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Abstract:
Successive over-relaxation (SOR) is a computationally intensive, yet extremely

important iterative solver for solving linear systems. Due to recent trends of exponential
growth in amount of data generated and increasing problem sizes, serial platforms
have proved to be insufficient in providing the required computational power. In this
paper, we present parallel implementations of red-black SOR method using three modern
programming languages namely Chapel, D and Go. We employ SOR method for solving
2D steady-state heat conduction problem. We discuss the optimizations incorporated and
the features of these languages which are crucial for improving the program performance.
Experiments have been performed using 2, 4, and 8 threads and performance results are
compared with serial execution. The analysis of results provides important insights into
working of SOR method.
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1 Introduction

Successive over-relaxation (SOR) is one of the most
important method for solution of large linear systems
([1–3]). It has applications in CFD (computational fluid
dynamics), mathematical programming ([4]), medical
analysis ([5]) and machine learning ([6]) etc. The
example of applications of SOR in CFD include study of
steady heat conduction, turbulent flows, boundary layer
flows or chemically reacting flows. For this reason, SOR
method is important for both researchers and business
policymakers.

Due to recent trends of exponential growth in
amount of data generated ([7, 8]) and increasing
problem sizes, serial platforms have proved to be
insufficient in providing the required computational

power. Hence, parallelization of computation intensive
problems has become essential. Moreover, as the
chip power-budget considerations restrict processor
frequency-scaling, processor designers have focused on
using tens of cores on a single chip to achieve high-
performance and future processors are expected to have
hundreds of cores. Thus, high-performance computing
approach is expected to be even more useful for future
systems.

In this paper, we present parallel implementations
of SOR method using three concurrent programming
languages, namely Chapel (from Cray Inc. ([9]), D
(from Digital Mars ([10])) and Go (from Google ([11])).
The SOR method is used for solving 2D steady-
state heat conduction problem. We discuss the relavant
programming constructs of these languages and compare
them to gain insights into their features which are crucial
for improving the program performance.

Accepted in Int. J. of High Performance Computing and Networking, 2014.



Experiments have been conducted with a square
grid of dimension 4096× 4096. Further, SOR method
has been parallelized using 2, 4 and 8 threads using
all the three languages and their performance has
been compared with the serial execution. The analysis
of results provides important insights into working of
SOR method. The results also highlight the importance
of using high-performance computing approach for
obtaining solution of grid with large dimensions.

The rest of the paper is organized as follows.
Section 2 presents a background on Chapel, D and
Go languages and SOR method. Section 3 presents the
algorithm, optimizations, implementation details and
salient features of our approach. Section 4 discusses the
performance results. Finally, section 5 concludes this
paper.

2 Background and Related Work

In this section, we briefly review the SOR method and
programming features of Chapel, D and Go.

2.1 Successive Over Relaxation (SOR) Method

For solution of partial differential equations, both direct
and iterative solvers have been used. The direct solvers
are susceptible to round-off errors; while iterative solvers
provide the opportunity to achieve desired accuracy by
trading-off the speed. Moreover, the iterative solvers are
generally more memory-efficient than the direct solvers
and hence are especially useful for solving large-sized
problems. For this reason, we focus on iterative solvers
in this paper. The examples of iterative solvers include
Jacobi method, Gauss-Siedel (GS) method and SOR
method.

The Jacobi method is a well-known iterative solver
method which computes the value for iteration k based
on values from iteration k − 1. The Jacobi method is
easily parallelized, however, its slow convergence rate
prevents its use for any real-life application. GS method
partially makes use of new values to reach to convergence
faster. SOR is an extrapolation of the GS method
which works by using weighted version of previous and
computed GS iterate to accelerate its convergence.

Xk = ωXk + (1− ω)Xk−1 (1)

Here Xk is the k-th Gauss-Siedel iterate and 0 < ω < 2
is the extrapolation factor. By choosing a suitable value
of ω, the convergence rate of SOR can be improved. GS
method is a special case of SOR for ω = 1. Since methods
to improve the speed of convergence is outside the scope
of this work, we use a single value of ω as 0.376.

The simulation is performed till the largest value of
|Xk(i, j)−Xk−1(i, j)| (i.e. difference between successive
values of Xk ) for any grid point (i, j) remains greater
than ϵ, where ϵ shows the numerical tolerance. By
choosing a suitable value of ϵ, a trade-off can be exercised
between simulation speed and accuracy.

