leak

xyz leakage energy per second in xyz (e.g. L2, DRAM or RCE)
EDyn

xyz dynamic energy per access in xyz (e.g. L2, DRAM or RCE)
T Time length in seconds
B Number of block transitions
Eχ Energy consumed in a single block transition
Etran Total energy consumed in block transitions

ML2, HL2 Number of L2 misses and L2 hits
FA L2 cache active ratio (fraction)

AMem Number of accesses to main memory
ARCE Number of accesses to RCE
Υ Area overhead of gated Vdd memory cell as a fraction

of area of the normal memory cell.
Poff Leakage power consumption in low-power mode as a

fraction of normal leakage power, PLeak
L2

For computing LEL2, we account for the consumption of both active and turned-off (i.e. low-leakage) fraction

of the cache. Further, we assume that an L2 miss consumes twice the dynamic energy as that of an L2 hit [10, 30].



 0

 32

 64

 96

 128

N
um

be
r 

of
 c

ol
or

s

Algorithm intervals

 T1(astar,dealII)

astar
dealII

 0

 32

 64

 96

 128

N
um

be
r 

of
 c

ol
or

s

Algorithm intervals

 T7(gamess,astar)

gamess
astar

 0

 32

 64

 96

 128

N
um

be
r 

of
 c

ol
or

s

Algorithm intervals

 T9(gemsFDTD,gromacs)

gemsFDTD
gromacs

 0

 32

 64

 96

 128

N
um

be
r 

of
 c

ol
or

s

Algorithm intervals

 T10(gobmk,omnetpp)

gobmk
omnetpp

 0

 32

 64

 96

 128

N
um

be
r 

of
 c

ol
or

s

Algorithm intervals

 T14(lbm,hmmer)

lbm
hmmer

 0

 32

 64

 96

 128

N
um

be
r 

of
 c

ol
or

s

Algorithm intervals

 T27(wrf,bwaves)

wrf
bwaves

Fig. 3. Cache quota of different applications for selected workloads with MANAGER. Note that white (empty) portion of the graphs
corresponds to turned-off colors.



Thus,

E = EL2 + EMem + EAlgo (8)

EL2 = LEL2 +DEL2 (9)

LEL2 = P Leak
L2 × (1 + Υ)× (FA + (1− FA)Poff)× T (10)

DEL2 = EDyn
L2 × (2ML2 +HL2) (11)

EMem = P Leak
Mem × T + EDyn

Mem ×AMem (12)

EAlgo = Eχ ×B + EDyn
RCE ×ARCE + P Leak

RCE × T (13)

For baseline experiments, EAlgo = 0, Υ = 0, FA = 1 and Poff value is not required. For MANAGER, Poff =

0.03 and Υ = 0.05 [11]. Using CACTI, for 4MB, 8-way L2 at 32nm, we obtain P Leak
L2 = 1.39 Watt and EDyn

L2 =

0.289 nJ/access. The RCE energy values are computed using CACTI and Eq. 3. We assume 8B block size and only

account for energy consumption of tags, since RCE is a tag-only component. For a 2-core system and RS=64, an

RCE corresponding to 4MB L2 has P Leak
RCE = 0.006 Watt and EDyn

RCE= 0.005 nJ/access. Clearly, the energy consumption

of RCE is a very small.

We assume that the DRAM uses aggressive power saving mode as allowed in DDR3 DRAM, and hence P leak
Mem

= 0.18 Watt, when there is no memory access [20, 31]. Also, EDyn
Mem = 70 nJ [20, 31] and Eχ = 2 pJ [21].

VIII. RESULTS

A. Illustration of Working of MANAGER

We first show the cache allocation of MANAGER to get insights into its working. We select 6 workloads and

show the cache quota of its applications varying over time in Figure 3. These workloads have been chosen to

illustrate different types of cache allocation patterns. We first note that different workloads take different execution

time depending on the time taken by the slower application to complete its 500M instructions. The MANAGER

algorithm allocates cache depending on the requirement of meeting QoS, the cache demand of individual application,

and also the interaction between the co-running applications.

