
Published in IEEE Transactions on VLSI Systems, 2013. DOI:10.1109/TVLSI.2013.2278289

MASTER: A Multicore Cache Energy Saving
Technique using Dynamic Cache Reconfiguration

Sparsh Mittal, Student Member, IEEE, Yanan Cao, and Zhao Zhang, Member, IEEE

Abstract—With increasing number of on-chip cores and CMOS
scaling, the size of last level caches (LLCs) is on rise and hence,
managing their leakage energy consumption has become vital
for continuing to scale performance. In multicore systems, the
locality of memory access stream is significantly reduced due to
multiplexing of access streams from different running programs
and hence, leakage energy saving techniques such as decay cache,
which rely on memory access locality, do not save large amount of
energy. The techniques based on way level allocation provide very
coarse granularity and the techniques based on offline profiling
become infeasible to use for large number of cores.

We present MASTER, a multicore cache energy saving
technique using dynamic cache reconfiguration. MASTER uses
online profiling to predict energy consumption of running pro-
grams at multiple LLC sizes. Using these estimates, suitable
cache quotas are allocated to different programs using cache
coloring scheme and the unused LLC space is turned off to save
energy. Even for 4 core systems, the implementation overhead of
MASTER is only 0.8% of L2 size.

We evaluate MASTER using out-of-order simulations with
multiprogrammed workloads from SPEC2006 and compare it
with conventional cache leakage energy saving techniques. The
results show that MASTER gives highest saving in energy and
does not harm performance or cause unfairness. For 2 and 4-core
simulations, the average savings in memory subsystem (which
includes LLC and main memory) energy over shared baseline
LLC are 15% and 11%, respectively. Also, the average values of
weighted speedup and fair speedup are close to one (≥0.98).

Index Terms—Multicore processors, cache leakage energy sav-
ing, cache reconfiguration, dynamic profiling, green computing,
cache partitioning.

I. INTRODUCTION

Recent trends in chip architectures and CMOS scaling have
made the design of computer systems increasingly energy-
constrained [1]. With increasing number of cores integrated
on a single chip [2], [3], the pressure on the memory system
is rising and to mitigate this pressure, modern processors
are using large sized LLCs; for example, both Intel’s 4-core
Xeon E3-1290 processor and AMD’s 4-core Opteron 3320E
processor use 8MB LLC [4], [5]. Further, with each CMOS
technology generation, leakage energy consumption has been
increasing exponentially [6]–[8] and hence, large LLCs con-
tribute significantly to the total processor power consumption
[9]. The increased levels of power consumption necessitate
expensive cooling solutions which significantly increase the
overall system cost and design complexity and also restrict
further performance scaling. Further, in several scenarios, the

The authors are with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA, 50014 USA e-mail:
sparsh0mittal@gmail.com,{yanan,zzhang}@iastate.edu. This work is sup-
ported in part by the NSF under grants CNS-0834476 and CNS-1117604.

actual number of programs running on a multicore processor
are much less than the number of cores and thus, a large
amount of cache leakage energy is wasted. For these reasons,
managing the power consumption of LLCs has become an
important research issue in modern processor design.

The conventional cache energy saving techniques face sig-
nificant challenges when used for managing energy consump-
tion of shared LLCs in multicore processors. For example,
the techniques such as decay cache [10] exploit the locality
property of memory access streams and place the ‘dead’
cache lines into low leakage mode for saving leakage energy.
Since single-core workloads typically exhibit high locality,
these techniques are effective in saving energy in single-
core systems. However, in the case of multicore systems with
shared LLCs, the independent access streams from multiple
applications are interleaved and thus, the actual memory access
stream exhibits reduced locality. The techniques which allocate
and turn-off cache at way granularity [11]–[15] can only
provide few coarse grain partitions (at most, as many as the
number of ways) while drastically reducing the associativity
for each program. Finally, some techniques use offline pro-
filing or compiler analysis of running applications for saving
energy [11], [16]–[20]; however, due to the large number of
possible program combinations in multicore environment, use
of offline profiling becomes increasingly difficult.

In this paper, we present MASTER, a multicore cache
energy saving technique using dynamic cache reconfiguration.
MASTER works by periodically allocating suitable amount
of LLC space to each running application and turning off
unused LLC space to save cache energy. MASTER uses a
simple “cache coloring” scheme and thus, allocates cache
at the granularity of a single cache color (Section III). For
profiling the behavior of running programs under different
LLC cache sizes, MASTER uses a small microarchitectural
component, called “reconfigurable cache emulator” (RCE).
RCE is a tag-only (data-less) component and is designed using
the set sampling method. RCE does not lie on critical access
path and because of its small size, its access latency is easily
hidden. With this lightweight hardware support, MASTER
energy saving algorithm periodically predicts the memory
subsystem energy of running programs for a small number
of color values. Using these estimates, MASTER selects a
configuration with minimum estimated energy and turns off
the unused cache colors for saving leakage energy (Section
IV). For hardware implementation of cache block switching
(i.e. turning-off), MASTER uses the well-known gated Vdd
technique [21] (Section V).

We evaluate MASTER using out-of-order simulations with

c⃝2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

1

2

Sniper [22], a state-of-art x86-64 simulator and multi-
programmed workloads from SPEC2006 suite (Section VI).
We compare it to decay cache technique (DCT) [10] and way
adaptable cache technique (WAC) [13]. The results show that
MASTER saves highest amount of memory subsystem energy
(Section VII). For example, over a shared baseline LLC,
for 2 and 4-core systems (with one program on each core),
the average savings in memory subsystem energy by using
MASTER are 14.7% and 11.2%, respectively. Using WAC
(which, on average, performs better than DCT), these values
are only 10.2% and 6.5% respectively. Further, the average
values of weighted speedup and fair speedup using MASTER
remain very close to one (≥0.98) and absolute increase in
DRAM APKI (accesses per kilo instructions) remains less
than 0.5. Thus, MASTER does not harm performance or cause
unfairness. Additional simulation results show that MASTER
works well for a wide variety of system parameters.

The remainder of the paper is organized as follows. Section
II presents a background on cache energy saving techniques
and also discusses related work. Section III discusses the
system architecture and components of MASTER and Section
IV presents the energy saving algorithm. The implementation
details and experimental methodology are discussed in Section
V and VI, respectively. Section VII presents the experimental
results on MASTER and other techniques. It also evaluates
the sensitivity of MASTER for different system parameters.
Finally, Section VIII provides the conclusion and the future
work.

II. BACKGROUND AND RELATED WORK

The energy saving approach of MASTER has two broad
steps. In the first step, the LLC quotas to be allocated to
different cores (and to be turned off) are decided and then
these quotas are actually enforced. In the second step, a
leakage control mechanism is used to turn off the cache
blocks for saving energy. In literature, different schemes have
been proposed which allocate or turnoff cache space at the
granularity of cache colors [23]–[25], cache ways [11]–[14],
[26], [27], cache sets [17], [21], [28], both sets and ways
(hybrid) [29], [30] and cache blocks [10], [31]. MASTER
determines cache quotas with the goal of optimizing energy
efficiency and enforces it using a cache coloring scheme.

The circuit-level leakage control mechanisms are divided
into two types, namely state-destroying [21] and state-
preserving [31], [32]. The state-destroying mechanisms do
not retain data in low-leakage mode and hence, access to
such a block incurs a cache miss; however, these mecha-
nisms typically reduce more leakage power than the state-
preserving mechanisms [21], [31], [33]. The state-preserving
mechanisms retain data in low leakage mode but generally
require two supply voltages for each block and also make the
cache more susceptible to noise [31], [34]. Hence, MASTER
employs state-destroying leakage control by using gated Vdd
mechanism [21].

Recently, researchers have proposed techniques for saving
both leakage and dynamic energy in caches. With no leakage
optimization applied, LLCs spend a large fraction of their

energy in the form of leakage energy [35], [36]. Hence, we
aim at saving cache leakage energy. Some energy saving
techniques work by statically allocating or turning off a part
of cache and do not allow dynamic runtime reconfiguration
[11], [14], [16]. However, since the behavior of applications
varies significantly over their execution length, dynamic cache
reconfiguration is important for realizing large energy savings.

