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Abstract—Recent trends of CMOS scaling and use of large
last level caches (LLCs) have led to significant increase in the
leakage energy consumption of LLCs and hence, managing
their energy consumption has become extremely important in
modern processor design. The conventional cache energy saving
techniques require offline profiling or provide only coarse gran-
ularity of cache allocation. We present FlexiWay, a cache energy
saving technique which uses dynamic cache reconfiguration.
FlexiWay logically divides the cache sets into multiple (e.g. 16)
modules and dynamically turns off suitable and possibly different
number of cache ways in each module. FlexiWay has very
small implementation overhead and it provides fine-grain cache
allocation even with caches of typical associativity, e.g. an 8-way
cache. Microarchitectural simulations have been performed using
an x86-64 simulator and workloads from SPEC2006 suite. Also,
FlexiWay has been compared with two conventional energy saving
techniques. The results show that FlexiWay provides largest
energy saving and incurs only small loss in performance. For
single, dual and quad core systems, the average energy saving
using FlexiWay are 26.2%, 25.7% and 22.4%, respectively.

Index Terms—Cache leakage energy saving, way-based cache
reconfiguration, energy efficiency, low-power, green computing.

I. INTRODUCTION

A large value of power consumption of modern processors
has been identified as the most severe obstacle in scaling
their performance [1]. Further, due to several recent trends,
the energy consumption of large last-level caches (LLCs) is
becoming a significant fraction of processor energy consump-
tion. Since LLC is the last line of defense before hitting
the memory wall, modern processors are using increasingly
large LLCs to bridge the gap between the speed of processor
and main memory, for example, Intel’s 32nm Sandy Bridge
Core i7-3960X processor uses 15MB LLC. Figure 1 shows
the die photo of this processor [2]. Clearly, LLCs consume
a large fraction of the die area. Further, with recent CMOS
technology generations, the leakage energy consumption has
been dramatically increasing [3] and hence, leakage energy
consumption of large LLCs is also on rise. The increased
levels of power consumption also increase the cost of cooling
and lead to increased complexity in chip packaging. For
these reasons, managing the power consumption of LLCs has
become extremely important in modern processor design.

Conventional cache energy saving techniques have several
limitations. Some techniques use offline profiling to find the
value of its parameters for each application [4]–[7]. However,

Fig. 1. Die Photo of Intel’s 32nm Sandy Bridge Core i7-3960X [2]. Notice
that LLC consumes a significant amount of chip area.

in multicore processors the possible combinations of appli-
cations increase greatly and hence, offline profiling becomes
difficult. The selective-way based techniques [6]–[10] provide
only few coarse grain partitions (at most, as many as the
number of ways). The selective-sets [5], hybrid (selective-
sets and selective-ways) [11] and cache-coloring [12] based
techniques alter set-decoding of the cache and hence, these
techniques incur large flushing overhead on reconfiguration.

In this paper, we present FlexiWay, a dynamic cache recon-
figuration based approach for saving leakage energy. FlexiWay
works on the following observation. It is well-known that
accesses to the cache sets are non-uniformly distributed; thus,
some sets see many more cache accesses than the other sets.
Further, the associativity requirement of different sets is also
different. To illustrate this, we assume that the LLC is an L2
cache and logically divide the L2 sets into multiple (e.g. 8)
groups called modules and term the ways of a module as sub-
ways. Further, in Figure 2, we show the number of hits to dif-
ferent sub-ways of the L2 cache for h264ref benchmark. From
the figure, it is clear that the modules marked in light gray (viz.
2,3,4,5) require larger associativity than those marked in dark
gray (viz. 0,1,6,7). For such cases, conventional selective-ways
technique turn-off exactly same number of ways for all the
modules (or sets). In contrast, FlexiWay works by turning-
off suitable and possibly different number of cache ways in
each module. This provides fine-grain cache reconfiguration
with caches of typical associativity (e.g. 8 way cache). Thus,
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FlexiWay avoids the need of using caches of large associativity
for achieving fine-grain reconfiguration.

No. of Hits to Different Ways of Different Modules of h264ref Benchmark
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Fig. 2. Number of hits to different ways of different modules for h264ref
benchmark. X-axis shows way number in LRU ordering chain in decreasing
order of recency. L2 size is 4MB, execution length is 200M instructions and
remaining parameters are shown in Section VII. For all sub-plots, Y-axis
ranges from 0 to 74,000. Notice that modules marked in light gray require
larger associativity than those marked in dark gray.