Depending on the cache demand of both applications, it is possible that no cache is turned-off. This happens

in T10, since both gobmk and omnetpp have large cache demand and hence, turning-off cache would reduce

performance or lead to missed QoS. From this workload and similar others like T25 (not shown here), it is clear

that cache contention due to a co-running program can make it challenging to meet the QoS deadline of a target

program and hence, management of shared LLC is extremely important and a technique must take into account the



behavior of all the applications to ensure QoS for the target program.

When both applications have low cache demand, a large fraction of cache can be turned-off which happens in

T27 where the cache active ratio is reduced below 20%. For T14, the cache quota of both applications changes

initially, but once it reaches to a point where both applications have suitable cache quotas, the cache allocation does

not change further. This shows that within the instruction length simulated, a significant change in their working

set does not happen. In contrast, for T9, the cache quota changes over time, due to the requirement of meeting the

QoS deadline and adjusting to the changing working-set of the applications. This is also true for T1, although the

frequency of change is less than that in the case for T9. Of all the 29 workloads, only T7 misses its QoS deadline.

For T7, although the MANAGER algorithm is able to reduce the cache quotas significantly, the QoS deadline is

missed by a very small margin due to some inaccuracy in execution time estimation introduced due to sampling.

From Figure 3, we can also conclude that there exists a large variation in the cache demand of different

applications and hence, a dynamic profiling and reconfiguration based technique like MANAGER is very important

to realize large energy saving.

B. Energy Saving Results

Figure 4 shows the results on percentage energy saving, active ratio and weighted speedup. Note that baseline

refers to the statically partitioned cache of the same total size with half of the cache capacity allocated to each

program. For brevity, we omit the per-workload values for fair speedup values, since they are nearly same as the

weighted speedup, and the average value of fair speedup is 0.99.

We now analyze the results. On average, MANAGER achieves 13.5% saving in memory sub-system energy, thus,

it provides significant improvement in the energy efficiency. The largest energy saving is achieved in T22 (55.8%),

which happens because the cache demand of both applications is small and hence, the algorithm is able to turn-off

a large amount of cache.

The value of average weighted speedup is 0.99, which is close to one. Thus, MANAGER keeps the performance

almost same as the baseline. Further, the average fair speedup is also close to one, and thus, MANAGER does

not cause unfairness or thread-starvation. Only one workload misses its QoS target, which shows that MANAGER

ensures meeting most QoS deadlines.

Note that even though the allowed percent degradation (Ω) for the target core has been set to 5%, the actual

observed value of average (arithmetic mean) degradation in performance of target core is only 0.75%. From weighted

speedup values also, we conclude that overall system performance is also not harmed. This is because, for some

workloads the performance of target core has actually improved e.g. T20, T24, T28 (refer to the sub-figure on

DRAM APKI increase in the Figure 4) and for a few other workloads, the performance of target core is nearly the



 0

 10

 20

 30

 40

 50

 60

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 Avg

% Energy saved

 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08
 1.1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 Avg

Weighted speedup

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 Avg

Cache Active Ratio

-6

-5

-4

-3

-2

-1

 0

 1

 2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 Avg

DRAM APKI increase

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 Avg

IPC of Target Program Relative To Baseline

MissedDeadline

Fig. 4. Results on percentage energy saved, weighted speedup, active ratio, increase in APKI and meeting QoS deadlines. Note that only
T7 misses its deadline.

same as in the baseline, e.g. T13, T16, T25. Only for five workloads, performance of target core degrades more

than 3% (T7, T12, T14, T26, T27) and only for one workload, it degrades more than 5% (T7). Thus, for a very

small average performance loss, MANAGER achieves large saving in memory sub-system energy.

The average increase in DRAM APKI is -0.35, thus, on average DRAM APKI is reduced. Despite turning off

the cache, the average DRAM accesses do not increase. This is because MANAGER performs dynamic profiling

using RCE, which provides sufficiently accurate profiling information in each interval. This information is used to

partition the cache according to demands of different programs and thus, MANAGER reduces the cache quota of

programs which do not benefit from the cache and increases the quota of cache friendly programs, which leads



to reduced cache misses. The maximum increase in DRAM APKI is only 1.22 which happens for T7, while the

maximum reduction happens for T20, where DRAM APKI is reduced by 5.75. For T20, libquantum is a streaming

benchmark and by reducing its cache quota and allocating the cache to co-running application, DRAM misses and

accesses are significantly reduced. The reduction in DRAM APKI also indicates that the reconfiguration overhead

of MANAGER is small.