Karthik et al. [12] propose a technique which uses marginal
utility values to allocate suitable number of ways to each core.
Further, it uses way-alignment approach to force the data of
a core to be in the given way(s) for all the sets of the cache.
Using this information, on a cache access only the designated
way(s) can be accessed which leads to saving in dynamic
energy. Also, the unused ways can be turned off to save
leakage energy. Other researchers perform way-partitioning in
dynamic [15] or static manner [14]. However, as mentioned
before, way-partitioning provides only limited granularity. For
example, since at least a single way must be allocated to each
core, a typical 8-way associative cache cannot be partitioned
among 8 cores and even for a 4 core system, it provides only
few options for partitioning and way turn-off. Thus, use of
these techniques requires caches of large associativity, which
have higher access time and dynamic energy. This limits the
usefulness of these techniques.

An important difference between MASTER and most ex-
isting cache energy saving techniques (e.g. [10], [12], [13],
[21], [27], [30]) is that MASTER works to directly optimize
energy value, while existing techniques do not directly work to
optimize cache energy, rather they aim to keep the increase in
cache misses resulting from cache turnoff small, which leads
to energy saving. Due to this feature, MASTER can optimize
for system (or subsystem) energy, instead of only cache
energy. Several cache energy saving techniques proposed in
literature (e.g. [12], [15], [16], [18], [36]–[38]) have been
evaluated by considering their effect on LLC energy only. We
model both LLC energy and main memory energy for a more
comprehensive evaluation.

III. SYSTEM ARCHITECTURE AND DESIGN

MASTER works on the idea that different programs and
even different execution phases of a single program have
different working set sizes and hence, by allocating just
suitable amount of cache to the programs, the rest of the cache
can be turned off, with little impact on performance. Figure
1 shows the flow diagram of MASTER. In the following, we
explain each of the components of MASTER in more detail.

Notations and Assumptions: We use N to denote the
number of cores and n or k to show core indices. The interval
index is shown using i. The maximum number of cache colors
is shown as M . System page size is taken as 4KB and all
caches use a block size of 64B. The terms “active” and “turned
off” are used to refer to the cache space (either cache block,
color or way), which is in normal leakage and low leakage
mode, respectively. The term “color value” denotes the number
of colors given to each core and “configuration” denotes the
colors given to all the N cores, e.g. a 2-core configuration
{37, 65} specifies that color values of core 0 and core 1 are

3

Core

ID

Offset<6>

RCE

Software/OS Processor

Counters

Remap/control

Set # Inside

Color <6>

Physical Page No.<28>

L2 Access

(Address and

Core ID)

Energy

Saving

Algorithm

Address <40>

L2 Tag

<28>

Region

ID <7>

Page Number

in Region <21>

Counters

Page Offset <12>

Fig. 1. Flow diagram of MASTER approach (Assuming M = 128, page size = 4KB, cache block size = 64). Color indices for cache access are computed
using mapping tables for each core. To partition the cache, the energy saving algorithm remaps the mapping table. RCE is accessed in parallel to L2.

37 and 65, respectively. We assume that the LLC is an L2
cache; and the discussion can be extended to the case where
LLC is an L3 cache. The baseline cache is taken as shared
LLC, as done in several recent works [12], [23], [39].

A. Cache Coloring Scheme

For selective cache allocation, MASTER uses cache col-
oring scheme [23], [24], [40], which is as follows. First, we
logically divide the cache into M disjoint groups, called cache
colors, where total number of colors (M) is given by

M =
L2CacheSize

PageSize × L2Associativity
(1)

Further, we logically divide the physical pages into disjoint
groups, called memory regions. For each core, the number of
memory regions is M . Thus, a memory region denotes the
group of physical pages of a core that share log2(M) least
significant bits of the physical page number. A cache color is
given to one or more memory regions of a single core and
thus, all physical pages in those memory regions are mapped
to the same cache color. For each core, we use a small mapping
table of M entries, each log2(M)-bit wide, which stores the
mapping of memory regions to cache colors. At any instance,
if the number of colors allocated to core n is cn, then the
mapping table of core n stores the mapping of its M regions
to cn colors. Thus, cache quotas are enforced by mapping
all the memory regions of a core to only its allocated cache
colors. Further, when quota allocation is such that the sum of
allocated colors is less than M , the remaining colors become
unused which can be turned off for saving leakage energy.

Using mapping tables, computation of cache index (set) is
done as follows (Figure 1). For any L2 access from core n, its
memory region ID is computed by simple bit-masking. Using
memory region ID, the cache color is read from the mapping
table of core n and the set number inside the color is decided
by the most significant bits of the page offset.

While previous set level allocation techniques [21], [29],
[30] reconfigure the cache only to power-of-two set-counts,

MASTER allocates and turns off cache at the granularity of a
single cache color and hence it reconfigures the cache to non-
power-of-two set-counts also; for example, at an instance, it
may keep only 37 colors as active. From Eq. 1, we find that
an 8-way 4MB cache has 128 colors. Thus, with merely an 8-
way cache, MASTER provides much finer granularity of cache
allocation than the previous set, way or hybrid (set and way)
level allocation techniques [12], [21], [26], [29], [30]. Also,
MASTER turns off both tag and data arrays of the unused
colors, in contrast with some techniques which only turn off
data array and always keep the tag fields active [41], [42].

Lin et al. [23] present a coloring scheme which does not
require hardware support and can control mapping of every
OS page individually. In contrast, MASTER uses lightweight
hardware support and can control the address mapping only at
the level of a memory region which contains multiple pages.
However, the limitation of their scheme is that repartitioning
incurs significant overhead since the data of whole virtual page
needs to be copied from an old physical page to a new physical
page. Since MASTER uses mapping table to add a layer of
mapping between physical pages and cache colors, it avoids
the need of page migration and also keeps the reconfiguration
overhead small. Further, as shown in Section V, the overhead
of mapping tables is extremely small.

B. Reconfigurable Cache Emulator (RCE)
For estimating program energy consumption under different

color values, the number of cache misses under them needs
to be estimated. A challenge in obtaining profiling data for
color (or set) level allocation is that, unlike for way level
allocation [26], a single auxiliary tag structure cannot provide
profiling information for different cache sizes (Note that since
MASTER does not dynamically reconfigure associativity or
block size, change in cache size simply means change in
the set-count.). Hence, to estimate performance at multiple
cache sizes, these cache sizes need to be individually profiled.
However, since caches have a large number of colors, profiling
for each possible color value would be extremely costly.

4

To address this issue, MASTER uses RCE, which profiles
only a few selected cache sizes (called profiling points) and
uses piecewise linear interpolation to estimate miss rates for
other cache sizes. In this paper, we use seven profiling points,
each denoted by (2j−1X)/64, where j = {1, 2, 3, 4, 5, 6, 7}
and X denotes the L2 cache size (or equivalently number of
L2 colors). Corresponding to each profiling point, MASTER
uses an auxiliary tag structure, called profiling unit for each
core. To keep the overhead of profiling units small, MASTER
leverages “set sampling” approach [43]. The ratio of set-counts
of L2 and that of a profiling unit is called sampling ratio (Rs).

L2 Access

(Address and

Core ID)

Queue

Storage for

N cores

MUX

Address

Mappers

RS

Sampling

Filter

Finite

State

Control

0

N-1

1

64X/64

32X/64

16X/64

8X/64

4X/64

2X/64

X/64

Fig. 2. RCE design (Assuming 64 or more colors). For every cache access,
only 1/Rs accesses pass filter and then all the seven profiling units of
originating core are accessed using set-decoding and MUX.

The RCE works as follows (Figure 2). Any L2 access
address, originating from a core (say n) is sampled by a
sampling filter which removes block offset bits and uses bit-
matching to decide whether the address passes the filter. An
address which passes the filter is further passed through a
queue. Then, each address mapper (shown as A1 to A7)
computes cache tag and set using traditional set-decoding (and
not cache coloring). Also, to map the address to suitable region
in the storage, it adds an offset corresponding to its profiling
unit and core index of the address. Afterwards, using a small
multiplexer (MUX), the incoming addresses are sequentially
fed to the tag-only storage region for emulating cache access.
In summary, the profiling units have a tag storage and set-
decoding mechanism and thus, each profiling unit emulates
a specific cache size. By using all the profiling units, the
variation in miss-rate with cache size can be estimated for
each core.