We evaluate FlexiWay using out-of-order simulations with
Sniper x86-64 simulator and multi-programmed workloads
from SPEC2006 suite (Section VII). We compare it to way
adaptable cache technique (WAC) [10] which uses selective-
ways approach and decay cache technique (DECAY) [13] (see
Section VII-D for details). The results show that FlexiWay
saves largest amount of memory subsystem (LLC+DRAM)
energy (Section VIII). Over a shared baseline LLC, for single,
dual and quad-core systems, the average savings in memory
subsystem energy by using FlexiWay are 26.2%, 25.7% and
22.4%, respectively. Using WAC, these values are only 13.4%,
13.4% and 10.6%, respectively and using DECAY, these
values are 23.5%, 20.2% and 16.6%, respectively. Further,
FlexiWay incurs only small loss in performance and does not
cause unfairness. Additional experimental results confirm that
FlexiWay works well for a wide variety of system parameters.

II. BACKGROUND AND RELATED WORK

Several previous works report the phenomenon of unbal-
anced accesses to different sets of the cache. Rolán et al. [14]
propose a technique to achieve balanced accesses to different
sets by extending the space available with underutilized sets
to the heavily utilized sets. Their technique aims to improve
performance and does not turn-off cache blocks. Moreover, it
achieves balancing at the level of individual set. In contrast,
FlexiWay improves energy efficiency by cache reconfiguration
while minimizing performance loss and works at the level of a
module, which has much larger number of sets (e.g. 512 sets).

V-way cache technique [15] increases the number of tag-
store entries relative to the number of data lines and uses
this to change the associativity on a per-set basis. It breaks
the static one-to-one mapping between tags and data, and
thus increases decoding overhead and also necessitates serial
lookup. Heterogeneous way-size cache [16] uses different

number of sets in each cache way, and adapts the size of each
way according to the program requirement. Amorphous cache
[17] uses heterogeneous sub-caches, which allow adapting
the total cache size and/or set-associativity to the program
requirement. However, these techniques require significant
changes to the cache geometry and design. FlexiWay does not
require such changes, instead, it uses cache reconfiguration to
dynamically adapt the associativity for different modules.

Drowsy cache technique [18] uses state-preserving leakage
control for saving cache energy. The limitation of this tech-
nique is that it requires two voltage supplies which increases
the design complexity [18]. Also, it increases single-bit and
multiple-bit errors [19] which necessitate more complex error
detection/correction codes. Unlike a few techniques (e.g. [7]),
which use static cache reconfiguration, FlexiWay uses dynamic
cache reconfiguration which is important for realizing large en-
ergy savings, since the applications show a significant variation
in their behavior over their execution length. Several previous
cache energy saving techniques (e.g. [8], [20]) have been
evaluated without considering their impact on components,
other than cache. We include both LLC and DRAM energy
for a more comprehensive evaluation.

III. ENERGY MODEL

We now discuss our energy model and use the terms
introduced here in showing the working of FlexiWay in the
next section. In this paper, the LLC is an L2 cache, and based
on this FlexiWay can be easily shown to work for the case
when the LLC is an L3 cache. We model the energy spent in
L2 cache, DRAM and the overhead of algorithm (viz. energy
cost of block-transitions). Our notation is shown in Table I.

TABLE I
THE NOTATION USED IN THE PAPER

N Number of cores
EDyn

xyz Dynamic energy per access in xyz (L2 or DRAM)
PLeak
xyz Leakage energy per second in xyz (L2 or DRAM)
B Number of cache block transitions

Eχ, Etran Energy consumed in single and all block transitions
HL2, ML2 Number of L2 hits and misses

FA Active fraction of cache
T Time length of an interval (in seconds)
W L2 associativity
w Number of ways consulted in each cache access

ADRAM Number of DRAM accesses
Poff Leakage power consumption in low-power mode as a

fraction of normal leakage power, PLeak
L2

Υ Area overhead of gated Vdd memory cell as a fraction
of area of the normal memory cell.