2.2 Chapel, D and Go Programming Languages

HPC is a promising approach for accelerating
computational-intensive applications, such as
multimedia processing ([12, 13]), atmospheric
simulations ([14]), processor simulations ([15]), medical
imaging ([16]), bioinformatics ([17]) etc. In recent years,
HPC has been widely used by researchers ([18–21]).
Several parallel programming languages have been
used such as D, Go, Chapel, Java, OpenMP, and X10
([22]) etc. These languages facilitate writing large-
sized programs and provide programming constructs to
express parallelism present in the program.

In this paper, we use Chapel, D and Go to accelerate
SOR method. These languages have some similarities
along with some unique features. These languages
provide concurrent programming facility as part of the
language itself. Neither of them require VM (virtual
machine), rather they are statically compiled. Chapel
aims at improving the performance, programmability,
portability, and robustness of high-end processors, while
also facilitating parallel programming on commodity
clusters or desktop multicore systems. Both D and
Go are system programming languages and provide
automatic garbage-collection, and faster compilation
speed than C/C++ ([23]). Chapel does not provide
automatic garbage-collection.

These languages also have some important
differences. Relative to each other, Go aims more for
simplicity and faster development, D aims for providing
more features and Chapel aims for higher performance.
Go does not have classes and only uses structs and
interfaces; Chapel has classes and records, while D has
classes and structs. Further, unlike D and Chapel, Go
does not provide operator over-loading. The differences
in methods used for parallel programming are discussed
in Section 3.

2.3 HPC Techniques for SOR Method

Recently, several researchers have used GPU (graphics
processing unit) to accelerate SOR method by offloading
the memory intensive computations to GPU ([24–
26]). Compared to these, our implementation does not
require a special-purpose hardware. In contrast to CPUs,
GPUs have much smaller onboard memory and the
bandwidth of the bus connecting CPU memory to
GPU memory subsystem has limited bandwidth. Hence,
for applications which require large working sets and
number of iterations, the overhead of data-transfer
between GPU and CPU presents a severe performance
bottleneck ([27]). Moreover, use of GPUs also entails
the overhead of porting the legacy code to graphics
hardware, which may be economically infeasible in many
scenarios.



3 Methodology

3.1 Parallelization of SOR Method

In literature several parallel version of SOR have been
proposed such as red-black SOR, multi-color SOR ([28]),
block-parallel SOR ([29]). In this paper, we use red-black
SOR method.

Red-black SOR divides the grid into a chessboard of
red and black cells, as shown in Figure 1. For a given
row value i and column value j, a red cell is one for
which (i+ j) is even and a black cell is one for which
(i+ j) is odd. Clearly, all red cells have black cells as
their neighbours and vice-versa.

(i-1,j)

(i,j-1) (i,j) (i,j+1)

(i+1,j)

(p-1,q)

(p,q-1) (p,q) (p,q+1)

(p+1,q)

Figure 1 The checkerboard configuration for SOR. Note
that all red cells have black cells as their four
neighbors and vice versa.

The red-black group identification strategy along
with use of the five-point finite-difference stencil leads
to uncoupling of the solution of Eq. 1 at interior cells
such that the value at the red cells depends only on the
value at the black cells and vice versa. Thus, red-black
SOR divides the iteration in two steps, namely red phase
and black phase. In any iteration, first red cells can be
updated and then for updating the black cells, the value
just computed for red cells can be used. Clearly, such a
strategy allows straightforward parallelization.

3.2 Using Chapel, D and Go For Parallelization

SOR method involves iterative computations, where
threads executing the same code in parallel must all
complete one phase (viz. red or black) of the iteration
before moving on to the next phase (or iteration). To
ensure this, a synchronization barrier is used which
enables worker threads to wait until all the threads have
all completed a phase before any thread continues. We
now describe the parallelization approach and relavant
programming constructs of Chapel, D and Go which
enable us to achieve these functionalities.

3.2.1 Chapel Programming Language

In Chapel language, we have utilized the task-parallel
construct begin along with synchronization construct

sync. Using begin, the solver function is issued in
asynchornous manner and using sync statement, barrier
synchronization is achieved.