We now compute the size of RCE. Let Q denote the number
of sets in L2 and S denote the number of sets in RCE for all
the cores. Further, let G and L denote the size of tag and
block size in bits, respectively and FRCE denote the total size
of RCE as a percentage of L2 size. Thus, we get

S =
(
∑7

j=1 2
j−1)×N ×Q

64×Rs
=

127NQ

64Rs
≤ 2NQ

Rs
(2)

FRCE =
RCESize

L2CacheSize
× 100 =

N × 127G

64Rs(L+G)
× 100 (3)

In our experiments Rs = 64, G = 28, L = 64×8 and
hence, for 2 and 4-core systems, we get FRCE as 0.3% and
0.6%, respectively. To cross-check, we have computed areas
of RCE and L2 using CACTI [44] for the cache sizes chosen

in our experiments (see Section VI-A and VI-C) and have
found values of FRCE in the same range. Taking into account
both RCE and mapping tables, we conservatively assume the
maximum storage overhead of MASTER as 0.8% of L2 which
occurs for 4 core systems. Clearly, the overhead of MASTER
is small. The RCE overhead can be further reduced by half
by taking the sampling ratio as 128, although it leads to slight
reduction in the energy saving achieved (Section VII-C).

Note that RCE works in parallel to L2 and does not lie at
the critical access path and does not store or communicate
data. A miss in RCE does not generate any request for other
caches. Each address mapper is simple, since it only performs
bit-matching and additions. For each sampled address from
core n, the RCE storage of core n is accessed seven times.
However, due to the use of queue, large value of Rs and
dataless operation of RCE, no congestion occurs, even in the
case of bursty L2 accesses. RCE design is flexible and can be
easily extended to also profile for sizes such as X/128 and
X/256, although this also increases the number of profiling
units consulted in each RCE access.

C. Marginal Color Utility (MCU)

In each interval, MASTER computes marginal color utility
values which are used by the energy saving algorithm (Section
IV). The notion of marginal gain has been previously used
[26], [45]. In context of MASTER which uses cache coloring
and RCE, we define MCU for the non-uniformly spaced
profiling points for which miss-rate information is available
using RCE and use the unit as a single cache color.

For each core n, at any color value cn, the value of MCU,
MCUn(cn), is defined as the reduction in cache misses per
extra unit cache color. We assume that between two profiling
points, the number of misses vary linearly with cache size
(piecewise linear approximation) and hence, MCU remains
constant between those profiling points. Let C1

p = X/64,
C2

p = 2X/64 . . . C7
p = 64X/64 denote the seven profiling

points as mentioned above. Then, if the number of L2 misses
of core n at these profiling points is denoted by Missn(Cj

p)
(where j = {1, 2, 3, 4, 5, 6, 7} and n = {0, 1, . . . , N − 1}),
then for C1

p ≤ cn ≤ C7
p , MCUn(cn) is defined as follows.

MCUn(cn) =


Missn(Cj

p)− Missn(Cj+1
p)

Cj+1
p − Cj

p

Cj
p ≤ cn < Cj+1

p

Missn(C6
p)− Missn(C7

p)

C7
p − C6

p

cn = C7
p

(4)

IV. ENERGY SAVING ALGORITHM (ESA)

We now discuss the energy saving algorithm of MASTER
which runs after a fixed interval length (e.g. 5M cycles) and
can be a kernel module. Since the future values are unknown,
the algorithm works by using the observed values from interval
i to make predictions about interval i + 1. Without loss of
generality, we assume single-threaded workloads and hence,
use the words ‘core’ and ‘application’ interchangeably. We
discuss generic values of parameters, along with their specific
values for 2 and 4 cores systems. Let cn(i) denote the color

5

value of core n in interval i. The algorithm has the following
steps.

1. Selection of color values: For each core, ESA intelli-
gently selects Tmax (= 4 in our experiments) possible color
values. Let ConfigSpace[n] be the set of these color values.
The selection of color values is done using following criteria.

A. To avoid application starvation, ESA allocates at least
Min (=M/64 in our experiments) colors to each core. Such
color values are termed as ‘valid’ color values.

B. To keep the reconfiguration overhead low and avoid
oscillations, ‘valid’ color values are searched only in close
vicinity of cn(i) (i.e. cn(i)± 10).

C. Based on intuitive observation, if an application has low
MCU, then reducing its cache allocation does not significantly
increase its miss rate but provides opportunities of turning off
the cache or allocating the cache to other cores. Thus, for
applications with low MCU, the color values having smaller
number of active colors are likely to be energy efficient and
vice-versa. To quantify smallness or largeness of MCU, we use
four application-independent thresholds, viz. λq (q = 1, 2, 3,
4), which are heuristically taken as 50, 200, 300 and 1000,
respectively in our experiments. By comparing MCUn(cn)
to the threshold values, its range is decided and thus, the
color values for core n are chosen. For example, if for core
3, MCU3(c3) equals 250 (λ2 < MCU3(c3) ≤ λ3), then
ConfigSpace[3] equals {c3 − 1, c3, c3 + 4, c3 + 6}, assuming
all the color values are all valid (if not, the invalid color value
is replaced by a valid one).

2. Configuration Space Reduction: For each of the Tmax

color values in ConfigSpace[n], the contribution of core n in
memory subsystem energy is estimated (see next paragraph).
Then, out of these Tmax color values, T color values with least
energy are selected for each core and the other color values
are discarded. In our experiments, for N = 2, T = Tmax =
4 and for N = 4, T = 2. Note that for N = 2, T = Tmax

and hence, this step is not required for the 2-core system. For
N = 4, the energy computations are done for a maximum of
NTmax (=16) color values.

We model the total energy E as the sum of energy spent
in L2 cache (EL2), DRAM (EDRAM) and the energy cost of
algorithm execution (EAlgo). Thus,

E = EL2 + EDRAM + EAlgo (5)

The detailed computations of EL2 etc. are shown in Section
VI-C. We use Equation 5 to estimate the contribution of core
n in memory subsystem energy for any color value cn, as
follows. Since we are only interested in comparing energy
for different color values, and not in their actual magnitudes,
we ignore the quantities which are common. L2 dynamic
energy depends on number of L2 misses and hits at cn,
which are estimated using RCE. For a fixed interval length,
time consumed is fixed and hence L2 leakage energy only
depends on the active fraction of cache, which is equal to
cn/M . DRAM dynamic energy depends on DRAM accesses
and hence on L2 misses and writebacks. L2 miss estimates are
already available. The number of writebacks are assumed to
be same for different color values and hence are ignored. This
assumption has only a small affect on estimation accuracy

since most applications bring only small number of dirty
blocks in L2, not all of which are expected to be evicted in
an interval.

3. Selection of N -core configurations: ESA now generates
all possible combinations of N -core configuration, using color
values from ConfigSpace[n] of all N cores. Out of these, the
configurations with sum of active colors greater than M are
discarded.

4. Selection of Final Configuration: Depending on the
number of remaining configurations, ESA chooses one of the
following steps.

A. For the remaining configurations, memory subsystem
energy is computed (procedure is same as above, except
that now it is for N -core configuration and not just for a
single core) and the configuration with minimum energy (call
it Cmin) is selected. Memory subsystem energy for current
configuration (call it Cnow) is also computed. If compared
to Cnow, Cmin improves energy by at least 0.3% (chosen
arbitrarily), Cmin is chosen for the next interval. Otherwise
Cnow is taken for i+ 1.

B. If no configuration remains, Cnow is taken for i+ 1.

C11

C12

C13

C14

Core

Step1: Select 4 color

values for each core

Step 3: Form 4-core

configurations
Step 4: Find most energy

efficient configuration

Answer

Here Cij shows jth color value for ith core

C21

C22

C23

C24

C31

C32

C33

C34

C01

C02

C03

C04

1 2 30

C11

C12

C13

C14

C21

C22

C23

C24

C31

C32

C33

C34

C01

C02

C03

C04

Step 2: Choose 2 energy efficient

color values for each core

1 2 30

1. C01 C11 C22 C33

2. C01 C11 C22 C34

3. C01 C11 C23 C33

………..