FlexiWay and DECAY need to consult all the ways in an
access, and hence, for them, w = W . For WAC, w equals the
number of active cache ways, since it turns off equal number of
ways in all the sets. To compute L2 leakage energy, we account
for the power consumption of both active and low-leakage
portion of the cache. For computing L2 dynamic energy, an
L2 miss is assumed to consume twice the dynamic energy as
that of an L2 hit [11], [21]. The dynamic energy consumed in
each access scales with w [7], [9]. Thus,



E = EL2 + EDRAM + EAlgo (1)
EL2 = LEL2 +DEL2 (2)

LEL2 = PLeak
L2 (1 + Υ)(FA + (1− FA)Poff )× T (3)

DEL2 = EDyn
L2 × (2ML2 +HL2)× (

w

W
) (4)

EDRAM = PLeak
DRAM × T + EDyn

DRAM ×ADRAM (5)
EAlgo = Eχ ×B (6)

For baseline experiments, EAlgo = 0, FA = 1, Υ = 0
and Poff value is not required. All the three techniques, viz.
FlexiWay, WAC and DECAY use gated Vdd scheme [10], [13],
for which Υ = 0.05 and Poff = 0.03 [22]. The values of
EDyn

L2 and PLeak
L2 are obtained using CACTI [23] assuming

8-bank structure at 45nm. These values are shown in Table II
in section VII. EDyn

DRAM and PLeak
DRAM are taken as 70 nJ and

0.18 Watt, respectively [11], [24] and Eχ is taken as 2 pJ [11].

IV. FLEXIWAY: SYSTEM ARCHITECTURE

In this section, we first discuss the intuition behind working
of FlexiWay. Then, we discuss the method for dynamically col-
lecting profiling information. Finally, we discuss the criterion
for turning-off a sub-way.

A. Motivation and Main Idea

In contrast with two extremes, viz. fully set-associative
cache and direct-mapped cache, caches of typical set-
associativity (e.g. 4, 8 or 16 ways) provide a balance between
the goals of avoiding the conflict misses and reducing cache
access time. However, for several applications, different sets
show different set-associative requirements. The conventional
selective-ways based techniques turn-off exactly same number
of ways in all the sets of the cache. Because of this, these
techniques cannot achieve fine-grained cache reconfiguration,
since their reconfiguration granularity is limited by the number
of ways in the cache. Thus, to achieve fine-grained reconfigu-
ration, these techniques must use caches of higher associativity
which have significantly high access time and energy.

Clearly, turning off different number of cache ways in
each set can provide larger energy savings. Since collecting
profiling information for each set and reconfiguring on the
granularity of single set would incur prohibitive overhead, we
instead divide the sets into Q modules and change associativity
at the granularity of each module. Then, FlexiWay observes
the number of hits to different ways of all the modules and
uses this information to dynamically turn-off possibly different
number of ways in each module. Typical values of Q can
be 8, 16, 32 etc. FlexiWay keeps at least Wmin (≥ 2) ways
always on, since on keeping only one way turned-on, we get a
direct-mapped LLC, which may lead to severe cache conflicts.
By changing Wmin, a balance between energy saving and
performance loss can be achieved. Thus, FlexiWay provides
Q× (W −Wmin) levels of cache allocation granularity.

B. Collecting Profiling Information

To take reconfiguration decisions, FlexiWay uses dynamic
profiling. For this purpose, an auxiliary tag directory (ATD) is
used which uses set-sampling with a sampling-ratio (RS) of
64. Thus, it monitors only 1/64 fraction of the cache sets.

There are two possible methods for using ATD. First,
embedding the functionality of ATD in the main tag directory
(MTD) of L2 cache itself. Profiling information is collected
from only few sets, called leader sets and they do not un-
dergo cache turnoff. The remaining sets, called follower sets,
undergo cache turnoff based on the decision of the algorithm.
This is similar to previous work [25]. Second, using a separate
ATD. Since this ATD does not store data and uses large
sampling ratio, its overhead is small. For a tag-size of 30 bits,
the overhead of ATD is only 0.08% of the L2 cache. Unless
otherwise stated, in this paper we use the first method. In
Section VIII-B, we evaluate FlexiWay with the second method.
The results have shown that the both methods provide nearly
equal energy saving and performance.

The hits to a particular set in ATD count towards the module
in which that set is present. For each module, W counters are
used and a hit to a way in a set of ATD increments the counter
of that way in the corresponding module. For illustration, we
take a hypothetical case where a cache has 64 sets and Q = 4
and RS = 8. Then, as shown in Figure 3, the ATD has 8 sets,
and 2 ATD (leader) sets correspond to each module.
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Fig. 3. Illustration of profiling information collection using ATD leader sets,
assuming sampling ratio RS = 8, Q = 4 modules and a total of 64 sets.