3.2.2 D Programming Language

In D language, we have utilized the functionality of
std.parallelism module. Each worker is started as a
new task. Using put command, a task is queued to the
taskPool for execution. The taskPool encapsulates a
task queue and executes the task by efficiently mapping
them onto the threads. For barrier synchronization,
yieldForce function is used for each running task, and
thus, the control waits till all the threads have finished
execution.

To allow different threads to access the global data,
shared qualifier is used to designate that a piece of data
is shared in different threads. Otherwise, by default, the
data is local to each thread and hence, multiple threads
cannot safely access it. For designating that a piece of
data is constant and hence safe for concurrent reading,
immutable keyword is used.

3.2.3 Go Programming Language

In Go, we use Goroutines to achieve concurrent
programming. A function which is called with go in its
front is executed in its own goroutine. As an example,
for the following code,

go function1()

function2()

both function1 and function2 run concurrently.
Goroutines are lightweight and are multiplexed onto a
set of threads. When a goroutine is blocked, the run-
time automatically moves other goroutines on the same
operating system thread to a different, runnable thread
to allow maximum utilization of the resources.

The maximum number of processors to be used
are specified using GOMAXPROCS function from runtime

package. For implementing barrier synchronization, we
used WaitGroup variable. Using Add function, the
number of goroutines to wait for is specified and each
such goroutine issues Done function to signal completion.
When all goroutines complete, the barrier is released.

3.3 Optimizations Incorporated

To achieve high performance, we have applied several
optimizations to both serial and parallel versions. We
now discuss these optimizations briefly and then present
the algorithm in the next section.

Code restructring to avoid branch
misprediction penalty: Modern processors use long
pipelines to allow instruction-level parallelism (ILP),
however, this also increases the penalty of branch
mispredictions. Branch prediction is required for
predicting the outcome of conditional statements like
if. To reduce branch misprediction penalty, we have



Code 1: Requires checking if condition several times

for (i= 0; i < DIM; i++)

for(j= 0; j< DIM; j++)

{

if ( (i+j)%2 ==0)

doProcessing()

}

Code 2: Avoids checking if condition by restructring for loop

for (i= 0; i < DIM; i+= 2)

for(j= 0; j< DIM; j+= 2)

{

doProcessing()

}

for (i= 1; i < DIM; i+= 2)

for(j= 1; j< DIM; j+= 2)

{

doProcessing()

}

Figure 2 Optimization: Avoiding if (branch statement) by restructring for loop for red phase. Similar idea applies to
black phase also. Here DIM shows dimension of the grid.

structured the for-loops in a manner that if-condition
checking is minimized, as shown in Figure 2. This also
allows the compiler to apply optimization techniques
such as loop-unrolling and vectorization, if applicable.
Moreover, since branch conditions are removed, the
runtime performance is significantly improved.

Minimizing serial execution bottleneck: In
SOR method, checking for convergence requires finding
the maximum absolute error for all the cells. This
would require comparing the error value at all the cells
to a single maxChange value (see Algorithm 1). This
represents a critical section and to avoid data race
condition, mutex functionality might be required. To
avoid it, convergence check is done in a serial manner
(see Algorithm 1). This increases the storage overhead
slightly, but it also provides performance improvement.

Choice of granularity of convergence check:
In SOR method, since generally convergence is reached
after thousands of iterations, testing for convergence
at the end of each iteration may lead to extra
computations (e.g. comparisons). To reduce the overhead
of convergence test, we perform it only once after every
K iterations. The choice of K presents a trade-off since a
large value of K may lead to performing extra iterations
even after convergence is reached and a small value of K
may lead to increase overhead of convergence checking.
We have heuristically chosen K as 4000 to keep a balance
between these two factors.

3.4 Parallel SOR Algorithm

Algorithm 1 shows the parallel SOR algorithm for
the case of 2D steady-state heat conduction problem.
Initially, the temperature at north boundary is assumed
to be 1.0 unit, while at all other boundaries, it is assumed
to be 0.

The algorithm proceeds as follows. Initially, the grid
is initialized. The main routine runs for a maximum of
MaxIterations number of iterations. In each iteration,
red and black phases spawn P workers (e.g. threads
or goroutines) which need to be synchronized at the
end of the phase. Each worker updates the cells of
the given color allocated to it. Convergence check is
performed only when shouldCheckConvergence is true,
which happens after every K iterations. The serial version

Algorithm 1: Parallel SOR Algorithm (see Section
3.4)

Input: Initial temperature profile, P (number of workers) and

ω.