16. C03 C13 C23 C34

1. C01 C11 C22 C33

2. C01 C11 C22 C34

3. C01 C11 C23 C33

………..

16. C03 C13 C23 C34

Fig. 3. Illustration of ESA for N = 4. Except for step 2, similar steps apply
for N = 2.

For N = 4, these steps are graphically shown in Figure 3.
The maximum number of configurations tested is TN + 1.
From above, for both N = 2 and 4, the maximum number of
configurations tested is always 17.

Discussion: In each execution, ESA only examines a
maximum of 16 color values and 17 configurations and hence,
the overhead of ESA is small. Also, by using MCU values,
ESA makes an intelligent prediction about the configurations
which are likely to be most energy efficient. The threshold
values chosen are application-independent and hence, do not
require per-application tuning. As can be seen from the results
(Section VII), our chosen values provide significant energy
saving for almost all the workloads and a designer can further
exercise trade-off between algorithm efficiency and energy
saving obtained by choosing a proper value of Tmax, T and the
interval length. Algorithm implementation is further discussed
in Sections V and VI-B.

6

V. IMPLEMENTATION

Cache block switching: For hardware implementation of
cache block switching, MASTER uses gated Vdd scheme [21]
which has also been used by several researchers [10], [12],
[32], [33]. We use a specific implementation of gated Vdd (
NMOS gated Vdd, dual Vt, wide, with charge pump) which
reduces leakage energy by 97% and results in 5% area penalty
and 8% access latency penalty [21]. We account for these
overheads below and in Section VI. Also note that mechanism
to turn off a subset of LLC is already provided by the existing
commercial processor chips [3], [46].

Effect on cache access time: With MASTER, block
switching only happens at the end of an interval and RCE
is accessed in parallel to L2 and hence, these activities do not
happen on the critical path. Further, MASTER does not require
use of caches of large associativity which have higher access
time and dynamic energy. Hence, the impact of MASTER
on cache access time comes due to access to mapping table
and use of gated Vdd scheme. To see the maximum overhead
of mapping tables, which in our experiments occurs for 4-
core system, we take the example of an 8-way, 8MB cache
which has 256 colors. Thus, the total size of mapping tables
of all cores is 8192 bits (= 4 × 256 × 8), merely 0.012% of
L2 cache size (tag+data) and hence their access latency and
energy consumption are negligible. Since mapping tables are
changed only during cache reconfigurations, access to them
can be folded into the address decode tree of the cache’s tag
and data arrays. The gated Vdd scheme increases access latency
by 8%. With baseline L2 latency as 12 cycles, we take the L2
latency with MASTER as 13 cycles (Section VI-A).

Counters: MASTER uses counters for RCE (recording
number of misses in each profiling point, MCUs etc.) and
ESA (recording color values, configurations and their energy
values etc.). Since the energy consumption of counters is much
smaller than that of memory subsystem (LLC+DRAM) and
several processors already have counters for operating system
or performance measurement [10], we ignore the overhead
of counters in energy calculations. Also note that MASTER
does not require tracking the application-ownership of each
cache block or altering the replacement policy (unlike [12],
[26]). MASTER works independent of the replacement policy
used (see Section VII-C) and hence, does not require using
a specific replacement policy such as true-LRU which has
higher implementation overhead than the “approximate LRU”
schemes [47]. Further, MASTER does not require using per-
block counters to monitor cache access intensity (unlike [10],
[31]) or tables for offline profiling (unlike [14], [18]).

Handling reconfigurations: L2 reconfigurations are han-
dled in the following manner. When a color (say cn) is
‘allocated’ to a core (say n), one or more regions of core
n, which were mapped to some other color, are now mapped
to the color cn and the blocks of remapped region in the old
color are flushed (i.e. dirty data is written back to memory and
other blocks are discarded). Conversely, when a color (say ck)
is ‘taken away’ from a core (say k), the blocks of core k in
cache color ck are flushed and then, the regions of core k,
which were mapped to ck, are now mapped to some other

color(s) of core k. Change in mapping is accomplished by
using the mapping table (Section III-A). The time taken in
running the algorithm is accounted in Section VI-B.

The existing set level allocation schemes turn off cache at
power-of-two set counts [29], [30] and hence, the change in
set-decoding on reconfigurations necessitates flushing a large
number of blocks. In contrast, with MASTER, cache recon-
figuration changes the set locations of only those addresses
which were (or are going to be) stored in the transferred colors.
Thus, MASTER incurs smaller reconfiguration overhead than
the previous schemes. Compared to the lazy reconfiguration
approach [23], [28], the reconfiguration scheme of MASTER
is simpler, requires less state storage and always maintains
consistency. Reconfigurations happen only at most once every
interval which is of the order of a few million cycles and
hence, the overhead of reconfigurations is amortized over the
interval length. Indeed, our results (Section VII) show that
MASTER keeps increase in number of DRAM accesses small
(less than 0.5 per kilo instructions) and this confirms that the
reconfiguration overhead of MASTER is small.

VI. EXPERIMENTAL METHODOLOGY

A. Simulation Environment and Workload

We conduct out-of-order simulations using interval core
model in Sniper x86-64 multi-core simulator [22], which has
been verified against real hardware. Each core has a 128-entry
ROB, dispatch width of 4 micro-operations and frequency of
2.8GHz. L1I and L1D caches are private to each core and
L2 cache is shared among the cores. Both L1I and L1D
are 32KB, 4-way, LRU caches with 2 cycle latency. The
L2 cache is unified 8-way, LRU and its size for 2 and 4-
core simulations are 4MB and 8MB respectively. This range
of cache sizes are typical in commercial processors [4], [5],
[48]. L2 latency for baseline simulations is 12 cycles and for
MASTER, DCT and WAC (Section VI-B), it is 13 cycles since
they all use gated Vdd scheme. Main memory latency is 196
cycles and memory queue contention is also modeled. For 2-
core configuration, peak memory bandwidth is 12.8 GB/s and
for 4-core configuration, it is 25.6 GB/s. Interval length is 5M
cycles.

We use all 29 SPEC CPU2006 benchmarks with ref in-
puts. For workload construction, the benchmarks are classified
following a methodology similar to Jiang et al. [16]. Based
on the change in L2 miss-rate from a 4MB L2 to 64KB L2,
benchmarks were sorted and then classified into two groups
namely high-gain (H) and low-gain (L) such that each group
has nearly half the benchmarks. This is shown in Table I.

TABLE I
BENCHMARK CLASSIFICATION

High(H) astar(As), bzip2(Bz), calculix(Ca), dealII(Dl)
gcc(Gc), gemsFDTD(Gm), gromacs(Gr), lbm(Lb),
leslie3d(Ls), omnetpp(Om), soplex(So)
sphinx(Sp), xalancbmk(Xa), zeusmp(Ze)

Low(L) bwaves(Bw), cactusADM(Cd), gamess(Ga), gobmk(Gk),
h264ref(H2), hmmer(Hm), libquantum(Lq)
mcf(Mc), milc(Mi), namd(Nd), perlbench(Pe)
povray(Po), sjeng(Sj), tonto(To), wrf(Wr)

7

TABLE II
WORKLOADS FOR 2 AND 4 CORE SYSTEMS. HxLy SHOWS THAT THE

WORKLOAD HAS x HIGH-GAIN AND y LOW-GAIN BENCHMARKS

2-core workloads
H2L0 T1(AsDl), T2(GcLs), T3(GmGr), T4(LbXa), T5(BzLs)
H1L1 T6(SoMi), T7(ZeCd), T8(CaTo), T9(SpMc), T10(OmLq)
H0L2 T11(SjWr), T12(BwNd), T13(HmGa), T14(GkH2), T15(PePo)

4-core workloads
H4L0 F1(SoGrZeLb), F2(OmSpGmGc), F3(BzGrLsGm)
H3L1 F4(LsZeOmLq), F5(GmCaLbCd), F6(CaAsXaMc)
H2L2 F7(BzDlGaMc), F8(SpGcLqHm), F9(XaLbMiGk)
H1L3 F10(SoNdMiBw), F11(DlCdGkGa), F12(AsPeToWr)
H0L4 F13(BwPoNdH2), F14(HmSjPoH2), F15(SjToWrPe)

Using this classification, multiprogrammed workloads are
randomly constructed with different combinations of H and L
benchmarks (Table II). T1 to T15 are two-core workloads and
F1 to F15 are four-core workloads. Except for completing the
left-over groups, each SPEC benchmark is used exactly once
for 2-core workloads and exactly twice for 4-core workloads.