C. Parameter Sensitivity Study

We now study the sensitivity of MANAGER for different parameters. In each case, we only change a single

parameter from the default configuration and summarize the results in Table III for easy comparison. For example

the row K= 5M shows that the interval size is 5M instructions and the remaining parameters are same as default

parameters.

TABLE III
RESULTS FOR DIFFERENT PARAMETERS. DEFAULT PARAMETERS: Ω=5%, K= 10M, RS = 64 AND L2 CACHE SIZE = 4MB. RESULTS

WITH DEFAULT PARAMETERS ARE ALSO SHOWN FOR COMPARISON.

Energy WS FS δAPKI Active Missed
Saving Ratio QoS

Default 13.5% 0.99 0.99 -0.35 58.1% T7
Ω=3% 13.1% 0.99 0.99 -0.37 60.3% T7,T14,T26
Ω=7% 13.4% 0.99 0.99 -0.34 57.9% none
K= 5M 13.3% 0.98 0.98 -0.29 53.3% T12
K= 15M 12.4% 0.99 0.99 -0.40 64.0% none
RS=128 13.2% 0.99 0.99 -0.36 58.9% none
8MB L2 21.9% 0.98 0.98 0.03 57.0% T4
2MB L2 5.8% 0.99 0.99 -0.67 72.9% none

Change in Ω: Note that Ω shows allowed percentage degradation in performance of the target core. Compared

to Ω = 5%, on changing Ω to 3%, smaller performance loss is allowed and hence, less cache is turned-off. Thus,

the active ratio is increased and energy saving is slightly reduced. Due to more strict deadline, three workloads

miss their QoS deadlines. On changing Ω to 7%, the cache active ratio and energy saving remain almost same as

that for Ω = 5%. Further, due to more relaxed deadline, no workload misses its deadline. For both cases, weighted

speedup and fair speedup remain close to 1. Further, DRAM APKI is reduced and thus, DRAM traffic does not

increase compared to the baseline.

Change in K: Note that K shows the interval length in instructions. On changing K to 5M instructions,

the aggressiveness of cache turnoff is increased, which reduces the active ratio. However, due to more frequent

reconfiguration, compared to the default case, the average DRAM APKI is slightly increased, although it is still

negative. Due to the interaction of these two factors, energy saving is slightly affected. Only T12 misses its deadline.



On changing K to 15M instructions, frequency of reconfiguration is reduced and hence, smaller fraction of cache

is turned-off (active ratio is 64%, compared to 58% in the default case). For this reason, the energy savings are

slightly reduced. No workload misses its deadline. For both K = 5M and 15M, both weighted speedup and fair

speedup remain close to one and thus, MANAGER does not harm performance significantly. From these results,

we conclude that MANAGER is not very sensitive to the interval length and works well for interval length values

in the range of few million instructions.

Change in RS: On changing the sampling ratio (RS) to 128, the energy savings are only slightly reduced. The

increase in sampling ratio reduces the overhead of RCE by half, but it also leads to small increase in the error in

prediction, which leads to reduced energy saving. Thus, by changing the sampling ratio, a designer can achieve a

balance between the overhead of RCE and the energy saving achieved.

Change in Cache Size: Instead of 4MB L2, we first change the cache size2 to 8MB L2 for both baseline and

MANAGER algorithm. Compared to the case with 4MB L2; with 8MB L2, the number of L2 misses reduce and

hence, the contribution of main memory in total energy reduces and the contribution of L2 leakage energy increases.