We now take a realistic example and assume that cache
block size is 64B and associativity is 8 way. For a total size
of 4MB, a cache will have 8192 sets and for Q = 16, each
module will have 512 sets. For a sampling ratio of 64, the
ATD will have 128 sets. Thus, 8 ATD sets correspond to each
module. For meaningful sampling, we require that at least one
ATD set should be there in each module, thus if S shows the
number of L2 sets, then we require

S

QRS
> 1. Hence, for

Q = 16 and RS = 64, we require S > 1024, which is true



for a LLC with cache size greater than 512KB. This condition
easily holds for our experiments.

C. Taking Cache Reconfiguration Decision
We now show a simple analysis to derive the basis for

turning-off a sub-way. Turning-off a sub-way for time length
T saves leakage energy consumed in that sub-way, but it also
increases the dynamic energy of cache and DRAM depending
on the number of hits to that sub-way. Hence, a sub-way can
be turned-off if the benefit from turning off is greater than
the loss from turning-off. If H shows the number of hits to a
sub-way, for turning-off a sub-way, we require1

PLeak
L2 T

QW
(1− Poff )(1 + Υ) > H(EDyn

L2 + EDyn
DRAM ) (7)

Intuitively, the above equation shows that for small value of
H , the dynamic energy (right hand side) saved by keeping a
sub-way turned on will be smaller than the leakage energy
(left hand side) saved by turning off the sub-way. Thus, the
condition in Equation 7 is fulfilled when the number of hits
to this sub-way is less than a threshold (α), given by

α =
PLeak
L2 (1− Poff )(1 + Υ)T

QW (EDyn
L2 + EDyn

DRAM )
(8)

In this derivation, we have made some simplifying assump-
tions. We have neglected the effect of increase in execution
time due to cache turnoff for sake of simplicity. Also, we
assumed that a cache miss does not lead to a write-back.
On taking these overheads into account, α will be further
reduced since less number of misses can be tolerated. Since
these effects are different for different workloads; instead of
evaluating the overhead, we adopt a simpler approach: we
simply scale the value of α by a constant factor λ( ≤ 1.0)
to get the value of the threshold. Thus, α is given by

α =
PLeak
L2 (1− Poff )(1 + Υ)T

QW (EDyn
L2 + EDyn

DRAM )
× λ (9)

This approach makes the choice of M application-
independent and hence, unlike the parameters used in few
techniques (e.g. miss-bound in [5]), the need of offline pro-
filing is avoided. The experimental results have shown that
despite its simplicity, FlexiWay saves large amount of energy
and outperforms conventional cache energy saving techniques.
Also choice of λ also provides a knob for controlling aggres-
siveness of cache turn-off and thus offers flexibility to exercise
trade-off between performance loss and energy savings.

V. ENERGY SAVING ALGORITHM (ESA)
We now show the cache reconfiguration based energy saving

algorithm of FlexiWay. The algorithm runs after a fixed
interval size (e.g. 15M cycles). The algorithm collects counters
to different recency positions in the LRU set-associative chain
using ATD. In Algorithm 1, these are shown as L2Hit[0:Q−
1][0:W − 1].

1The energy-cost of block switching during turning off a sub-way is five
orders of magnitude smaller than leakage energy saving, and hence, is ignored.

Algorithm 1: FlexiWay Energy Saving Algorithm
Input: L2Hit[0:Q− 1][0:W − 1]
Output: IsSubWayOn[0:Q− 1][0:W − 1] showing which sub-ways of

different modules are turned-on.
1 Let IsSubWayOn[0:Q− 1][0:W − 1] denote the currently turned-on

sub-ways of different modules
2 foreach module x = 0 to Q− 1 do
3 bool didChangeHappen = FALSE
4 foreach sub-way v = Wmin to W − 1 do
5 /* Look for turned-off sub-ways. */
6 if IsSubWayOn[x][v] == FALSE then
7 /* Sub-way v of module x is off. See if