The evaluation metrics used are shown in Table III. Here

TABLE III
EVALUATION METRICS USED

Percent Energy Saved ((E(base)− E(scheme))× 100)/E(base)
Weighted Speedup [23] Σn(IPCn(scheme)/IPCn(base))/N
Fair Speedup [23] N/Σn(IPCn(base)/IPCn(scheme))

scheme refers to either MASTER, DCT or WAC and E shows
the total energy, as defined in Section IV.

Each benchmark was fast-forwarded for 10B instructions
and the workloads were simulated till each core completes at
least 500M instructions. A core that has finished its 500M
instructions is allowed to run, but for computation of fair
speedup and weighted speedup, its IPC is recorded only
for 500M instructions, following previous works [12], [26],
[39]. Energy values are recorded for entire execution, fol-
lowing [14], since this enables us to account for the effect
of increased execution time on energy consumption. Across
the workload, average value of fair speedup and weighted
speedups are calculated as geometric means (Gmean) of per-
workload improvements. For all the other quantities reported
in the paper, average values are calculated as arithmetic means
(Amean). To gain insights, we also present results on the
following two quantities. The first is ActiveRatio, which is
defined as the active cache area fraction, averaged over the
entire simulation length [10]. For any technique, ActiveRatio
shows its aggressiveness of cache turnoff and thus, gives an
estimate of effective cache capacity used. The second is abso-
lute increase in DRAM accesses per kilo instructions (APKI)
due to use of a scheme, over baseline. This is calculated as
(APKI(scheme)−APKI(base)). Through this, we measure the
increase in both L2 misses and writebacks due to cache turnoff
and reconfigurations. APKI is very useful since it enables us
to measure off-chip traffic or in other words, the effect of
cache management on main memory. We have also checked
the increase in L2 misses and writebacks individually and have
found similar trends as in DRAM access increase. We report
absolute difference values and not the relative difference,
following previous works [29], [49].

B. Comparison with Other Techniques

Decay Cache Technique (DCT): DCT [10] works by
turning off a block which has not been accessed for the
duration of ‘decay interval’ (DI). Following [10], [33], DCT
is implemented using gated Vdd and hierarchical counters;
both tag and data arrays are decayed and latency of waking
up decayed block is assumed to be overlapped with memory
latency. For computing DI, we used competitive algorithms
theory [10]. As shown in Section VI-C, a 4MB, 8-way L2
cache has a leakage power consumption of 1.39 Watts and
dynamic access energy of DRAM is 70nJ. Hence, for 2.8GHz
frequency, the leakage energy per cycle per block for L2 is
1.39 /(2.8×65536) nJ. Thus, the ratio of DRAM access energy
and L2 leakage energy per cycle per block is 9.2M cycles.
Hence, we take the value of decay interval as 9.2M cycles.

Way Adaptable Cache (WAC) Technique: WAC [13]
saves energy by keeping only few MRU (most recently used)
ways in each set of the cache active. WAC computes the ratio
(call it Z) of hits to the least recently used active way and the
MRU way. It also uses two threshold values, viz. T1 and T2.
When Z < T1, it is assumed that most cache accesses of the
program hit near MRU ways and hence, if more than two ways
are active, a single cache way is turned off. Conversely, when
Z > T2, cache hits are distributed over different ways and
hence, a single cache way is turned on [13]. WAC checks for
possible reconfiguration after every K cache hits. Following
[13], we take T1 = 0.005, T2 = 0.02, K = 100, 000 and use
gated Vdd for hardware implementation.

We have chosen these techniques, since, like MASTER, they
both use state-destroying leakage control. Also, DCT turns
off cache at block granularity (fine granularity), while WAC
turns off cache at way granularity (coarse granularity) and
hence, these techniques help us evaluate MASTER against
different energy saving mechanisms. Time overhead of running
MASTER, DCT and WAC energy saving algorithms is taken
as 500, 300 and 20 cycles, respectively; and when cache is
reconfigured, all the three techniques incur additional 600
cycles average overhead. The reasoning for choosing these
values of algorithm overhead is as follows. The decision
mechanism of WAC only requires division for computation
of Z and comparison with T1 and T2; and thus, its execution
overhead is quite small (20 cycles). DCT uses hierarchical
counters where global counter sends ticks for all the cache-
block counters [10]. Thus, the decision mechanism of DCT
includes comparison of all the 2-bit block counters with zero
and assuming that some parallelism and/or pipelining is used
to reduce the total overhead, we conservatively chose the
overhead as 300 cycles. The decision mechanism of MASTER
includes selecting candidate color values, estimating core
energy values, configuration space reduction, estimating total
energy values and choice of best configuration. MASTER
does not scan per-block counters and computes energy for a
small number (viz. 16+17) of configurations. Thus, assuming
that by using some parallelism and/or pipelining the overhead
can be reduced, we conservatively chose the overhead as 500
cycles. We believe that these overhead values are reasonable,
reflecting the relative overhead of different techniques and also

8

comparing well with the typical overhead values assumed in
the literature, for example [50].

We have also experimented with the statically, equally-
partitioned cache. On average, for 2 and 4 core configurations,
this scheme leads to nearly 2% and 4% loss in energy com-
pared to the shared baseline, respectively. Hence, on taking
this scheme as the baseline, the savings of MASTER will be
even larger. For sake of brevity, we omit these results.

C. Energy Modeling

As stated in Section IV, we model the energy spent in L2
cache, DRAM and the energy cost of algorithm execution.
We use the following notations. P Leak

xyz and EDyn
xyz show the

leakage energy per second and the dynamic energy per access,
respectively, in a component xyz (e.g. L2, DRAM and RCE).
Gf and Df (= 1 − Gf) show the fraction of EDyn

L2 , which
is spent in accessing data array and tag array, respectively.
DEL2 and LEL2 show the total dynamic and leakage energy
consumed in L2. Etran shows the total energy consumed in
block transitions and Eχ shows the energy consumed in
a single block transition. Tran shows the number of block
transitions. In an interval, FA, W , ML2 and HL2 show the
active fraction of cache, number of active ways, L2 misses
and L2 hits respectively. Assoc shows L2 associativity. Time
denotes the time length of an interval in seconds. ADRAM and
ARCE show the number of DRAM accesses and RCE accesses,
respectively. Υ shows the area overhead of gated Vdd cell as
a fraction of area of the normal cell. Poff shows the leakage
power consumption at low leakage as a fraction of normal
leakage power, P Leak

L2 .
For computing L2 leakage energy, we account for the

consumption of both active and low-leakage portion of the
cache and also assume that the increase in area due to the use
of gated Vdd leads to an increase in leakage energy in the same
proportion. The L2 dynamic energy in accessing data array is
assumed to scale with the number of active ways [11], [15],
[51] and an L2 miss is assumed to consume twice the dynamic
energy as that of an L2 hit [29], [32]. Thus, we get

EL2 = LEL2 +DEL2 (6)

LEL2 = P Leak
L2 (1 + Υ)× (FA + (1− FA)Poff)× Time (7)

DEL2 = EDyn
L2 × (2ML2 +HL2)× (Gf +

Df ×W

Assoc
) (8)

EDRAM = P Leak
DRAM × Time + EDyn

DRAM ×ADRAM (9)

EAlgo = Etran + EDyn
RCE ×ARCE + P Leak

RCE × Time (10)
Etran = Eχ × Tran (11)