Output: Final temperature profile and whether SOR converged

1 Constants Used: MaxIterations (max number of iterations), K

(number of iterations after which convergence is checked) and ϵ

(tolerance)

2 Variables Used: gridData and gridDataOld: 2D arrays,

hasConverged = false, maxChange= 0.0 and

shouldCheckConvergence (whether to check for convergence in

this iteration) = false

3 Initialize the gridData with initial temperature profile

4 Algorithm for main routine

5 foreach iteration iter = 1 to MaxIterations do

6 if iter is a multiple of K then

7 shouldCheckConvergence = true

8 Copy entire gridData to gridDataOld

9 else

10 shouldCheckConvergence = false

11 end

12 Call updateGridRed with P workers in parallel

13 Synchronize

14 Call updateGridBlack with P workers in parallel

15 Synchronize

16 if shouldCheckConvergence then

17 maxChange =0

18 foreach Cell (i, j) in the grid do

19 maxChange =

Maximum(|gridData(i, j) − gridDataOld(i, j)|,
maxChange )

20 end

21 if maxChange < ϵ then

22 hasConverged = true

23 break

24 end

25 end

26 end

27 Print value of hasConverged. Return.

28 updateGridRed() for worker pj

29 foreach Cell of red color given to worker pj do

30 Update gridData using Eq. 1

31 end

32 updateGridBlack() for worker pj

33 foreach Cell of black color given to worker pj do

34 Update gridData using Eq. 1

35 end



Table 1 Execution time and speedup values for different languages and different number of cores

Execution time in seconds Speedup relative to serial execution

Threads Chapel D Go Chapel D Go
1 (Serial) 7538 8609 10551 - - -

2 3977 4099 5204 1.90 2.10 2.03

4 3139 3322 3834 2.40 2.59 2.75
8 2824 3141 3052 2.67 2.74 3.46

of SOR algorithm follows along the same lines and has
been omitted for the sake of brevity.

4 Experimental Platform and Results

To gain highest performance in the final run, we
compiled Chapel code with --fast flag (which also turns
ON the -O3 flag for the compilation of the back-end C
code produced by the Chapel compiler ) and D code with
-inline -O -release flags. For Go code, no suitable
optimization flag could be found. The values of constants
are taken as ϵ = 0.00001, MaxIterations = 50000 and
K = 4000. The dimension of the grid is 4096× 4096.
For each of the three languages, we wrote both serial
and parallel programs. We compare the performance
scaling of these languages by comparing the execution
time of parallel programs with the serial program written
in the same language. Table 1 presents these execution
time values. It also presents the speedup values, where
speedup SP for P threads is defined as

SP =
T1

TP
(2)

Here T1 and TP refer to the execution time using
1 (serial) and P threads, respectively for the same
language.

We now analyze these results. For the SOR program,
out of the three languages tested, Chapel language
gives the highest performance (Note that the above
mentioned results should not be taken to conclude
about the performance of these languages for all possible
programs, since a different program and coding style
might produce different results). For small number of
threads (e.g. 2), the performance scales nearly linearly
(A slight variation can be attributed to load on the
host machine), however, for large number of threads
(e.g. 8), the performance does not scale linearly. This
is due to the fact that SOR program involves multiple
iterations and phases; and the synchronization required
after each phase creates serialization bottleneck due to
which multiple threads do not progress independently.
If the number of iterations required for convergence
is L, then synchronization is required for 2× L times.
Moreover, with the increasing number of cores, although
the processing power increases, the other resources such
as cache, memory bandwidth etc. do not increase linearly
and hence, the program performance does not scale
linearly.

5 Conclusion and Future Work

In this paper, we have highlighted the importance of
using HPC approach [30] for accelerating solution of
SOR method. We presented parallel implementations
of SOR method for solving 2D heat transfer problem.
We discussed the features of Chapel, D and Go, along
with their functions which are important for achieving
parallel implementation of SOR method. Experimental
results have been conducted using 2, 4 and 8 threads
and analysis of results provides important insights into
SOR method. Our future work will focus on solving
the SOR problem for 3D grids. We also plan to study
parallelization of other computation intensive problems.
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