it can be turned-on. */
8 if L2Hit[x][v] > β then
9 didChangeHappen = TRUE

10 IsSubWayOn[x][v] = TRUE
11 foreach sub-way e = 2 to v − 1 do
12 if IsSubWayOn[x][v] == FALSE then
13 IsSubWayOn[x][v] = TRUE
14 end
15 end
16 end
17 end
18 end
19 if didChangeHappen == FALSE then
20 /* No sub-way could be turned on. */
21 foreach sub-way v = W − 1 to Wmin do
22 if IsSubWayOn[x][v] == TRUE then
23 /* Sub-way v of module x is on. See

if it can be turned off. */
24 if L2Hit[x][v] < α then
25 IsSubWayOn[x][v] = FALSE
26 else
27 break
28 end
29 end
30 end
31 end
32 end
33 return IsSubWayOn[0:Q− 1][0:W − 1]

The algorithm works as follows. In each of the module,
the algorithm first looks for turned-off sub-ways. If in the
ATD, the number of hits seen in any sub-way is greater than
β, then the sub-way can be turned on. To avoid (or reduce)
oscillation, the threshold (β) for waking up a sub-way is set
to be higher than the threshold for turning-off a sub-way. In
our experiments, we set β = α+ 50. If a turned-off sub-way
is turned-on, all sub-ways which are higher (nearer to MRU)
in LRU chain are also turned-on. This is because we provision
that all sub-ways, which are less recently used than a turned-
off sub-way, must also be turned-off and vice-versa.

In a module, if no sub-way has been turned-on, then the
algorithm looks for turning-off some sub-ways, using Eq. 9.
However, if a sub-way is found which cannot be turned-on,
the algorithm does not look further in that module for the
same reason mentioned above. The algorithm executes only
O(QW ) steps and in each step performs a few comparisons
and array look-ups, and thus its overhead is small.

VI. IMPLEMENTATION

Turning-off Cache Blocks: In this paper, we assume that
cache blocks are turned-off using gated Vdd scheme [22]. This
scheme inserts a “sleep” transistor between the ground (or
supply) and the SRAM cells of the cache line. When this



transistor is off, the stacking effect of this transistor reduces
the leakage current of SRAM cell to a near zero value [22].
We assume a specific implementation of gated Vdd (NMOS
gated Vdd, dual Vt, wide, with charge pump) which reduces
leakage energy by 97% and results in 5% area penalty and
a negligible increase in cache access latency [22]. We have
accounted for these overheads in our energy model.

Gated Vdd scheme has been used to achieve leakage control
at both coarse-grain [5], [8], [10], [12] and fine-grain level
[13], [21], [26]; and hence, it can be easily used for FlexiWay
also. For each of the Q modules, we use W −Wmin control
bits which control turning-off or turning-on of the sleep
transistor of that sub-way. Note that the hardware functionality
to turnoff cache blocks is already provided by state-of-the-art
commercial chips [27], [28].

Counters: FlexiWay uses counters for recording the num-
ber of hits to W ways of all the Q modules. For example, for
a typical 8-way cache with 16 modules and 64 bit counters,
the total storage required for counters is only 1KB, which
is very small. Since several processors already use counters
for operating system [13], and their energy consumption is
small compared to memory subsystem, we ignore the overhead
of counters. Also note that FlexiWay does not require tables
for offline profiling (unlike [6]) or per-block counters for
recording application-ownership or access intensity (unlike
[8], [13]). Also it does not require mapping table (unlike [12])
or changes to page table (unlike [29]).

Effect on Cache Access Time: FlexiWay provides fine
granularity with caches of typical associativity and hence, does
not require caches of large associativity which have higher
access latency. Unlike for drowsy cache technique [18], with
FlexiWay, reconfigurations happen only at the end of a large
interval and hence, block switching does not lie on the critical
access path. Also, unlike selective-sets or cache coloring (e.g.
[11], [12], [30]), FlexiWay does not change the set-decoding
and hence, it does not increase the cache access time.

Handling reconfigurations: When the number of ways
is increased, the extra ways are simply turned-on. When the
number of ways in reduced, the dirty blocks in ways to be
turned off are written-back and valid blocks are discarded.
Since reconfigurations happen infrequently, their overhead is
easily amortized over the interval length.