Thus, the percentage energy savings increase. Due to the requirement of meeting QoS deadline, on doubling the

cache size, the active ratio does not reduce proportionately, since the baseline cache size is also increased and

hence, to match the performance with the baseline, a certain fraction of cache need to be kept turned-on. The

increase in DRAM APKI is nearly zero; with 4MB cache it was negative. With the larger sized cache, miss-rates

become smaller and the margin for reducing the miss-rate by cache management also reduces. Only one workload

misses the QoS deadline, thus MANAGER meets QoS requirement of most of the workloads.

We now change the cache size to 2MB for baseline and MANAGER algorithm. Compared to the case with

4MB L2; with 2MB L2, the contribution of main memory increases in total energy due to increased miss-rate

and increased off-chip access. Hence, the contribution of L2 leakage energy in total energy reduces, which leads

to smaller energy savings due to reduced opportunity. The active ratio is increased, since for many applications,

aggressively reducing the cache from 1MB (i.e. half of 2MB, which is allocated in the baseline) would lead to

significant increase in miss-rate, leading to performance loss. Compared to 4MB L2, for the smaller cache of 2MB,

cache contention is also increased and hence, cache management by MANAGER provides more benefit and hence,

DRAM APKI is further reduced (by 0.67 compared to 0.35 in 4MB cache). No workload misses the QoS deadline,

which shows that MANAGER meets QoS as the first priority, while also saving energy.

The results presented in this section show that MANAGER works well for wide range of parameters and achieves

a right balance between energy saving and performance loss.

2Energy values for L2 cache and corresponding RCE are computed using CACTI for 8MB and 2MB caches and are omitted for brevity.



IX. CONCLUSION

In this paper, we presented MANAGER, which uses dynamic profiling with cache reconfiguration to save energy

in multicore LLCs. MANAGER uses software control with lightweight hardware support. The simulation results

have confirmed that MANAGER achieves a right balance between energy saving and performance loss and works

well for wide range of parameters. Our future work will focus on synergistically integrating MANAGER with

DVFS (dynamic voltage/frequency scaling) techniques to save even larger amount of energy and provide better

quality-of-service to programs.

REFERENCES

[1] K. Lahiri and A. Raghunathan, “Power analysis of system-level on-chip communication architectures,” in Proceedings of the 2nd IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis. ACM, 2004, pp. 236–241.

[2] M. Monchiero, R. Canal, and A. Gonzalez, “Power/performance/thermal design-space exploration for multicore architectures,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 19, no. 5, pp. 666–681, 2008.

[3] A. Sood et al., “A novel rate-scalable multimedia service for e-learning videos using content based wavelet compression,” in India Conference, 2006

Annual IEEE. IEEE, 2006, pp. 1–6.

[4] L. Hsu, S. Reinhardt, R. Iyer, and S. Makineni, “Communist, utilitarian, and capitalist cache policies on cmps: caches as a shared resource,” in Proceedings

of the 15th international conference on Parallel architectures and compilation techniques. ACM, 2006, pp. 13–22.

[5] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache contention on a chip multi-processor architecture,” in High-Performance

Computer Architecture, 2005. HPCA-11. 11th International Symposium on. IEEE, 2005, pp. 340–351.

[6] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting generational behavior to reduce cache leakage power,” 28th annual international

symposium on Computer architecture (ISCA), pp. 240–251, 2001.

[7] L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and A. Sivasubramaniam, “Leakage energy management in cache hierarchies,”

in International Conference on Parallel Architectures and Compilation Techniques (PACT), 2002, pp. 131–140.

[8] D. Albonesi, “Selective cache ways: On-demand cache resource allocation,” Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual International

Symposium on, pp. 248–259, 1999.

[9] S.-H. Yang, B. Falsafi, M. D. Powell, K. Roy, and T. N. Vijaykumar, “An integrated circuit/architecture approach to reducing leakage in deep-submicron

high-performance I-caches,” 7th International Symposium on High-Performance Computer Architecture (HPCA), 2001.

[10] H. Hanson, M. Hrishikesh, V. Agarwal, S. Keckler, and D. Burger, “Static energy reduction techniques for microprocessor caches,” IEEE Transactions

on VLSI Systems, vol. 11, no. 3, pp. 303 –313, 2003.