Note that for baseline experiments, EAlgo = 0, Υ = 0
and FA = 1 and Poff value is not required. RCE energy
cost is only incurred in MASTER. For MASTER, DCT and
baseline, W = Assoc, since these techniques do not turn off
the cache ways. Based on CACTI, we take Gf= 0.03 and
Df= 0.97 for all cache sizes. For MASTER, DCT and WAC,
FA represents the fraction of active colors, active blocks and
active ways, respectively. For gated Vdd scheme, Poff = 0.03
and Υ = 0.05 [21], which applies to MASTER, DCT and
WAC. The values of P Leak

L2 and EDyn
L2 are obtained using CACTI

[44] assuming 8-bank, 8-way at 32nm and they are shown in
Table IV. P Leak

DRAMand EDyn
DRAM are taken as 0.18 Watt and 70 nJ,

respectively [29], [52] and Eχ is taken as 2 pJ [29].
The energy values of RCE are computed using CACTI [44]

and Eq. 2. Since RCE only stores tags, we take the energy
values of tag arrays only. These values act as upper bounds
of RCE energy consumption, since without data arrays, dirty
bits etc., RCE can be implemented even more efficiently. The
values of P Leak

RCE and EDyn
RCE are shown in Table IV, assuming 8B

block size and a single bank structure. Noting that for every
64 L2 accesses, RCE is accessed only 7 times, we conclude
that the energy consumption of RCE is a very small fraction
of L2 energy consumption.

TABLE IV
ENERGY VALUES FOR L2 CACHE AND CORRESPONDING N -CORE RCE

L2 cache RCE

Cache E
Dyn
L2 P Leak

L2 Number of E
Dyn
RCE P Leak

RCE
Size (nJ/access) (Watt) cores (N) (nJ/access) (Watt)
4MB 0.289 1.39 2 0.005 0.006
8MB 0.438 2.72 4 0.016 0.023

VII. RESULTS AND ANALYSIS

A. Example of Working of MASTER

To get insights into working of MASTER, we first show
examples of cache partitioning and reconfiguration taking
place with selected workloads in Figure 4. The workloads
have been selected to illustrate different types of patterns
of cache allocation. For 2-core workloads, we see that for
T3(gemsFDTD, gromacs), both benchmarks are in the H
category (refer Table II) and hence, they compete for cache,
and MASTER algorithm is able to turn-off some fraction
of cache for saving energy. For T10(omnetpp, libquantum),
libquantum is a streaming benchmark, while omnetpp has high
cache demand and hence, the algorithm allocates most of the
cache to omnetpp and turns off very small fraction of cache.
For T15(perlbench, povray), both benchmarks are in the L
category and hence, MASTER algorithm reduces their cache
quota and turns off a large amount of cache for saving energy.

Similarly, for 4-core workloads we see that for F3(bzip2,
gromacs, leslie3d, gemsFDTD), all benchmarks are in the
H category and hence, they compete for cache and a
small fraction of cache is turned-off for saving energy. For
F9(xalancbmk, lbm, milc, gobmk), the cache quota of different
benchmarks settles after some time. Also, milc is a streaming
benchmark and hence, its cache quota is significantly reduced
since that does not harm its performance. Similarly the cache
quota of lbm is reduced, while that of xalancbmk is increased
from the initial quota since the performance of xalancbmk
is improved from the extra cache allocation. Finally, for
F15(sjeng, tonto, wrf, perlbench), all the benchmarks are in
the L category and hence, MASTER algorithm turns-off a
large fraction of cache for saving energy without hurting
performance.

Also note that different workloads take different execution
time depending on the time required for finishing the slowest

9

 0

 32

 64

 96

 128

N
um

be
r

of
 c

ol
or

s

Algorithm intervals

Two core workload -- T3(gemsFDTD,gromacs)

gemsFDTD
gromacs

 0

 32

 64

 96

 128

N
um

be
r

of
 c

ol
or

s

Algorithm intervals

Two core workload -- T10(omnetpp,libquantum)

omnetpp
libquantum

 0

 32

 64

 96

 128

N
um

be
r

of
 c

ol
or

s

Algorithm intervals

Two core workload -- T15(perlbench,povray)

perlbench
povray

 0
 32
 64
 96

 128
 160
 192
 224
 256

N
um

be
r

of
 c

ol
or

s

Algorithm intervals

Four core workload -- F3(bzip2,gromacs,leslie3d,gemsFDTD)

bzip2
gromacs
leslie3d

gemsFDTD

 0
 32
 64
 96

 128
 160
 192
 224
 256

N
um

be
r

of
 c

ol
or

s

Algorithm intervals

Four core workload -- F9(xalancbmk,lbm,milc,gobmk)

xalancbmk
lbm
milc

gobmk

 0
 32
 64
 96

 128
 160
 192
 224
 256

N
um

be
r

of
 c

ol
or

s

Algorithm intervals

Four core workload -- F15(sjeng,tonto,wrf,perlbench)

sjeng
tonto

wrf
perlbench

Fig. 4. Examples of working of MASTER for selected 2-core and 4-core workloads. Unallocated colors (empty portion of the graphs) are turned-off.

application. Hence, the number of algorithm intervals is also
different for different workloads.

B. Comparison of Energy Saving Techniques

Figures 5 and 6 show the results on energy saving, weighted
speedup and ActiveRatio. Other quantities are summarized in
Table V and figures for them are omitted for brevity. For 2
and 4-core system, energy savings of MASTER (DCT and
WAC) are 14.72 (9.43 and 10.18) and 11.16 (4.92 and 6.55),
respectively.

TABLE V
RESULTS ON FAIR SPEEDUP, ACTIVE RATIO AND DRAM APKI INCREASE

Fair speedup APKI Increase
N=2 N=4 N=2 N=4

MASTER 0.99 0.99 -0.51 0.17
DCT 0.98 0.98 0.55 0.53
WAC 0.99 0.99 0.16 0.23

Clearly, MASTER provides largest improvement in energy
efficiency, weighted speedup and fair speedup. With increasing

10

-10
 0

 10
 20
 30
 40
 50
 60
 70

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 Avg

% Energy saved (2-core system) MASTER DCT WAC

 0.9
 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 Avg

 Weighted Speedup (2-core system) MASTER DCT WAC

 0

 0.2

 0.4

 0.6

 0.8

 1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 Avg

 ActiveRatio (2-core system) MASTER DCT WAC

Fig. 5. Results on percentage energy saved, weighted speedup and ActiveRatio for 2 core system. MASTER provides largest energy savings.

N , intra-application interference increases and locality of
memory access stream decreases and hence, the energy saving
achieved by application-insensitive techniques such as DCT
and WAC decreases. This fact is confirmed by the results on
ActiveRatio which show that the average ActiveRatio values
with DCT and WAC are more than 0.69. In contrast, MASTER
turns off a large fraction of cache while keeping DRAM access
increase low and this translates into large energy savings.

With MASTER, fair speedup values are close to one. Thus,
by allocating cache in proportion to the cache demand of
individual applications, MASTER maintains fairness and does
not affect QoS (quality of service) or cause thread starvation.
Further, despite turning off and flushing a portion of L2,
MASTER reduces the DRAM APKI for many workloads,
such as T4, T6, T10, F9 etc. In fact, for 2-core system, on
average, DRAM APKI is reduced by 0.51. This is because,
by managing the cache quota of different applications and
containing the thrashing applications, MASTER reduces the
number of L2 misses and writebacks. DCT and WAC increase
DRAM APKI more than MASTER.

Looking into the essential energy saving mechanisms of
different techniques, we observe that DCT considers the access
intensity to cache block as a measure of its usefulness or
liveliness and uses this information to turn off the cache.
However, for many benchmarks and especially for streaming
ones such as libquantum and milc, access intensity shows up to
be a poor measure of data reuse and usefulness of a block and
hence, for most workloads, DCT does not save large amount
of leakage energy. With increasing N , the intra-application
interference reduces the opportunity of turning off the cache
even further. The advantage of DCT is that it turns off cache
at block granularity and hence, achieves larger energy saving
for some workloads such as T15.