VII. EXPERIMENTAL METHODOLOGY

A. Simulation Environment and Workload

We evaluate FlexiWay using Sniper, a state-of-the-art x86-
64 multi-core simulator, which has been verified against real
hardware [31]. A few parameters used in the experiments
are shown in Table II. We use interval core model and each
core has 128-entry ROB and a dispatch width of 4 micro-
operations. The frequency is set to 2.2 GHz. The L2 cache is
shared among the cores, while L1I and L1D caches are private
to each core. All caches have a block size of 64B. Both L1D
and L1I are 32KB, 4-way, LRU caches and have a latency
of 2 cycles. The L2 cache is an 8-way, LRU cache with 12
cycle latency. The latency of main memory is 154 cycles and

memory queue contention is also modeled. Interval length is
15M cycles, λ is taken as 0.75 and Wmin is 2.

TABLE II
SOME PARAMETERS FOR SINGLE, TWO AND FOUR-CORE SYSTEMS

N =1 N =2 N =4
Cache Size (MB) 2 4 8
EDyn

L2 (nJ/access) 0.985 1.148 1.525
PLeak
L2 (Watt) 1.568 2.848 5.588

Number of Modules Q (for FlexiWay) 8 16 32
Memory Bandwidth (GB/s) 10 15 25

B. Evaluation Metrics

We show the results on percentage energy saved, weighted
speedup [30], fair speedup [30] and cache ActiveRatio (defined
as the average fraction of active cache blocks over entire
execution [13]). Further, we show the results on absolute
increase in L2 miss-per-kilo-instruction (MPKI). Through this,
the increase in L2 misses resulting from cache turnoff and
reconfigurations can be measured. We report absolute differ-
ence, instead of relative difference following previous works
[11]. Across the workload, fair speedup and weighted speedup
values are averaged using geometric mean of per-workload
improvements and all other metrics reported in the paper are
averaged using arithmetic mean.

C. Workloads

All benchmarks from 29 SPEC2006 suite with ref inputs are
used as single-core workloads. Using these, 15 two-core and
15 four-core multiprogrammed workloads are created, such
that except for completing the left-over group, each benchmark
is used exactly once for two-core workloads and twice for
four-core workloads. These workloads are shown in Table III.

TABLE III
WORKLOADS USED IN THE PAPER

Single-core workloads (SPEC2006 benchmarks) with their acronyms
As(astar), Bw(bwaves), Bz(bzip2), Cd(cactusADM), Ca(calculix)
Dl(dealII), Ga(gamess), Gc(gcc), Gm(gemsFDTD), Gk(gobmk)
Gr(gromacs), H2(h264ref), Hm(hmmer), Lb(lbm), Ls(leslie3d)
Lq(libquantum), Mc(mcf), Mi(milc), Nd(namd), Om(omnetpp)
Pe(perlbench), Po(povray), Sj(sjeng), So(soplex), Sp(Sphinx)
To(tonto), Wr(wrf), Xa(xalancbmk), Ze(zeusmp)

Two-core workloads: T1 to T15 (Using acronyms shown above)
T1(AsDl), T2(GcBw), T3(GmGr), T4(SoXa), T5(BzLq)
T6(OmLb), T7(NdCd), T8(CaTo), T9(SpMc), T10(LqMi)
T11(SjWr), T12(LsZe), T13(HmGa), T14(GkH2), T15(PePo)

Four-core workloads: F1 to F15 (Using acronyms shown above)
F1(HmSjPoH2), F2(SoGrZeGm), F3(OmSpLbGc), F4(BzGrLsMc)
F5(LsZeXaLq), F6(BwPoNdH2), F7(NdCaAsCd), F8(CaAsOmMc)
F9(BzDlGaGm), F10(SpGcLqHm), F11(XaLbMiGk), F12(SoNdMiBw)
F13(DlCdGkGa), F14(AsPeToWr), F15(SjToWrPe)

Each benchmark was fast-forwarded for 10B instructions
and the workloads were simulated till each core in the
workload completes at least 400M instructions. A core that
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Fig. 4. Results for single-core system

has finished its 400M instructions continues to run, but
for computation of weighted speedup and fair speedup, its
IPC is recorded only for 400M instructions, following well-
established simulation methodology [8], [32]. The value of
energy is recorded for the entire execution, following [6], to
comprehensively account for the effect of increased execution
time on energy consumption and penalize a technique which
harms performance or causes unfairness.