[11] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. Vijaykumar, “Gated-Vdd: a circuit technique to reduce leakage in deep-submicron cache memories,”

International Symposium on Low power electronics and design (ISLPED), pp. 90 – 95, 2000.

[12] S. Gupta et al., “MIMO Systems For Ensuring Multimedia QoS Over Scarce Resource Wireless Networks,” ACM International Conference On Advance

Computing, India, 2008.

[13] P. McDonagh et al., “Quality-Oriented Scalable Video Delivery Using H.264 SVC on An LTE Network,” in 14th International Symposium on Wireless

Personal Multimedia Communications (WPMC), 2011.

[14] S. Gupta et al., “Guaranteed QoS with MIMO Systems for Scalable Low Motion Video Streaming Over Scarce Resource Wireless Channels,” in

Proceedings Second International Conference On Information Processing. IK International Pvt Ltd, 2008, pp. 452–466.

[15] S. Mittal, “A Survey of Architectural Techniques For DRAM Power Management,” International Journal of High Performance Systems Architecture,

vol. 4, no. 2, pp. 110–119, 2012.

[16] S. Mittal, Y. Cao, and Z. Zhang, “MASTER: A Multicore Cache Energy Saving Technique using Dynamic Cache Reconfiguration,” IEEE Transactions

on VLSI Systems, 2013.

[17] R. Iyer, “Cqos: a framework for enabling qos in shared caches of cmp platforms,” in Proceedings of the 18th annual international conference on

Supercomputing. ACM, 2004, pp. 257–266.



[18] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt, “Qos policies and architecture for cache/memory

in cmp platforms,” in ACM SIGMETRICS Performance Evaluation Review, vol. 35, no. 1. ACM, 2007, pp. 25–36.

[19] L. Barroso and U. Hölzle, “The datacenter as a computer: An introduction to the design of warehouse-scale machines,” Synthesis Lectures on Computer

Architecture, vol. 4, no. 1, pp. 1–108, 2009.

[20] S. Mittal and Z. Zhang, “EnCache: Improving Cache Energy Efficiency Using A Software-Controlled Profiling Cache,” IEEE EIT, 2012.

[21] S. Mittal, Z. Zhang, and Y. Cao, “CASHIER: A Cache Energy Saving Technique for QoS Systems,” 26th IEEE International Conference on VLSI

Design, pp. 43–48, 2013.

[22] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining insights into multicore cache partitioning: Bridging the gap between simulation

and real systems,” IEEE 14th International Symposium on High Performance Computer Architecture, (HPCA), pp. 367–378, 2008.

[23] S. Mittal and Z. Zhang, “Palette: A cache leakage energy saving technique for green computing,” in HPC: Transition Towards Exascale Processing, ser.

Advances in Parallel Computing, C. Catlett, W. Gentzsch, L. Grandinetti, G. Joubert, and J. Vazquez-Poletti, Eds. IOS Press, 2013.

[24] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to partition shared caches,”

39th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 423–432, 2006.

[25] S. Mittal and Z. Zhang, “ESTO: A Performance Estimation Approach for Efficient Design Space Exploration ,” Design Contest at 26th International

Conference for VLSI Design, January 2013.

[26] CACTI 6.5, http://www.hpl.hp.com/research/cacti/, 2013.

[27] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulations,”

International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Nov. 2011.

[28] S. Mittal, “Dynamic cache reconfiguration based techniques for improving cache energy efficiency,” Ph.D. dissertation, Iowa State University, 2013.

[29] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and B. Franke, “Cooperative partitioning: Energy-efficient cache partitioning for high-

performance cmps,” in IEEE 18th International Symposium on High Performance Computer Architecture (HPCA), 2012, pp. 1–12.

[30] S. Mittal, Z. Zhang, and J. Vetter, “FlexiWay: A Cache Energy Saving Technique Using Fine-grained Cache Reconfiguration,” International Conference

on Computer Design (ICCD), 2013.

[31] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Decoupled DIMM: building high-bandwidth memory system using low-speed dram devices,” 36th annual

international symposium on Computer architecture (ISCA), pp. 255–266, 2009.