WAC works by using ratio of hits in MRU and LRU
positions as a measure of locality present in the memory
access stream and turns off cache at way granularity, while
always keeping at least 2 ways active. Clearly, due to way

level allocation approach, WAC turns off cache only at coarse
granularity and reduces the associativity of the cache. The
advantage of WAC is that it always turns off least recently
used blocks in the LRU chain which are less likely to be reused
in the future. Further, by turning off ways, it also reduces the
dynamic energy consumed in accessing data array of the cache.

MASTER works by estimating energy consumption of a
few configurations and choosing a configuration with highest
energy efficiency. It takes into account the cache demands of
each application and hence, can easily account for streaming
or non-streaming applications. Further, MASTER enforces
strict cache quotas and alleviates inter-application interference,
which also helps in maintaining performance and fairness.
MASTER allocates cache at color granularity and hence it
does not hurt associativity. With MASTER, the contribution
of EAlgo in total memory subsystem energy consumption for
2 and 4 core systems is 0.25% and 0.39%, respectively.
Given the large energy saving achieved by MASTER, its
small overhead is justified. A limitation of MASTER is that
it allocates at least M/64 colors to each application and
hence, for applications with very small working set size, it
may lose the opportunity to turn off the cache further. This
limitation can be easily addressed by reducing the lower limit
(see Section III-B), depending on the typical working set size
of the applications and acceptable RCE overhead. Based on
our experiments, we have observed that M/64 color limit is
reasonable since it enables significant energy savings and also
avoids any possibility of performance degradation.

The aggressiveness with which an energy saving technique
should turn off the cache depends, not only on the application
behavior, but also on other factors such as relative energy
consumption of cache and other processor components. While
DCT and WAC cannot directly take other components into
account, their effect is implicitly seen in the choice of decay
interval in DCT and K, T1 and T2 in WAC. Thus, statically
choosing the optimal (or best) value(s) of the parameters in
these techniques is likely to require significant efforts and the

11

-10

 0

 10

 20

 30

 40

 50

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Avg

% Energy saved (4-core system) MASTER DCT WAC

 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Avg

 Weighted speedup (4-core system) MASTER DCT WAC

 0

 0.2

 0.4

 0.6

 0.8

 1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 Avg

 ActiveRatio (4-core system) MASTER DCT WAC

Fig. 6. Results on percentage energy saved, weighted speedup and ActiveRatio for 4-core system. MASTER provides largest energy savings.

values may also vary for different platforms and optimiza-
tion targets. In contrast, MASTER is capable of accounting
and directly optimizing for system (or subsystem) energy at
runtime and it can easily adjust its aggressiveness of cache
turnoff depending on the trade-off between energy saving and
performance loss from cache turnoff. In fact, the energy saving
approach of MASTER presented here can be easily extended
to optimize for overall system energy by merely

including the energy model of other processor components.

C. Sensitivity To Different Parameters
We henceforth focus exclusively on MASTER. We study its

sensitivity for different system parameters. In each case, only
a single parameter is changed from the default configuration
and the results are shown in Table VI. Wherever applicable,
for changed parameters, the energy values such as EDyn

RCE etc.
were computed as shown in Section VI-C. For sake of brevity,
we omit these values. In all cases, the average fair speedup is
more than 0.97 and hence, these results are also omitted.

The following two parameters apply to MASTER technique.
Interval length: To see the possibility of reducing recon-

figuration overhead, we change the interval length to 10M
cycles. As shown in Table VI, this slightly reduces energy
saving and slightly improves performance, which is expected.
Thus, MASTER can work at coarse interval sizes and is not
very sensitive to the choice of a specific interval length.

Sampling ratio (Rs): We change Rs in RCE to 128. From
Table VI, we observe a small reduction in energy saving,
which is due to reduced accuracy in profiling information,
although the energy savings are still large. Thus, at the cost
of slightly reduced energy saving, the overhead of RCE can
be further reduced.

The following two parameters apply to both baseline and
MASTER.

Cache associativity: On changing L2 associativity (Assoc)
to 16, while keeping the size same, we observe that MASTER
still offers large energy savings (Table VI).

TABLE VI
ENERGY SAVING, WEIGHTED SPEEDUP (WS) AND APKI INCREASE FOR
DIFFERENT PARAMETERS. DEFAULT PARAMETERS: INTERVAL LENGTH =

5M CYCLE, Rs = 64, ASSOC = 8, LRU POLICY. RESULTS WITH DEFAULT
PARAMETERS ARE ALSO SHOWN.

% Energy Saved WS APKI Increase
N=2 N=4 N=2 N=4 N=2 N=4

Default 14.7 11.2 0.99 0.99 -0.51 0.17
Interval=10M 14.0 11.6 1.00 1.00 -0.68 -0.17
Rs = 128 12.9 10.3 0.99 0.99 0.04 0.61

Assoc = 16 15.8 13.9 0.99 0.99 -0.51 0.23
FIFO policy 12.9 12.8 0.99 1.00 -0.54 -0.18
PLRU policy 14.3 12.0 0.99 0.99 -0.45 0.14

Replacement policy: We first change the replacement
policy to FIFO (first-in, first-out) and then to MRU bits based
pseudo-LRU (PLRU) [47]. The large values of energy savings
(Table VI) show that MASTER works independent of the
replacement policy used.

D. The Case When The Number Of Programs Is Less Than
The Number Of Cores

As discussed before, in several cases the actual number
of programs running on a processor is much less than the
number of cores. This is especially expected to be true for
future processors which would have a large number of cores.
To test the effectiveness of MASTER in such cases, we
simulate 4-core configuration with 2-core workloads (shown
in Section VI-A). We run one program each on the first two
cores while the other two cores remain idle. The results are
shown in Figure 7. Using MASTER, we observe an energy
saving of 25.3%, weighted speedup of 0.96, fair speedup of
0.96 (considering only the two active cores for both weighted
speedup and fair speedup), DRAM APKI increase of 1.29
and active ratio of 0.33. Clearly, since in this case, the cache
size available to each core is large, MASTER aggressively
reconfigures the cache to provide large energy saving.

12

 0
 10
 20
 30
 40
 50
 60
 70
 80

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 Avg

% Energy saved (4-core system, 2-core workload) MASTER

 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1
 1.02

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 Avg

 Weighted Speedup (4-core system, 2-core workload) MASTER

 0

 0.2

 0.4

 0.6

 0.8

 1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 Avg

 ActiveRatio (4-core system, 2-core workload) MASTER

Fig. 7. Results on percentage energy saved and weighted speedup for 4 core system with 2-core workloads

VIII. CONCLUSION

In this paper, we have presented MASTER, a cache leakage
energy saving approach for multicore caches. MASTER uses
coloring scheme to partition cache space at the granularity
of a single cache color. By using low-overhead RCE for
estimating performance and energy of running applications
at multiple cache sizes, MASTER periodically reconfigures
the LLC to most energy efficient configuration. Out-of-order
simulations performed using SPEC06 workload have shown
that MASTER is effective in saving memory subsystem energy
and does not harm performance or cause unfairness. Our future
work will focus on synergistically integrating MASTER with
other techniques for saving energy (e.g. dynamic energy saving
techniques, cache compression, etc.) and testing it for a system
with a larger number of cores.

REFERENCES

[1] S. Borkar and A. Chien, “The future of microprocessors,” Communica-
tions of the ACM, vol. 54, no. 5, 2011.

[2] IBM, http://www-03.ibm.com/systems/power/hardware/.
[3] N. Kurd et al., “Westmere: A family of 32nm IA processors,” IEEE

International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pp. 96–97, 2010.

[4] http://ark.intel.com/products/55452.
[5] http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/3000-

SERIES-PLATFORM/3300/Pages/3300-series-processors.aspx#4.
[6] “International technology roadmap for semiconductors (ITRS),”

www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf, 2011.
[7] S. Borkar, “Design challenges of technology scaling,” Micro, IEEE,

vol. 19, no. 4, pp. 23 –29, Jul. 1999.
[8] S. Rodriguez and B. Jacob, “Energy/power breakdown of pipelined

nanometer caches (90nm/65nm/45nm/32nm),” ISLPED, pp. 25–30,
2006.