D. Comparison with Other Techniques

Way adaptable cache (WAC): WAC [10] uses selective-
ways approach and keeps only few MRU (most recently used)
ways of the cache active to save energy. WAC computes the
ratio (Z) of hits to the least recently used active way and the
MRU way. It also uses two threshold values T1 and T2. After
every K cache hits, Z is computed. If Z < T1, a single least-
recently used cache way is turned-off. If Z > T2, a single
cache way is turned-on. Otherwise, no change is performed.
Following Bardine et al. [10], we take the value of T1 and T2

as 0.005 and 0.02, respectively and K as 100,000.
Decay cache technique (DECAY): DECAY [13] turns off

a cache line if it has not been accessed for the duration of
‘decay interval’ (DI). Following Kaxiras et al. [13], we use
competitive algorithms theory to compute DI. From Section
III and Table II, EDyn

DRAM = 70nJ and for single-core system
with 2MB cache, PLeak

L2 = 1.568 Watt. Also, L2 has 32768
blocks and frequency is 2.2GHz. Thus, the ratio of DRAM
access energy and L2 leakage energy per cycle per block is
70/(1.568/(2.2 × 32768)), which equals 3.2M cycles. This is
taken as DI for single-core system. Similarly, DI for 2-core and
4-core systems are found, which are 3.5M and 3.6M cycles,
respectively. Also, we implement DECAY using hierarchical
counters, and decay both tag and data arrays [13].

We have chosen these techniques since they both use state-
destroying leakage control like FlexiWay. Also, it helps us in
evaluating how FlexiWay compares to both coarse-grain and
fine-grain cache reconfiguration based techniques.

VIII. RESULTS AND ANALYSIS

A. Main Results

Figure 4 and 5 show the results for single-core, 2-core
and 4-core system configurations, respectively. For remaining
quantities and results presented henceforth, we omit the per-
workload figures due to space limitation and only state the
average. The average value of increase in L2 MPKI with
FlexiWay (WAC and DECAY) with single, dual and quad-core
system are 0.71(0.10 and 1.01), 1.15(0.21 and 0.85), 1.40(0.14
and 1.07), respectively. The average value of fair speedup for
dual and quad core system with FlexiWay (WAC and DECAY)
are 0.96(0.99 and 0.96) and 0.95(0.99 and 0.96), respectively.

We now analyze the results. Firstly, FlexiWay outperforms
both WAC and DECAY and provides nearly double the energy
savings compared to WAC. To take decision about turning-off
a way, WAC uses the ratio of number of hits to MRU and
active LRU ways. Thus, even if the actual number of hits
are small, WAC keeps a way active only based on the ratio. In
contrast, FlexiWay uses the absolute value of hits to a sub-way
and hence, it can more effectively turn-off the sub-ways with
small number of cache hits. In any interval, WAC turns-off
or turns-on only one cache way, while FlexiWay may turn-off
or turn-on up to W − Wmin sub-ways of a single module,
for all the modules. Thus, FlexiWay adapts to the changing
working set of the program much more quickly and thus, can
save larger amount of energy.

While DECAY is effective for L1 cache, its effectiveness
reduces greatly when applied to L2 cache [26], since, actually,
the L2 observes the behavior of the L1 misses and hence,
generational behavior of cache lines is less apparent in L2.
In contrast, FlexiWay works well for L2 which spend large
fraction of energy in the form of leakage energy. Also, it has
been shown that the optimal value of decay interval (DI) varies
widely with different workloads [33]. Since multicore systems
may run arbitrary combinations of benchmarks, finding opti-
mal value of DI becomes more difficult in multicore systems.
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Fig. 5. Results for dual-core and four-core system

Both FlexiWay and WAC guarantee a minimum associativ-
ity to the programs and keep those MRU (and near MRU, de-
pending on Wmin) blocks always ON which are highly likely
to be accessed again. This is especially important in LLC,
since off-chip accesses are very costly. In contrast, DECAY
attempts to turn-off all the blocks and does not directly take
advantage of the set-associative structure of cache.

From the ActiveRatio values, we conclude that FlexiWay
turns off larger fraction of cache than other techniques. For
some workloads, e.g., Lq(libquantum) and Mi(milc), WAC
fails to perform any reconfiguration, since they have near zero
hit rates. For workloads which use L2 intensely, hardly few
cache blocks stay idle for the duration of DI and hence, for
such workloads, DECAY does not effectively reconfigure the
cache, e.g. Lq, T2(gcc,bwaves), T6(omnetpp,lbm) etc. Per-
workload adaptation of DI would be required for improving
energy savings of DECAY in such workloads.

For several workloads, the hits in cache are uniformly
distributed to different ways and hence, WAC does not perform
any cache reconfiguration, for example, Cd (cactusADM),

T4(soplex,xalan), F3(omnetpp,sphinx,gemsFDTD,gcc) etc.
Thus, FlexiWay leverages the opportunity of fine-grain cache
reconfiguration better than WAC. DECAY uses much finer re-
configuration and hence saves larger energy in some workloads
than FlexiWay; however, it also leads to very aggressive cache
reconfiguration which results in poor worst-case performance
and energy saving in some workloads, such as So(soplex) and
T4 etc.

In terms of weighted and fair speedup, FlexiWay and
DECAY are close and WAC provides better results. Also,
L2 MPKI increase with WAC are less than that using other
techniques. However, this is partially due to the fact that WAC
turns-off very small fraction of cache. Also, the increase in
DRAM energy caused by FlexiWay is more than compensated
by the energy saving achieved in the cache. Further, as we
show in Section VIII-B, by controlling the parameters such
as λ and Wmin, the aggressiveness of cache reconfiguration
of FlexiWay can be controlled which reduces the performance
loss at the cost of small reduction in energy saving.

With FlexiWay, the average value of fair speedup is very



close to that of weighted speedup and hence, FlexiWay does
not cause unfair slow-down of any application.

B. Parameter Sensitivity Study

We hereafter focus only on FlexiWay and study its sensi-
tivity to different parameters. Each time we only change one
parameter from default values and summarize the results in
Table IV. For brevity, we only show values of energy saving
and weighted speedup.

TABLE IV
RESULTS FOR DIFFERENT PARAMETERS. DEFAULT VALUES: EMBEDDED

ATD, RS = 64, INTERVAL = 15M CYCLES, λ = 0.75 AND Wmin=2

% Energy Saved Weighted Speedup
N=1 N=2 N=4 N=1 N=2 N=4

Default 26.26 25.74 22.39 0.96 0.96 0.95
Separate ATD 26.38 26.20 22.80 0.96 0.96 0.95
RS = 128 26.01 25.81 22.48 0.96 0.96 0.95

Interval=10M 26.35 25.80 22.24 0.96 0.96 0.95
Interval=20M 25.79 25.40 22.39 0.96 0.96 0.95

λ = 0.5 25.97 24.76 21.76 0.97 0.96 0.96
λ = 1.0 25.95 25.61 22.19 0.96 0.95 0.94
Wmin=3 23.00 23.13 20.24 0.97 0.97 0.97

Using separate ATD: We compute the energy values of sep-
arate ATD using CACTI and include the energy consumption
of ATD in EAlgo. For sake of brevity, we omit these energy
values. Clearly, use of separate ATD provides energy savings
comparable to that with embedded ATD. Thus, the separate
ATD can be used as an alternative to embedded ATD.

Change in Sampling Ratio: On changing RS to 128, we
still achieve large energy savings. Thus, RS can be increased
to reduce the overhead of FlexiWay without reducing energy
savings or harming performance.

Change in Interval Size: Smaller interval size allows
aggressive cache reconfiguration, which enables saving larger
energy in some workloads (e.g. namd) while reducing the
energy saving in other workloads (e.g. soplex). Similar trends
are also observed for the larger interval size. However, on
average, the energy savings and performance are only slightly
affected. This shows the FlexiWay works well for an interval
length in the range of a few million cycles.

Change in λ: On changing λ to 0.5, energy savings are
reduced, but performance is improved. On changing λ to
1.0, performance is slightly reduced, which also leads to
reduction in energy savings. Thus, value of λ near 0.75 show
a conservative value and it can be further reduced to improve
performance at the cost of reduction in energy saving.

Change in Wmin: On increasing Wmin to 3, the perfor-
mance is improved at the cost of energy savings, although
the energy savings are still large. Thus, by changing Wmin, a
balance between energy saving and performance loss can be
achieved.

IX. CONCLUSION

In this paper, we presented FlexiWay, a technique which
uses fine-grain cache way-based turnoff for saving cache
leakage energy. FlexiWay logically divides the cache into

several modules and turns-off cache at the granularity of a
single way of a module. The experimental results performed
using single, dual and quad-core systems have shown that
FlexiWay is effective in saving energy and incurs only small
loss of performance.
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