[9] M. Monchiero, R. Canal, and A. González, “Design space exploration
for multicore architectures: a power/performance/thermal view,” Inter-
national Conference on Supercomputing, pp. 177–186, 2006.

[10] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting gener-
ational behavior to reduce cache leakage power,” ISCA, pp. 240–251,
2001.

[11] D. H. Albonesi, “Selective cache ways: on-demand cache resource
allocation,” MICRO, pp. 248–259, 1999.

[12] K. T. Sundararajan et al., “Cooperative partitioning: Energy-efficient
cache partitioning for high-performance CMPs,” HPCA, pp. 1–12, 2012.

[13] A. Bardine et al., “Leveraging data promotion for low power D-NUCA
caches,” 11th EUROMICRO Conference on Digital System Design
Architectures, Methods and Tools, pp. 307–316, 2008.

[14] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration and
partitioning for energy optimization in real-time multi-core systems,”
DAC, pp. 948–953, 2011.

[15] I. Kotera, K. Abe, R. Egawa, H. Takizawa, and H. Kobayashi, “Power-
aware dynamic cache partitioning for CMPs,” Transactions on High-
performance Embedded Architectures and Compilers III, pp. 135–153,
2011.

[16] X. Jiang et al., “ACCESS: Smart scheduling for asymmetric cache
CMPs,” HPCA, pp. 527–538, 2011.

[17] S.-H. Yang et al., “An integrated circuit/architecture approach to reduc-
ing leakage in deep-submicron high-performance I-caches,” HPCA, pp.
147–157, 2001.

[18] R. Reddy and P. Petrov, “Cache partitioning for energy-efficient and
interference-free embedded multitasking,” ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 9, no. 3, p. 16, 2010.

[19] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache
architecture for embedded systems,” ISCA, pp. 136–146, 2003.

[20] W. Zhang et al., “Compiler-directed instruction cache leakage optimiza-
tion,” in MICRO-35, 2002, pp. 208–218.

[21] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. Vijaykumar, “Gated-
Vdd: a circuit technique to reduce leakage in deep-submicron cache
memories,” ISLPED, pp. 90–95, 2000.

[22] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,”
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1–12, 2011.

[23] J. Lin et al., “Gaining insights into multicore cache partitioning: Bridg-
ing the gap between simulation and real systems,” HPCA, pp. 367–378,
2008.

[24] J. Lin et al., “Enabling software management for multicore caches
with a lightweight hardware support,” International Conference on High
Performance Computing Networking, Storage and Analysis, 2009.

[25] S. Mittal, Z. Zhang, and Y. Cao, “CASHIER: A Cache Energy Saving
Technique for QoS Systems,” 26th International Conference on VLSI
Design and 12th International Conference on Embedded Systems (VL-
SID), pp. 43–48, 2013.

[26] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” MICRO, pp. 423–432, 2006.

[27] K. Kedzierski et al., “Power and performance aware reconfigurable
cache for CMPs,” IFMT, 2010.

[28] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable caches and
their application to media processing,” ISCA, pp. 214–224, 2000.

[29] S. Mittal and Z. Zhang, “EnCache: Improving cache energy efficiency
using a software-controlled profiling cache,” IEEE International Con-
ference On Electro/Information Technology, 2012.

13

[30] S. Yang, B. Falsafi, M. Powell, and T. Vijaykumar, “Exploiting choice
in resizable cache design to optimize deep-submicron processor energy-
delay,” HPCA, pp. 151–161, 2002.

[31] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: simple techniques for reducing leakage power,” ISCA, pp. 148–
157, 2002.

[32] H. Hanson et al., “Static energy reduction techniques for microprocessor
caches,” IEEE TVLSI, vol. 11, no. 3, pp. 303 –313, 2003.

[33] Y. Li et al., “State-preserving vs. non-state-preserving leakage control
in caches,” DATE, vol. 1, pp. 22–27, 2004.

[34] J. L. Ayala et al., “Energy-aware compilation and hardware design for
vliw embedded systems,” International Journal of Embedded Systems,
vol. 3, no. 1, pp. 73–82, 2007.

[35] H. Homayoun, A. Veidenbaum, and J. Gaudiot, “Adaptive techniques
for leakage power management in L2 cache peripheral circuits,” ICCD,
pp. 563–569, 2008.

[36] L. Li et al., “Leakage energy management in cache hierarchies,” PACT,
pp. 131 – 140, 2002.

[37] S. Dropsho et al., “Integrating adaptive on-chip storage structures for
reduced dynamic power,” PACT, pp. 141–152, 2002.

[38] A. Udipi, N. Muralimanohar, and R. Balasubramonian, “Non-uniform
power access in large caches with low-swing wires,” International
Conference on High Performance Computing (HiPC), pp. 59–68, 2009.

[39] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient fine-grain
cache partitioning,” ISCA, pp. 57–68, 2011.

[40] R. Kessler and M. Hill, “Page placement algorithms for large real-
indexed caches,” ACM TOCS, vol. 10, no. 4, pp. 338–359, 1992.

[41] J. Abella, A. González, X. Vera, and M. O’Boyle, “IATAC: a smart
predictor to turn-off L2 cache lines,” ACM Transactions on Architecture
and Code Optimization, vol. 2, no. 1, pp. 55–77, 2005.

[42] H. Zhou, M. Toburen, E. Rotenberg, and T. Conte, “Adaptive mode
control: A static-power-efficient cache design,” ACM Transactions on
Embedded Computing Systems, vol. 2, no. 3, pp. 347–372, 2003.

[43] T. Puzak, “Cache memory design,” Ph.D. dissertation, University of
Massachusetts, 1985.

[44] CACTI 6.5, http://www.hpl.hp.com/research/cacti/.
[45] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of shared

cache memory,” J. Supercomput., vol. 28, no. 1, pp. 7–26, 2004.
[46] A. Naveh et al., “Power and thermal management in the intel core duo

processor,” Intel Technology Journal, vol. 10, no. 2, pp. 109–122, 2006.
[47] “Performance evaluation of cache replacement policies for the SPEC

CPU2000 benchmark suite,” Al-Zoubi, H. and Milenkovic, A. and
Milenkovic, M., pp. 267–272, 2004.

[48] R. Kumar and G. Hinton, “A family of 45nm IA processors,” IEEE
International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pp. 58–59, 2009.

[49] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm, “RapidMRC:
approximating L2 miss rate curves on commodity systems for online
optimizations,” ASPLOS, pp. 121–132, 2009.

[50] X. Ding, D. S. Nikolopoulos, S. Jiang, and X. Zhang, “Mesa: reducing
cache conflicts by integrating static and run-time methods,” in IEEE
ISPASS, 2006, pp. 189–198.

[51] M. Powell, A. Agrawal, T. Vijaykumar, B. Falsafi, and K. Roy, “Reduc-
ing set-associative cache energy via way-prediction and selective direct-
mapping,” MICRO, pp. 54–65, 2001.

[52] H. Zheng et al., “Decoupled DIMM: building high-bandwidth memory
system using low-speed dram devices,” ISCA, pp. 255–266, 2009.

Sparsh Mittal received his B.Tech in Electronics and Communications
Engineering from the IIT, Roorkee, India. He was the graduating topper of his
batch and his major project was awarded institute silver medal. At present,
he is pursuing his PhD in Electrical and Computer Engineering at Iowa
State University, USA. He has been awarded scholarship and fellowship from
IIT Roorkee and ISU. His research interests include memory system power
efficiency, cache architectures in multicore systems and real-time systems.

Yanan Cao received his B.S. in Electronics Engineering from the Fudan
University, Shanghai, China. At present, he is pursuing his PhD in Electrical
and Computer Engineering at Iowa State University, USA. He has been
awarded scholarship and fellowship from both Fudan University and ISU.
His research interests include design of cache and memory architectures.

Zhao Zhang received the BS and MS degrees in computer science from
Huazhong University of Science of Technology, China, in 1991 and 1994,
respectively, and the PhD degree in computer science from the College
of William and Mary in 2002. He is an associate professor of computer
engineering at Iowa State University. His research interests include computer
architecture, parallel and distributed systems, and architectural support for
system security.

